Physical and Data Link Layer Overview

Kameswari Chebrolu Dept. of Electrical Engineering, IIT Kanpur

Problem Statement

• Make two computers talk to each other

Five Tasks

- Encoding
 - Convert bits to signals
- Framing
 - Delineating sequence of bits into individual messages
- Error Detection
 - Need to ensure that the receiver sees the same copy as sender
- Error Recovery
 - Make a link appear reliable in spite of errors
- Media Access
 - Sharing a single physical medium across more then two computers

Encoding

- Physical media transmit Analog signals
 - Modulate/demodulate the electromagnetic waves
- Encode binary data into signals
 - E.g. Non-return to Zero (NRZ)
 - 0 as low signal and 1 as high signal

Problems with NRZ

- Consecutive 1s and 0s
 - Changes the average making it difficult to detect signals (*baseline wander*)
 - Clock Recovery
 - Sender's and receiver clocks have to be precisely synchronized
 - Receiver derives the clock from the received signal vis signal transition
 - Lesser number of transitions leads to clock drift

Alternative Encodings

- Non-return to Zero Inverted (NRZI)
 - To encode a 1, make a transition
 - To encode a 0, stay at the current signal
 - Solves problem of consecutive 1's but not 0's
- Manchester Encoding
 - Transmits XOR of the NRZ encoded data and the clock
 - 0 is encoded as low-to-high transition, 1 as high-to-low transition
 - Only 50% efficient

4B/5B Encoding

- Every 4 bit of actual data is encoded into a 5 bit code
- The 5 bit code words have
 - No more than one leading 0
 - No more than two trailing 0s
 - Solves consecutive zeros problem
- The 5 bit codes are sent using NRZI
- Achieves 80% efficiency

4B/5B Encoding

0	11110	0000
1	01001	0001
2	10100	0010
3	10101	0011
4	01010	0100
5	01011	0101
6	01110	0110
7	01111	0111
8	10010	1000
9	10011	1001
A	10110	1010
В	10111	1011
C	11010	1100
D	11011	1101
E	11100	1110
F	11101	1111

Five Tasks

- Encoding
 - Convert bits to signals
- Framing
 - Delineating sequence of bits into individual messages
- Error Detection
 - Need to ensure that the receiver sees the same copy as sender
- Error Recovery
 - Make a link appear reliable in spite of errors
- Media Access
 - Sharing a single physical medium across more then two computers

Framing

- Framing breaks bit streams into *frames* of smaller sizes
- Challenge: What sets of bits constitute a frame
 - Where is the beginning and the end of frame?
- Framing Protocols
 - Examples: PPP, HDLC, DDCMP

Theory behind Framing

- Delineate a frame with a special pattern
 - HDLC uses an 8 bit pattern: 01111110

- Problem: Special pattern may appear in payload
- Solution: Bit Stuffing
 - Sender inserts a 0 after 5 consecutive 1's
 - Receiver removes the 0 that follows 5 1's

Five Tasks

- Encoding
 - Convert bits to signals
- Framing
 - Delineating sequence of bits into individual messages
- Error Detection
 - Need to ensure that the receiver sees the same copy as sender
- Error Recovery
 - Make a link appear reliable in spite of errors
- Media Access
 - Sharing a single physical medium across more then two computers

Error Detection

- Basic Idea: Add redundant information to a frame
 - Add k bits of redundant data to a n bit message
 - k << n; k = 32; n = 12,000
 - k derived from original message through some algorithm
- Examples: CRC, checksum, two-dimensional parity

Checksum

- View data in a frame to be transmitted as a sequence of 16-bit integers.
- Add the integers using 16 bit one's complement arithmetic.
- Take the one's complement of the result this result is the checksum

Five Tasks

- Encoding
 - Convert bits to signals
- Framing
 - Delineating sequence of bits into individual messages
- Error Detection
 - Need to ensure that the receiver sees the same copy as sender
- Error Recovery
 - Make a link appear reliable in spite of errors
- Media Access
 - Sharing a single physical medium across more then two computers

Error Recovery

- Two forms of error recovery:
 - Automatic Repeat reQuest (ARQ)
 - Forward Error Correction (FEC)
- ARQ relies on two mechanisms
 - Acknowledgments
 - Timeout

Stop and Wait ARQ

- Problem: Can't keep pipe full
- Example: Consider a 1.5 Mbps link with a 45ms round trip time; Frame size is 1024 bytes
 - Utilization is 1024*8/0.045 = 182kbps

Bandwidth-Delay Product (BDP)

- View a link as a hollow pipe
 - Latency corresponds to the length of the pipe
 - Bandwidth gives diameter of the pipe
 - BDP gives the volume of the pipe the number of bits it holds
 - E.g. a transcontinental link with bandwidth 45Mbps and latency 50ms can hold 2.25 * 10⁶ bits
- BDP represents #bits the sender can transmit before the sender gets acknowledgment of the first bit
- If the sender does not send BDP's worth of data, it is under utilizing the link

Sliding Window

- Allow multiple outstanding (un-Acked) frames
- Place an upper bound on un-Acked frames, called window

Sender Side

- Assign a sequence number to each frame (SeqNum)
- Maintain 3 variables:
 - Send Window Size (SWS): upper bound on the number of unacked frames that sender can transmit
 - LAR denotes sequence number of Last Acknowledgment Received; Advance LAR when ACK arrives
 - LFS denotes sequence number of Last Frame Sent
- Maintain Invariant: LFS-LAR <= SWS

Receiver Side

- Maintains the following three variables
 - Received Window Size (RWS): upper bound on the number of out of order frames
 - LAF denotes sequence number of last acceptable frame
 - LFR denotes sequence number of last frame received
- Maintain invariant: LAF LFR <= RWS

Receiver Side cont..

- Frame SeqNum arrives
 - If SeqNum <= LFR or SeqNum > LAF, discard
 - If LFR< SeqNum <= LAF, accept</p>
- Send cumulative Acks

Summary

- Five key problems have to be solved for two computers to talk with each
- We covered four of these problems
 - Encoding
 - Framing
 - Error Detection
 - Error Recovery
- The fifth problem and our topic of next session is *Media Access Protocols*