
Transport Protocols

Kameswari Chebrolu
Dept. of Electrical Engineering, IIT Kanpur

End-to-End Protocols
� Convert host-to-host packet delivery service into

a process-to-process communication channel
� Demultiplexing: Multiple applications can share the

network
� End points identified by ports

� Ports are not interpreted globally
� servers have well defined ports (look at /etc/services)

User Datagram Protocol (UDP)

SrcPort DstPort

ChecksumLength

Data

0 16 31Application
process

Application
process

Application
process

UDP

Packets arrive

Ports

Queues

Packets
demultiplexed

Demultiplexing
UDP Header

Computes checksum
over UDP header,
message body and
pseudo-header

Application Layer Expectations
� Guaranteed message delivery
� Ordered delivery
� No duplication
� Support arbitrarily large messages
� Synchronization between the sender and receiver
� Support flow control
� Support demultiplexing

Limitations of Networks

� Packet Losses
� Re-ordering
� Duplicate copies
� Limit on maximum message size
� Long delays

Transmission Control Protocol (TCP)
� Connection oriented

� Maintains state to provide reliable service
� Byte-stream oriented

� Handles byte streams instead of messages
� Full Duplex

� Supports flow of data in each direction
� Flow-control

� Prevents sender from overrunning the receiver
� Congestion-control

� Prevents sender from overloading the network

TCP Cont...

Application process

Write bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read bytes

TCP

Receive buffer

� � �

Sliding Window: Data Link vs Transport
P2P: Dedicated Link -- Physical Link connects the same two
computers
TCP: Connects two processes on any two machines in the Internet
� Needs explicit connection establishment phase to exchange state

P2P: Fixed round trip transmission time (RTT)
TCP: Potentially different and widely varying RTTs
� Timeout mechanism has to be adaptive

P2P: No Reordering
TCP: Scope for reordering due to arbitrary long delays
� Need to be robust against old packets showing up suddenly

Sliding Window: Data Link vs Transport

P2P: End points can be engineered to support the link
TCP: Any kind of computer can be connected to the Internet
� Need mechanism for each side to learn other side's resources
(e.g. buffer space) -- Flow control

P2P: Not possible to unknowingly congest the link
TCP: No idea what links will be traversed, network capacity can
dynamically vary due to competing traffic
� Need mechanism to alter sending rate in response to network
congestion – Congestion control

TCP Header Format

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

Sender

Data (SequenceNum)

Acknowledgment +
AdvertisedWindow

Receiver

Connection Establishment

Active participant

(client) (server)

SYN, SequenceNum = x

ACK, Acknowledgment =y+1

Acknowledgment =x+1
SYN+ACK, SequenceNum=y,

State Transition Diagram

Protection Against Wraparound
� Wraparound occurs because sequence number

field is finite
� 32 bit sequence number space

� Maximum Segment Lifetime (MSL) is 120 sec

Bandwidth Time until Wraparound
T1 (1.5Mbps) 6.6 hrs

Ethernet (10Mbps) 57 minutes
T3 (45 Mbps) 13 minutes

FDDI (100Mbps) 6 minutes
STS-3 (155Mbps) 4 minutes

STS-12 (622Mbps) 55 seconds
STS-24 (1.2Gbps) 28 seconds

Sliding Window Recap

Sending application

LastByteWritten
TCP

LastByteSentLastByteAcked

Receiving application

TCP
 LastByteRead

NextByteExpected LastByteRcvd

Sending Side:
� LastByteAcked <= LastByteSent
� LastByteSent <= LastByteWritten
� Buffer bytes between
LastByteAcked and
LastByteWritten

Receiving Side:
� LastByteRead <= NextByteExpected
� NextByteExpected <=
LastByteRcvd+1
� Buffer bytes between LastByteRead
and LastByteRcvd

Flow Control
� Buffers are of finite size

� MaxSendBuffer and MaxRcvBuffer
� Receiving side:

� LastByteRcvd – LastByteRead <= MaxRcvBuffer
� AdvertisedWindow = MaxRcvBuffer – ((NextByteExpected – 1) –

LastByteRead)
� Sending side:

� LastByteSent – LastByteAcked <= AdvertisedWindow
� EffectiveWindow = AdvertisedWindow – (LastByteSent –

LastByteAcked)
� LastByteWritten – LastByteAcked <= MaxSendBuffer
� Persist when AdvertisedWindow is zero

� At steady state use Self-clocking
� Acks pace transmission of packets

� Challenges:
� How to determine available capacity?
� How to adjust sending rate to varying capacity?

Congestion Control

Congestion Avoidance: Additive
Increase/Multiplicative Decrease

� Introduce a new variable: CongestionWindow
� Limits the amount of data in transit
� MaxWindow = Minimum of

(CongestionWindow,AdvertisedWindow)
� EffectiveWindow = Maxwindow – (LastByteSent –

LastByteAcked)
� Adjust CongestionWindow to changes in capacity

� Decrease CongestionWindow when congestion goes up
� Increase CongestionWindow when congestion goes down

AIMD Cont...
� Problem: How do we detect congestion?
� Answer: Timeouts

� TCP interprets timeout as a result of congestion
� Multiplicative decrease: Cut CongestionWindow by half

on each timeout
� Additive Increase: Increase CongestionWindow by

Maximum Segment Size (MSS) per RTT
� In practice, increment a little on each ack,
� CongestionWindow += Increment
� Increment = MSS * (MSS/CongestionWindow)

Saw Tooth Pattern

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Time (seconds)

70

30

40

50

10

10.0

Slow Start
� AIMD approach is used at steady state
� But how to get to steady state?
� Increase Congestion Window exponentially

� Begin with CongestionWindow = 1
� Double CongestionWindow every RTT

� “Slow” compared to sending entire advertised
window all at once

� Used during beginning of connection
� Used when connection goes dead due to timeout

Congestion Window vs Time

Cwnd

Cwnd/2

Slow
Start

Waiting for
Timeout

Timeout

Slow
Start

Congestion
Avoidance

Time

Fast Retransmit/Fast Recovery

Packet 1
Packet 2
Packet 3
Packet 4

Packet 5

Packet 6

Retransmit
packet 3

ACK 1
ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver
Fast Retransmit:
Use duplicate acks to
trigger retransmission

Fast Recovery:
Peform congestion
avoidance
instead of slow start

RTT Estimation: Original Algorithm
� Measure SampleRTT for sequence/ack combo
� EstimatedRTT = a*EstimatedRTT + (1-a)*SampleRTT

� a is between 0.8-0.9
� small a heavily influenced by temporary fluctuations
� large a not quick to adapt to real changes

� Timeout = 2 * EstimatedRTT

Jacobson/Karels Algorithm

� Incorrect estimation of RTT worsens congestion
� Algorithm takes into account variance of RTTs

� If variance is small, EstimatedRTT can be trusted
� If variance is large, timeout should not depend

heavily on EstimatedRTT

Jacobson/Karels Algorithm Cont..
� Difference = SampleRTT - EstimatedRTT
� EstimatedRTT = EstimatedRTT + (d *

Difference)
� Deviation = Deviation + d (|Difference| -

Deviation)), where d ~ 0.125
� Timeout = u * EstimatedRTT + q * Deviation,

where u = 1 and q = 4
� Exponential RTO backoff
�

Summary
� Transport protocols essentially demultiplexing

functionality
� Examples: UDP, TCP, RTP
� TCP is a reliable connection-oriented byte-stream

protocol
� Sliding window based
� Provides flow and congestion control

