Wireless Communication: Multiple Access Techniques

Kameswari Chebrolu

Department of EE, IIT Kanpur

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Limitations

- Bandwidth
 - Scarce spectrum ->low data rates
- Reliability
 - High loss rates
- Power
 - Mobility brings about battery operation
- Security
 - Medium is broadcast

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Wired versus Wireless Attenuation is low Attenuation is high • Interference is nil: • Interference is high: each wire is a single medium separate medium • No knots, no digging • Clumsy, costly, no to lay cables, tethermobility free Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

History

- 1897: Marconi demonstrated radio ability to keep in contact with ships sailing English Channel
- 1946: First public mobile system
 - Push to talk; 50 km range; Analog FM, 120kHz RF bandwidth, operated assisted dialing
- 1950s: Bell Labs proposed "cell concept"
- 1976s: AT&T introduced IMTS (Improved Mobile Telephone System)
 - 30kHz RF bandwidth, full duplex, auto-dialed

Cellular Network Generations

- First Generation: Analog
 - 1983: AT&T launched Advance Mobile Phone System (AMPS) in US
 - 1985-1990: Six incompatible standards in Europe
 - E.g., ETACS, NMT-450, NMT-900
- Second Generation: Digital
 - 1990: GSM was launched in Europe
 - 1993: IS-95 (Interim Standard) launched in US
 - 1993: PDC (Personal Digital Cellular) launched in Japan

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Cellular Concept

- 1970s: A maximum of 12 channels could be supported thousand square miles
- Efficiently uses spectrum
- Basic Idea:
 - Replace a single high-power transmitter (large cell) with many low power transmitters (small cells)
 - Allocate channels such that neighboring cells have different frequency sets

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Cellular Network Generations

- 2.5 Generation: Packet Switching
 - HSCSD (57.6kbps), GPRS(171.2kbps), EDGE (547.2kbps), IS-95B(115.2kbps)
- Third Generation: Unparalleled wireless access
 - cdma2000(307kbps), W-CDMA(2Mbps), EDGE (547.2Kbps)

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Frequency Reuse

Total duplex channels: S Cluster size: N Allocation per cell: k S = k*N

Capacity of system: C Cluster replication: M C = M * k * N = M * S

 $N = i^2 + i * j + j^2$ i, i are non-negative integers N = 1,3,4,7,9,12 etc

Multiple Access techniques

- Duplexing:
 - Simplex: Communication possible in only one direction
 - Half duplex: At any given time, user can either transmit or receive
 - Full duplex: Allow simultaneous transmission and reception
- Two Types of full duplex
 - Frequency Division Duplexing (FDD)
 - Time Division Duplexing (TDD)

TDD

- Each user is assigned a single frequency (channel)
- Channel has
 - a forward time slot for communication from base-station to mobile
 - a reverse time slot for communication from mobile to base-station

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

FDD

- Provides two distant bands (simplex) of frequency for each user
 - Forward band provides traffic from the base station to the mobile
 - Reverse band provides traffic from the mobile to the base station
 - Frequency separation between the forward and reverse band is constant

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Frequency Division Multiple Access (FDMA)

- Each user is allocated a unique frequency band (channel)
- Channels assigned based on demand
- Dedicated channel:
 - During the period of call, no other user can share the channel
 - If the channel is not in use, it wastes resources
 - Typically FDMA channels are narrow band (30kHz)

Time Division Multiple Access(TDMA)

- Divides the radio spectrum into time slots
- Only a single user can transmit/receive in each slot
- A channel can be thought of as a particular time slot that reoccurs every frame

Cellular System	Access
AMPS	FDMA/FDD
GSM	TDMA/FDD
PDC	TDMA/FDD
Cordless Phone	FDMA/TDD
IS-95	CDMA/FDD

Code Division Multiple Access (CDMA)

- All users use the same carrier frequency
- All may transmit simultaneously
- Users use code words that are orthogonal to each other
- Receiver performs a time correlation operation to detect specified code word
- Interference limited system
- Walsh codes: 11110000; 11001100; 10101010

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Summary

- Wireless offers cost and mobility benefits
- Variety of wireless technologies available with different ranges
- Frequency Reuse permits efficient use of scarce spectrum
- Variety of multiple access techniques available to access shared media
 - FDMA, TDMA and CDMA

