Lecture 17

SPACE GEOMETRY :: INTRODUCTION

TA 101: Engineering Graphics

2007~08 Semester II

January – May 2008

OUTLINE

- A Point in Space
- A Line in Space
- A Plane in Space

C. V. R. Murty @ IIT Kanpur :: TA101 :: 2007 -08 II

VIEWING BOX

• THIRD Angle Projection

A POINT

- Define its position
 - with respect to Coordinate Axes
 - with respect to VP, HP & PP

• In a plane parallel to VP

• In a plane parallel to HP

• In a plane parallel to PP

• Perpendicular to HP

Perpendicular to VP -A Point!! 12

• Perpendicular to PP A Point!!-13

- Orthographic Projection of a line is
 - A point

14

- It is in its TRUE LENGTH in projection across hinge line
- A line parallel to hinge line
 - It is in its TRUE LENGTH in projection across hinge line

- Arbitrarily oriented in space
 - How does one get its TRUE LENGTH?

REPRESENTATION OF A PLANE

- Plane can be defined by THREE points
 - Characterised by its normal

17

A PLANE • Parallel to VP 18

• Parallel to HP

• Parallel to PP

A PLANE

- Arbitrarily oriented in space
 - How does one get its TRUE AREA?

