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A recent numerical simulation by Kumar and Kumar [1]
of the classical Langevin dynamics of a charged particle
moving on a sphere placed in a uniform static magnetic
field had given a non-zero orbital diamagnetic moment in
the long-time limit, i.e., in the steady state. This numer-
ical result appeared as a surprise in view of the well-
known Bohr-van Leeuwen (BvL) theorem on the absence
of classical orbital (dia)magnetism in thermal equilib-
rium [2]. It has, however, been questioned [3,4] inas-
much as the Fokker-Planck (F-P) equation [4], associ-
ated with the Langevin equation [5], was pointed out to
be satisfied exactly and uniquely in the steady state by
the normally expected canonical probability distribution
(i.e., the Maxwellian velocity distribution) that does not
involve the applied magnetic field, and, therefore, gives
zero magnetic moment. (And this despite the fact that the
F-P equation itself did explicitly contain the magnetic field
as a parameter!) In the present Comment, we have specif-
ically repeated the simulation [1] for progressively smaller
values of the chosen elementary time-step ∆τ approach-
ing zero, at which the magnetic moment was indeed found
to extrapolate to zero. As will be discussed below, this
resolves the stated disagreement. This, however, suggests
an interesting possibility for realizing a finite steady-
state orbital magnetic moment in certain classical systems
driven by stochastic-dissipative processes which are non-
Markovian, and do not obey the fluctuation-dissipation
(FD) relation [6], but do lead to a steady state.
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For the sake of clarity of presentation, we reproduce
below the two basic Langevin equations (eqs. (3) and (4)
of [1]) describing the charged-particle motion on a sphere
of radius a placed in a magnetic field B. In obvious
notation [1], we have

θ̈− sin θ cos θφ̇2 =−ωc
γ
sin θ cos θφ̇− θ̇+√ηfθ, (1)

sin θφ̈+2 cos θθ̇φ̇=
ωc

γ
cos θθ̇− sin θφ̇+√ηfφ, (2)

with the delta-correlated driving Gaussian noise,
〈fα(t)fβ(t′)〉= δαβδ(t− t′) of zero mean and unit vari-
ance, and the overhead dots denoting differentiation
with respect to the dimensionless time τ = γt. Here
ωc = eB/mc is the cyclotron frequency, γ is the fric-
tion constant, while η parametrizes the strength of
the Gaussian random noise in accordance with the FD
relation [6]. These Langevin equations are known to lead
to statistical equilibrium as a unique steady state in the
limit t→∞. We are, of course, interested in the steady-
state orbital magnetic moment µ=−eγ/2c〈〈r× ṙ〉〉. Here
the double angular bracket denotes averaging over noise
realizations (ensemble averaging) as well as over time.
Now, the numerical simulation [1] of the above Langevin

equations, as indeed of any such stochastic equation,
necessarily involves discretization of the continuous time
(τ) parameter with an elementary discrete time step
(∆τ). Here the random noises fα(t), acting over these
elementary time intervals of duration ∆τ , are drawn as
identically independently distributed Gaussian random
variables, with zero mean and a standard deviation σ
proportional to

√
∆τ , i.e., as appropriate to the numerical
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Fig. 1: Plot of ensemble-averaged steady-state orbital diamag-
netic moment µ in units of eγa2/2c, against the time step ∆τ
used, with ωc/γ as in [1]. Note that the moment extrapolates
to zero as ∆τ tends to zero —the Wiener limit.

simulation of a discretized Wiener process, to be discussed
later following eq. (3).
In fig. 1, we have plotted the computed steady-state

orbital magnetic moment µ from this extended numerical
simulation of the discretized stochastic process as a func-
tion of the elementary time step ∆τ chosen, keeping the
other parameters such as the magnetic field and the fric-
tion coefficient fixed as in [1]. We can clearly see now that
the magnitude of the steady-state diamagnetic moment µ
decreases monotonically with decreasing elementary time
step ∆τ . Indeed, as ∆τ → 0, the computed orbital moment
µ does extrapolate to zero. The ∆τ → 0 limit, of course,
corresponds to the ideal Langevin dynamics with Gaussian
white noise (a Wiener process). In this ideal limit the
above stochastic dissipative process indeed leads to the
standard Fokker-Planck equation [4,5,7]. This then makes
the result of the earlier numerical simulation [1], as now
extended to the limit ∆τ = 0, consistent with the F-P
steady-state result obtained analytically in [4], giving a
zero orbital magnetic moment in the steady state —now
become the thermal equilibrium!
The ideal white-noise process is, however, physically

valid, strictly speaking, only for the Brownian motion
of a particle having high inertia and large size relative
to the fluid molecules, e.g., for a silica microsphere or
a colloidal particle suspended in a dense fluid [8], so
that the Brownian particle of interest hardly moves on
the time scale of the random molecular fluctuations on
it. In the case of a light particle (e.g., the electron),
however, the randomly fluctuating force (thermal noise)
term is expected to have a finite correlation time scale
which becomes dynamically relevant now. We believe that
the non-zero orbital magnetic moment obtained in the
simulation [1] for a non-zero ∆τ arises because the latter
essentially mimics such a stochastic dissipative process,
namely a non-Markovian process that does, however, lead
to a steady state because of the friction.
The above vanishing of the steady-state orbital

magnetism in the limit ∆τ = 0 (i.e., the Gaussian white

noise, or the Wiener limit), may be understood as follows.
The Wiener process is described in general by a stochastic
differential equation [7], which on discretization (as
relevant to our numerical simulation), is of the form

ri(t+∆t) = ri(t)+Fi[r(t)]∆t+ η
√
∆tdω(t) (3)

with dω(t) a normalized Gaussian noise of mean zero and
variance unity. Now, in the Wiener limit (∆t→ 0), we have√
∆t/∆t→∞ i.e., the noise term infinitely dominates
over the systematic force term. This is expected to
totally randomize directionally the velocity vector ṙ, oc-
curring in the expression for the orbital magnetic moment
−eγ/2c(r× ṙ), almost instantaneously, i.e., before the
position vector, being the time integral of the velocity
vector, has had time enough to change appreciably at all.
Therefore, the vector product r× ṙ averages to zero in
the Wiener limit, as a result of complete disruption of the
orbital cyclotron motion.
In contrast to this, for a non-Markovian random noise

(not obeying the FD relation), the time interval ∆τ is
necessarily finite during which the Lorentz-force–induced
systematic part of the orbital motion can survive. The
question of the sign as well as the magnitude of the orbital
magnetic moment, however, calls for further study —of
the effect of the various time scales in the problem, such
as the cyclotron period, the correlation time of the non-
white (colored) noise, and the related frictional relaxation,
for the classical stochastic dissipative process.
In conclusion, we would like to emphasize that the

simulation [1] giving a steady-state non-zero diamagnetic
moment turns out to correspond essentially to a stochas-
tically driven dissipative process which is Gaussian but
not Markovian —indeed not obeying the FD relation [6,9]
for a constant friction coefficient γ. Thus, we have here a
steady state rather than a state of thermal equilibrium.
When extended to the Wiener limit ∆τ → 0, however,
the steady state does indeed become a state of ther-
mal equilibrium, and the moment vanishes in agreement
with [4].
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