Problem Set - 01

08/01/2020

1. Show that the group of integers under addition modulo n is isomorphic to \mathbb{Z}_{n}.
2. The set of the functions form a group under product rule,

$$
\begin{gathered}
\left(f_{i}, f_{j}\right) \mapsto f_{i} \circ f_{j} . \\
f_{1}(z)=z \quad f_{2}(z)=\frac{1}{1-z} \quad f_{3}(z)=\frac{z-1}{z}, \\
f_{4}(z)=\frac{1}{z} \quad f_{5}(z)=1-z \quad f_{6}(z)=\frac{z}{z-1} .
\end{gathered}
$$

Fill in the multiplication table.
3. Show that for a group with even order, there is at least one element other than identity which squares to identity.
4. A Coxeter group is defined by, $a_{i}^{2}=1$ and $\left(a_{i} a_{j}\right)^{n_{i j}}=1$ for $n_{i j} \geq 2$ $\forall i, j$. Show that for $n_{i j}=2, a_{i} a_{j}=a_{j} a_{i}$.
5. Show that in a abelian group, every element forms its own conjugacy / equivalence class.

