Problem Set - 06

10/05/2020

The problems for this assignment are from Mathews and Walker (MW).

1. MW:8-1 Find the lowest frequency of oscillation of acoustic waves in a (3-spatial dimensional) hollow sphere of radius R. The PDE obeyed by the wave is,

$$
\nabla^{2} \psi=\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}
$$

The boundary condition is

$$
\left.\frac{\partial \psi}{\partial r}\right|_{r=R}=0 .
$$

2. MW:8-29 Find the lowest three values of k^{2} admitting non-trivial solution to the Helmholtz PDE in 2 dimensions:

$$
\nabla^{2} \phi+k^{2} \phi=0
$$

The geometry is in Fig. 1.
3. MW:8-3 A solid sphere of radius R is kept initially at temperature $T=0$. At time $t=0$ it is immersed in a liquid which is at temperature T_{0}. Find the distribution of temperature $T(r, t)$ inside the sphere at a later time. Assume κ to be the thermal conductivity.
4. MW:8-4 Find the lowest three eigenvalues of the time-independent Schrődinger's equation inside a cylindrical box (radius a and height h, with $h \simeq q$). The wavefunction ψ is zero at the walls of the cylinder.
5. MW:8-15 The temperature in a homogenous sphere of radius a obeys,

$$
\nabla^{2} T=\frac{1}{\kappa} \frac{\partial T}{\partial t} .
$$

The boundary condition is on the surface of the sphere is in Fig. 2. Find $T(t)$ at the centre of the sphere.

Figure 1: The boundary condition is $\phi=0$ on the perimeter of the triangle.

Figure 2: The boundary condition is the above temperature distribution on the surface of the sphere.

