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I. SYSTEM MODEL AND METRICS

Let us assume a k tier network with each tier’s BS deployed
according to a PPP. BSs of ith tier are located according
to a homogeneous PPP Φi of intensity λi in the Euclidean
plane. For simplicity, we will take identical tiers, however each
having different BS density λi. Mobile users are independently
located according to some other stationary point process Φi,u.

The BSs transmit constantly with fixed power pt to a single
desired mobile user on any particular time-frequency resource,
i.e. orthogonal multiple access within a cell. Therefore, the
mobile user sees interference from all other BSs of all tiers
in the network but not from its own desired BS. Let us
consider single slope path-loss propagation with α path-loss
exponent. Signals attenuate with distance according to the
standard power-law path loss propagation model with path
loss exponent α > 2. Specifically, we assume that the average
received power at distance r is prx(r) = ptcr

−α where c is
the near field gain (i.e.path-loss experienced at r = 1). Let
p = ptc, then prx(r) = pr−α.

The SNR = p
σ2 is defined to be the average received SNR at

a distance of r = 1.
Random channel effects are incorporated by a multiplicative

random value G0 for the desired signal and Gi for ith
interferer. For simplicity we assume these all correspond to
Rayleigh fading with mean 1, so G0 and {Gi} all are iid and
follow an exponential distribution with mean 1.

Consider a UE of the first network.
Denote the set of tiers that allow connection to this UE by

I.
Suppose the combined density of tiers it can connect to is

µ1 =
∑
I λi while the combined density of tiers closed to this

UE is µ2 =
∑

[1:k]\I λi. Let us denote the accessible BS PP
as

Ψ1 =
⋃
1∈I

Φi.

Similarly the PP denoting the non-accessible BSs is

Ψ2 =
⋃

1∈[1:k]\I

Φi.

Both Ψ1 and Ψ2 are homogeneous PPPs with density µ1 and
µ2.

Assume that the user is at the origin. This user connects
to the BS that provides the highest average SNR among the
accessible BSs.

Let us assume the user is connected to the BS Bo. Recall
Bo ∈ Ψ1. Due to association criterion, this BS is the closest
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BS among all BSs in Ψ1. In other words, no other BS in Ψ1

can be closer than R. Therefore, using the void probability of
Ψ1,

P [R > r] = P [No BS closer than r] = e−µ1πr
2

. (1)

The pdf of R is

fR(r) =
dFR(r)

dr
= 2πµ1re

−µ1πr
2

1 (r ≥ 0) . (2)

Now, the desired signal power is given as

S = G0pR
−α. (3)

The interference is given as

I =
∑

Xi∈Ψ1\{Bo}

Gip‖Xi‖−α +
∑

Xi∈Ψ2

Gip‖Xi‖−α (4)

I = I1 + I2 (5)

where I1 and I2 denotes the interference from BSs in Ψ1 and
Ψ2.

The SINR of the mobile user at a random distance R from
its associated BS can be expressed as

SINR =
G0pR

−α

σ2 + I
. (6)

II. COVERAGE PROBABILITY

We are interested in deriving the probability of coverage
in a downlink cellular network. The coverage probability is
defined as

pc(τ, α) , P[SINR > τ ]. (7)

Conditioning on the serving BS being at a distance R = r
from the typical user, the probability of coverage relative to
an SINR threshold τ can be written as

pc(τ, α) = ER
[
P[SINR > τ | R = r]

]
=

∫
r>0

P[SINR > τ | r]fR(r)dr

Using the distribution fR(r), we get

pc(τ, α) =

∫
P
[
G0pR

−α

σ2 + I
> τ

∣∣∣ R = r

]
e−πµ1r

2

2πµ1rdr

= 2πµ1

∫
e−πµ1r

2

P[G0 > τp−1Rα(σ2 + I) | R = r]rdr.

Using the fact that G0 ∼ exp(1), the inner probability term
can be further simplified as

P[G0 > τp−1Rα(σ2 + I) | R = r]



2

= EI
[
P[G0 > τp−1Rα(σ2 + I) | R = r, I]

]
= EI

[
exp(−τp−1rα(σ2 + I))

]
= e−p

−1τrασ2

LI(τp−1rα), (8)

where LI(s) is the interference Laplace transform. Therefore

pc(τ, α) = 2πµ1

∫
e−πµ1r

2

e−τp
−1rασ2

LI(τp−1rα)rdr. (9)

To proceed further, we need the Laplace transform of
random variable I at s conditioned on the distance R = r of
Bo from the origin, which we denote as LI(s). The Laplace
transform I is given as

LI(s) = LI1(s)LI2(s).

I1 is caused by interfering BSs in Ψ1. Due to Bo, being
the closest one among all BSs in Ψ1, all the interfering BSs
are located outside the ball B(0, R). Therefore,

LI1(s) = E
[
e−sI

]
= EΨ1,{Gi}

exp

−s ∑
Xi∈Ψ1\{Bo}

Gip‖Xi‖−α


= EΨ1,{Gi}

 ∏
Xi∈Ψ1\{Bo}

exp(−sGip‖Xi‖−α)

 . (10)

Using the PGFL of marked PPP with respect to the function
f(x, G) = exp(−sGp‖x‖−α)and then employing a transfor-
mation to polar coordinates x = (x, θ), we get

LI1(s) =

exp

(
−2πλ

∫ ∞
r

(
1− EG[exp(−sGpx−α)]

)
xdx

)
. (11)

The integration range excludes a ball centered at 0 and radius
r since the closest interferer has to be farther than the desired
BS, which is at distance r. Since Gi ∼ exp(1), the moment
generating function of an exponential random variable gives

LI1(s) = exp

(
−2πλ

∫ ∞
r

(
1− 1

1 + spx−α

)
xdx

)
= exp

(
−2πλ

∫ ∞
r

(
1

1 + (sp)−1xα

)
xdx

)
. (12)

Similarly, I2 is caused by interfering BSs in Ψ2 which can
be located anywhere in R2. Therefore,

LI2(s) = E
[
e−sI

]
= EΨ2,{Gi}

[
exp

(
−s

∑
Xi∈Ψ2

Gip‖Xi‖−α
)]

= EΨ2,{Gi}

[ ∏
Xi∈Ψ2

exp(−sGip‖Xi‖−α)

]
. (13)

Solving in the similar fashion, we get

LI2(s) = exp

(
−2πµ2

∫ ∞
0

(
1− 1

1 + spx−α

)
xdx

)
= exp

(
−2πµ2

∫ ∞
0

(
1

1 + (sp)−1xα

)
xdx

)
. (14)

Armed now with an expression for the Laplace transform
of the interference, we proceed to the main result. From (12)
and (14) we have

LI(τp−1rα) = exp

(
−2πµ1

∫ ∞
r

τ

τ + (x/r)α
xdx

)
,

× exp

(
−2πµ2

∫ ∞
0

τ

τ + (x/r)α
xdx

)
,

and employing a change of variables u = (x/r)
2
τ−

2
α results

in the expression

LI(τp−1rα) = exp
(
−πr2τ2/α (µ1ρ(τ, α) + µ2β(α))

)
,

(15)
where

ρ(τ, α) =

∫ ∞
τ−2/α

1

1 + uα/2
du, β(α) =

∫ ∞
0

1

1 + uα/2
du.

(16)

The following theorem provides the final expression for the
coverage probability, which is found by plugging (15) into (9)
and simplifying, with a final substitution of v = r2.

Theorem 1. The probability of coverage of a typical randomly
located mobile user is

pc(τ, α) =

πµ1

∫ ∞
0

e−πµ1v(1+τ2/αρ(τ,α))−πµ2vτ
2/αβ(α)−τvα/2σ2/pdv,

(17)

This fairly simple integral expression already hints at some
of the key dependencies on the SINR distribution in terms of
the network parameters. However, it can be further simplified
in three practical special cases that we now explore.

III. SPECIAL CASES

We now consider three special cases where the expression
in Theorem 1 can be further simplified. These correspond
to exploring the high SNR regime SNR → 0 – equivalently
referred to as the “no noise” or “interference-limited” case –
and to the case where the path loss exponent is constrained
to be α = 4, which is a fairly typical value for terrestrial
propagation at moderate to large distances. There are three
such combinations of these simplifications that we consider.

A. Noise still present, α = 4

In this case, the probability of coverage can be written as

pc(τ, α) =

πµ1

∫ ∞
0

e−πv(µ1(1+
√
τρ(τ,4))+µ2

√
τπ/2)−τp−1σ2v2dv,

where ρ(τ, 4) can be computed as

ρ(τ, 4) =

∫ ∞
√
τ

1

1 + u2
du = arctan

√
τ . (18)
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B. Interference-limited, any path loss exponent

The coverage probability for the noiseless case can be
easily obtained from Theorem 1 by substituting σ2 = 0 and
evaluating the now trivial eaxdx integral. The result is given
by the following simple expression

pc(τ, λ, α) =
1

1 +
√
τρ(τ, α) + (µ2/µ1)

√
τβ(α)

. (19)

C. Interference-limited, α = 4

When the path loss exponent α = 4, the no noise coverage
probability can be further simplified to

pc(τ, λ, 4) =
1

1 +
√
τ arctan

√
τ + (µ2/µ1)

√
τπ/2

. (20)


