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Abstract

This paper has modeled a vehicular network where the roads are modeled as Poisson line process

(PLP), and vehicles on the roads are modeled as Poisson point process (PPP). We call this point process

as Cox process driven by PLP or PLP-PPP. The position of BSs are modeled as 2 dimensional (2D)

Poisson point process. First, we derive the PGF for the load (number of vehicular users) distribution

on the typical BS and the BS serving a typical vehicle (or tagged BS). Using the PGFs, we derive the

loads’ mean and variance. Using the load distribution, we have derived the closed form expressions

for the rate coverage and meta distribution of the rate coverage. Finally, we derive the CDF of kth

contact distance (CD) and nearest neighbor distance (NND) for the PLP-PPP. We have presented two

applications where the distance distributions can be used for analyzing the vehicular network. We have

performed extensive simulations to test the accuracy of obtained results.

I. INTRODUCTION

Vehicular communication involves exchanging traffic data, safety messages, and entertainment

services. This exchange of data may happen between a vehicle to established infrastructure

network such as cellular BS or between two vehicles. For example, a vehicle may get information

about nearby traffic, road conditions, and entertainment services from the nearby base station

(BS) that also provides connectivity to static users. This communication is also called a vehicle

to infrastructure (V2I) communication. Similarly, a vehicle may get critical information such as

the speed of the nearby vehicle, conditions on the road, and accidents by connecting it with
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its nearest vehicles this communication is termed as a vehicle-to-vehicle (V2V) communication.

Implementing vehicular communication (V2V and V2I) provides a safe and seamless flow of

traffic on the road which consequences as frequent change of serving BS for moving vehicle.

Another example is in a city with a crowded road network, the vehicular users put an extra load

(number of vehicles served by BS) on a cellular base station. It becomes challenging for BS to

allocate the BW to newly admitted vehicular users in the cell. The burden of additional load

due to the vehicle may be reduced by enabling data sharing and content broadcasting in V2V

communication. However, to enable such communication, a vehicle has to know the distances of

its nearby vehicles. Inspired by these two problems in V2I (i.e. load on infrastructure network)

and V2V (i.e. SNR distribution during the broadcast of a vehicle) network, we perform a load

distribution, that is the number of vehicles served by a BS and rate coverage that is the data rate

obtained by a vehicle from a BS, analysis of V2I network. Furthermore, for a V2V network,

we perform a signal-to-noise ratio (SNR) analysis from a vehicle to its nearest kth vehicle. For

the purpose of analysis we model the vehicles, roads and BSs using the well accepted tools of

stochastic geometry (SG) [1], [2].

Literature survey The SG has been widely used for the modeling and analysis of vehicular

networks. A commonly used method for analyzing vehicular networks is by modeling the random

orientation of lines using Poisson line process (PLP), and random location of vehicles on each

road as Poisson point process. Such a point process is known as the Poisson Cox process driven

by Poisson line process or PLP-PPP [1], [2]. In [3] authors presented a detailed approach for

modeling, analysis various extensions for the system level analysis of vehicular networks using

PLP-PPP. For more details and examples on the modeling of vehicular networks as PLP-PPP

and the cellular BSs as PPP readers are requested to refer to [3]–[5] and reference therein.

However we present few work that are closely related to V2I vehicular network. For example, in

[5]–[8] authors derive the downlink coverage probability for a typical receiver with a different

transmitter association scheme. For load distribution and rate coverage analysis in [9] authors

derived the PMF for the load distribution for a randomly selected BS (or typical BS) and BS

serving a typical vehicle (or tagged BS). Furthermore, using the load distribution authors derived

the rate coverage for vehicular user. The method adopted by the authors are specific for PLP-PPP

and can not extended for other point processes which can be used for modeling and analysis of

vehicular network. Apart from that in vehicular network individual link reliability from a BS is

an important metric to establish a seamless data traffic in V2I network. The meta distribution of
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rate coverage is metric that measures the individual link’s rate coverage for a given realization.

In this paper present a generalized method for deriving the load distribution and also derive the

meta distribution for rate coverage.

A V2V communication involves the communication between the two vehicles. In [10], [11]

author performed the vehicular network analysis for V2V network. In these works, some of

the vehicles acts as transmitter and some of them acts as receiver. Then based on the nearest

transmitter association authors derived the coverage probability. In such works authors need the

probability distribution of contact distance (CD) and nearest neighbor distance (NND), which is

derived in [4], [10], [11] using different methods such as LF or PGFL of PLP-PPP. A moving

vehicle broadcasts some time critical information such as its velocity, time when it is going to

apply break continuously to its nearby vehicles. For a broadcasting vehicle, it becomes important

to fix the signal power in such a way that it can establish a communication link to its kth nearest

vehicle. Such form of analysis have not been reported in the literature so far. In this paper we

attempt to analyze the SNR distribution for a broadcasting vehicle to its nearest kth vehicle.

Inspired by the problems mentioned above in this paper we perform a load distribution and

SNR distribution analysis for a vehicular network. The important contribution of this paper is

as follows.

Contribution

1) This paper presents the PGF for the load distribution on a typical and tagged BS in a

vehicular network. Using the properties of PGFs, we derive the mean and variance of the

load.

2) This paper presents a simpler expressions for the rate coverage expression for a vehicle. To

test the individual link’s rate coverage for given realization we present the meta distribution

of the rate coverage.

3) For V2V networks, this paper performs a SNR distribution analysis from a broadcasting

vehicle to its nearest kth vehicle. In the process of deriving the SNR distribution we present

the kth CD and NND distribution for PLP-PPP, which have its own applications in the

analysis of vehicular networks.

4) Finally, the method adopted in deriving the load distribution for PLP-PPP is generalized

in nature and can be adopted for any point process super imposed on the line of PLP for

example PLP-TCP i.e. point on the PLP have distribution according the Thomas cluster

process [12].
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Now, we present the important notations that we are going to use throughout the paper.

Notation A vector in R2 and R is denoted by bold style letter (x) and bold italic style (x)

with their norms ||x|| and |x| respectively. One dimension (1-D) and two dimensional (2-D) ball

centered at x and x of radius r is denoted by b1(x, r) and b2(x, r) respectively. For a set A,

|A| denotes the Lebesgue measure of set A, for example |b1 (o, r) | = 2r. For a point process Ψ,

the notation Ψ(B) denotes number of points of Ψ falling inside the set B. The PGF, CDF and

PDF of any random X variable is denoted by PX(·), FX(·) and fX(·) respectively. The expected

value and variance of random variable X is denoted by E[X] and Var[X] respectively. For a

RV X with PGF PX(s) the mean and the variance of the RV X is

Var[X] = [P(2)
X (s)]s=1 + E[X]− (E[X])2 (1)

E[X] =
[
P(1)
X (s)

]
s=1

, (2)

The Gamma distribution of a random variable X is

gX(a1, b1, c1, x) = a1b
c1/a1
1 (Γ(c1/a1))

−1xc1−1e−b1x
a1 . (3)

The Faà di Bruno’s formula [13], which states that the k-th derivative dk

dsk
exp(h(s)) of exp(h(s))

with respect to s is given as

= exp (h(s))
∑
Nk

k!

n1! · · ·nk!
(
h(1)(s)/1!

)n1 · · ·
(
h(k)(s)/k!

)nk
, (4)

where the sum is over set Nk consisting of all k−tuples {n1 · · ·nk} with ni ≥ 0 and n1+2n2+

. . .+ knk = k.

II. SYSTEM MODEL

The network of roads are modeled as the lines of Poisson line process (PLP) Φl = {l1, l2, . . .}

with density λl. In a PLP of density λl, the average number of lines hitting a convex body K with

perimeter L(K) is λlL(K). A ith line li ∈ Φl is uniquely characterized by the two parameters ρi

and ϕi in the representation space C∗ ≡ R×[0, π]. Here, ρi is the length of the normal from origin

to line li, and ϕi is the angle between the normal and positive x-axis. The ith line of Φl located

in the representation space (C∗) at (ρi, ϕi) is uniquely characterized by (ρi cosϕi, ρi sinϕi) ∈ R2.

The location (ρi cosϕi, ρi sinϕi) ∈ R2 is the point on the line which is nearest to the origin.

Vehicle’s location on road: We model the location of vehicular users on each road as 1-D PPP.

Let Ψ = {ψ1, ψ2, . . .} be independent and identically distributed PPP on each road of Φl having



5

density λ. Hence, on the road li the position of vehicles is modeled as PPP ψi. Therefore the

location of jth vehicle of li in R2 is

xi,j = (ρi cosϕi + xj sinϕi, ρi sinϕi − xj cosϕi) ,

where xj denotes the location of jth vehicle in ψi on the line li for ρi = 0, ϕi = 0. Hence,

taking the union of all the points located on each line forms a PLP-PPP as

Ψp =
⋃
li∈Φl

⋃
ψi∈Ψ

ψi, ∀{i, j} ∈ N = xi,j.

where xi,j ∈ R2 denotes the jth point of ψi on the line li. The density λp of Ψp is πλlλ [4].

BS’s location: We model the BS’s location as 2D PPP Φb ≡ {yi} with density λb. Further

the association of a vehicle from its serving BS is average power association based technique.

Therefore the serving region of a typical BS is its associated Voronoi region. To be prcise the

Voronoi region of a typical BS at y, Vy is defined as

Vy = {x ∈ R2 : y = arg min
yi∈Φb

∥x− yi∥}.

Before starting the main technical section of this paper, we present few essential probability

distributions related to Poisson Voronoi cell of a typical BS. We frequently use these distributions

throughout the paper.

Area, perimeter and chord length distribution of a typical BS Let the Voronoi region

associated with a typical BS is denoted by Vt with area |Vt| and perimeter Z. Therefore, the

PDF of |Vt| and Z are [14]

f|Vt|=vt (|vt|) = λbg (1.07950, 3.03226, 3.31122, λbvt) , (5)

fZ=z(z) =
√
λb/4g

(
2.33609, 2.97006, 7.58060,

√
λbz/4

)
, (6)

where g(·) denotes the generalized Gamma distribution define in (3). The length distribution

fC(c) of typical chord [15] is

fC=c(c) = (π/2)λ
3
2
b

∫ π

0

∫ ∞

0

[
λb
(
V(1)(c, y, r(c, θ))

)2 − V(2)(c, y, r(c, θ))
]
e−λbV(c,y,r(c,θ))ydydθ.

(7)

where V(c, y, r(c, θ)) is the union of two disk of radius y and r(c, θ) with centers c distance away,

V(k)(·) denotes the kth derivative of V(·) with respect ot c and r(c, θ) =
√
y2 + c2 − 2yc cos θ.

In a serving region of a typical BS, the length of the road in the serving region will be the

chord of typical Voronoi cell. The maximum length of a chord in Voronoi cell is going to play a
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critical role in the analysis of load distribution. Hence we present important properties related to

the maximum length of chord and dependency of chord over the parameter of a typical Voronoi

cell.

Proposition 1. For a convex polygon with given perimeter the maximum length of the chord is

upper bounded by half of the perimeter. (For proof see Appendix A)

Proposition 2. The length of chords of a typical Voronoi cell conditioned on the perimeter

are dependent variable. The length distribution of a typical chord conditioned on the perimeter

Z = z is (for proof see Appendix B)

f
′

C(c) =
fC(c)1(0 ≤ c ≤ z/2)

FC(z/2)
. (8)

Since we have presented the important results related to probability distribution of area,

perimeter and chord length its dependency on perimeter therefore, we can start the main technical

section of this paper.

III. ANALYSIS OF VEHICULAR NETWORK

In this section first we present the load distribution on a typical and the tagged BS.

Load distribution on typical BS The load on a typical BS is defined as the number of vehicular

users falling in the serving region of a BS. Therefore, mathematically we say that the load on a

typical BS is number of points of Φp falling a typical Voronoi cell of Φb. We present two methods

of approximating the load named Approximation-1 (Approx-1) and Approximation-2 (Approx.-

2) to on a typical BS. Let the load on a typical BS is denoted by Sp and its approximation

corresponding to Approx.-1 and Approx.-2 is denoted by Ŝp and S̃p respectively. Now, we

briefly present the method adopted to find the Ŝp and S̃p.

Approx.-1: The approximation-1 is based on the method presented in [9] where authors first

derive the Laplace functional (LF) of sum W of chord lengths in a typical Voronoi cell of given

perimeter Z. To derive the LF, authors assumed that chords lengths of typical Voronoi cell with

given perimeter are independent random variables. Then authors used the PGFL of PLP and

deconditioned with the perimeter distribution Z. Further, after obtaining the LF of sum W of

chords and using the facts that a number of points of PLP-PPP falling in W is Poisson distributed

with mean λW , authors derived the PMF of load as a derivative of LF. In this paper, conditioned

Z and assuming that the chords of a typical Voronoi with a given perimeter are independent
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(which is the inaccurate assumption for the details see the proof of Proposition 2), we find the

PGF of load. Here we would like to underline that finding PGF provides miscellaneous insights

of a random variable such as mean, variance, skewness or pth moment. Such statistical properties

are helpful to visualize the distribution of load for an extensive range of parameters such as BS

density or vehicular density etc.

Approx.-2: Approx.-2 is obtained by approximating the area of a typical Voronoi cell with a

circle of radius Rt. Similar to Approximation-1 in this approach in [9] authors first derive the

LF of the sum of chords and then using the property of PPP authors derived the PMF of S̃p.

However in this paper we derive the PGF of S̃p. The approach we adopted is flexible and can

be used for other Cox processes driven by Poisson line process. In this paper conditioned on the

length of a single chord we derive the PGF for the number of points falling on that chord which

is Poisson distributed. Now using the PGFL of PLP we derive the PGF of S̃p. This approach

can also be adopted for the cluster process (such as Thomas cluster process) on each line of

PLP which can not be obtained using the methods presented in [9].

Theorem 1. (Approximation-1) The PGF PŜp
(s) for the load on the typical Voronoi is (For

proof see Appendix C)

=

∫ ∞

z=0

exp

(
−λlz

(
1−

∫ z/2

0

exp (λc(s− 1))f
′

C(c)dc

))
fZ=z(z)dz. (9)

The PMF of Sp is

P
[
Sp = k

]
=

∫ ∞

0

exp (hp(0, z))
∑
Nk

(hp,1(z))
n1 · · · (hp,k(z))nk

n1! · · ·nk!
fZ=z(z)dz, (10)

where hp(s, z) and hp,k(z) is,

hp(s, z) = λlz

(∫ z/2

0

eλc(s−1)f
′

C(c)dc− 1

)
, hp,k(z) = (λlz/k!)

∫ z/2

0

(λc)k e−λcf
′

C(c)dc. (11)

The load on the typical Voronoi cell can be approximated to a load S̃p on circle of area equal

to the area of typical Voronoi cell |Vt|. Let radius of circle be Rt =
√

|Vt|/π hence distribution

of Rt, fRt = 2πrtf|Vt|(πr
2
t ) (f|Vt|(·) is given in (5)).

Theorem 2. (Approximation-2) The PGF PS̃p
(s) of load on the typical cell Vt in Ψp is (for

proof see Appendix D.)

PS̃p
(s) =

∫ ∞

rt=0

exp

(
−2πλl

(
rt −

∫ rt

0

exp (2λ(s− 1)t)tdt√
r2t − t2

))
fRt(rt)drt. (12)



8

The PMF of S̃p is

P
[
S̃p = k

]
=

∫ ∞

0

exp (−2πλlrt + gp,0(rt))
∑
Nk

(gp,1(rt))
n1 · · · (gp,k(rt))nk

n1! · · ·nk!
fRt(rt)drt, (13)

where,

gp,k(rt) = 2πλl(2λ)
k

∫ rt

0

tk+1e−2λt√
r2t − t2

dt. (14)

Using the properties of PGF presented in (1), now we derive the mean and the variance of

the two approximation.

Corollary 2.1. The mean and the variance of S̃p and Ŝp is (for proof see Appendix E)

E
[
S̃p

]
= λpπE

[
R2

t

] (a)
= λp/λb, E

[
Ŝp

]
=
λp
π
E[Z]E[C] (b)

= λp/λb, (15)

where (a) is obtained because E[R2
t ] = 1/(πλb) and (b) is achieved as E[C] = π/(4

√
λb) [15],

E[Z] = 4/
√
λb.

Var[S̃p] = (πλp)
2E[r4t ] + (16/3)λλpE[r3t ] + λp/λb − (λp/λb)

2 . (16)

Var[Ŝp] = (λp/π)
2 E[Z2] (E[C])2 + (λp/π)λE[C2]E[Z] + E[Ŝp]−

(
E[Ŝp]

)2
. (17)

Load on the tagged BS: A tagged BS serves the typical vehicle of Ψp. Let the typical vehicles

is located at the origin therefore the BS’s cell serving the typical vehicle is the tagged cell. Let

the tagged cell is denoted by Vto . Precisely we can define the tagged cell as

Vto = {x ∈ R2 : arg min
yi∈Φb

∥x− yi∥ ≤ arg min
yi∈Φb

∥yi∥}.

As the perimeter distribution of tagged cell is not available in the literature we can not find the

approximate load on tagged cell using the method presented in the Approximation-1. However,

using the Approximation-2, we can approximate the load on the tagged cell by considering it

as a circle b2(y, Ro) of radius Ro centered at the the BS y serving the typical vehicle located

at the origin. The area of equal to the tagged Voronoi cell. Hence, Ro =
√
|Vto |/π then the

distribution of Ro is

fRo(ro) = 2π2λbr
3
of|Vt|(ro). (18)

Further the length of the tagged chord passing through the typical vehicle can be obtained using

the length bias sampling [9] which is given as

fCo(co) =
cofC(co)

E[C]
=

4
√
λb
π

cofC(co). (19)
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Load on tagged BS PLP-PPP: Now, we derive the load distribution on the tagged base station

for Ψp. Let M̃p denotes the approximate load on the tagged cell.

Theorem 3. The PGF PM̃p
(s) and PMF of the the load M̃p on the tagged BS in Ψp is (for

proof see Appendix F)

=

∫ ∞

co=0

∫ ∞

ro=0

eλco(s−1) exp

(
−2πλl

(
ro −

∫ ro

0

e2λ(s−1)ttdt√
r2o − t2

))
fRo(ro)drofCo(co)dco. (20)

The PDF of Ro and Co is given is (18) and 19 respectively. The PMF P
[
M̃p = m+ 1

]
is:

=
m∑
k=0

(
m

k

)∫ ∞

ro=0

exp (−2πλlro + gp,0(ro))
∑
Nk

(gp,1(ro))
n1 · · · (gp,k(ro))nk

n1! · · ·nk!
fRo(ro)dro

×
∫ ∞

co=0

(λco)
m−k exp (−λco)fCo(co)dco,

where gp,k(·) is provided in (14).

Corollary 3.1. The mean load on the tagged BS with E [r2o] =
1.28
πλb

is

E
[
M̃p

]
= λpπE[R2

o] + λpE[Co] =
1.28λp
λb

+
4
√
λbλp
π

E[C2].

Similarly, we can derive the variance of M̃p. The second derivative P(2)

M̃p
(s) of the PGF at s = 1

is [
P(2)

M̃p
(s)
]
s=1

= (πλp)
2E
[
R4

o

]
+

16

3
λλpE[R3

o] +
2.48λλp
λb

E[Co] + λ2E[C2
o ], (21)

using the second derivative and (1) we get the variance of M̃p.

Using the load distributions, now we derive the rate coverage and meta distribution for the

rate coverage.

Rate Coverage The rate coverage is defined as the probability that the average rate achieved

by the typical receiver is greater than a certain threshold. To derive rate coverage without loss

of generality, we assume that the typical vehicular user is located at the origin. Let all the

BSs transmit the equal unit power, and the typical receiver (located at origin) connects with the

nearest base station. Furthermore, we have assumed that the BS with zero load is not transmitting

power to save the transmission energy. Therefore, the active base station density that contribute

to the interference power is pon = P[S̃p = 0]. Hence, the signal to interference ratio is given by

SIR =
h0R

−α∑
y∈Φ′

b
hy||y||−α

,
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where Φ
′

b is the active BS PPP with density λbpon, R denotes the distance of nearest BS, α is

the path loss exponent, h0 and hy denotes the fading gain of the typical receiver link and the

gains of rest of the links respectively. Further we have assumed that the fading coefficients h

is exponentially distributed with unit mean. Assuming that the bandwidth B is equally shared

by all user associated with a typical serving region, the achievable rate of the typical receiver is

given by

R =
(
B/
(
M̃p + 1

))
log2 (1 + SIR) .

Hence, the rate coverage for a typical receiver is defined as

Rc(τ) = P(R > τ).

In [16] the coverage probability is provided as

P[SIR > τ ] = 2πλb

∫ ∞

0

r exp

(
−λbπr2 − pon

∫ ∞

r

2πλbτydy

τ + (y/r)α

)
dr (22)

(a)
=

1

1 + pon

∫∞
1

dt
1+tα/2τ−1

. (23)

The step (a) is achieved by substituting λbπy
2 = u and u = vt. Using the definition of Rc(τ),

we get the following

Theorem 4. The rate coverage for the typical receiver is

Rc(θ(τ)) =
∞∑
m=0

P(M̃p = m)
1

1 + pon

∫∞
1

dt
1+tα/2θ−1

(24)

where θ(τ) = 2
(m+1)τ

B − 1. Replacing the value of P(M̃p = m) for Ψp, we get rate coverage for

a typical vehicular user.

Meta Distribution for rate Coverage We can find the meta distribution [17] for any individual

link dependent performance metrics such as coverage probability, rate coverage. For example

the meta distribution of the rate coverage is defined as

F Pr(τ)(x) = P(Pr(τ) > x), ∀x = [0, 1],

where Pr(τ) is the probability that rate coverage is greater than threshold τ conditioned on a

realization of point process Ψp and load on the tagged BS M̃p. Precisely, we can write it as

Pr(τ) = P
(
R > τ |M̃p,Ψp

)
.
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Further, it is inconvenient to derive the meta distribution directly. Therefore, first we derive

the moments of Pr(τ). Then, using the Gill Pelaez inversion theorem [18], we derive the meta

distribution F (t, τ) of rate coverage Rc(τ). The relation between the qth moment of Pr(τ) and

the rate coverage F (t, θ) is

Mq(τ) = E [(Pr(τ))
q] =

∫ 1

0

qtq−1F (t, τ)dt, (25)

for q = 1, M1(τ) denotes the coverage probability.

Theorem 5. The q-th moment of the downlink coverage probability and the rate coverage

probability respectively is (for proof see Appendix G)

Mq(τ) =

∫ ∞

u=0

exp

(
−2ponu

∫ 1

z=0

(
1− 1

(1 + τzα)q

)
dz

z3

)
e−udu (26)

Sq(θ(τ)) =
∞∑
m=0

P(M̃p = m)Mq (θ(τ)) , (27)

where θ(τ) = 2
(m+1)τ

B − 1.

Using the Theorem 5, the definition of meta distribution and Gil-Pelaez lemma inversion

theorem [18], we can derive the meta distribution for the rate coverage.

Theorem 6. The meta distribution for rate coverage is (for proof see Appendix H)

F Pr(τ)(x) =
1

2
− 1

π

∞∑
m=0

P(M̃p = m)

∫ ∞

t=0

sin (t ln(x) + Θ(t, θ(τ)))
dt

t
(28)

where

Θ(t, θ(τ)) = tan−1

(
f1,i(t, θ(τ))

f1,r(t, θ(τ)) + 1

)
,

and fr(t, θ(τ), z) = cos (t ln (1 + θ(τ)zα)) , fi(t, θ(τ), z) = sin (t ln (1 + θ(τ)zα)) and f1,i(t, θ(τ)) =

2pon

∫ 1

z=0
(1− fi(t, θ(τ), z))

dz
z3

and f1,r(t, θ(τ)) = 2pon

∫ 1

z=0
(1− fr(t, θ(τ), z))

dz
z3

A. β approximation model

Another simple yet tractable approach is the β approximation for the meta distribution [17].

For the β approximation [17], [19], we can use first and the second moment of S(θ(τ)) to get

the meta distribution.

F Pr(τ)(x) = 1− Ix

(
S1(θ(τ)) (S1(θ(τ))− S2(θ(τ)))

S2(θ(τ))− S2
1(θ(τ))

,
(S1(θ(τ))− S2(θ(τ)))(1− S1(θ(τ)))

S2(θ(τ))− S1
2(θ(τ))

)
,
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where Ix(·) is the regularized incomplete beta function.

S1(θ(τ)) =
∞∑
m=0

P(M̃p = m)M1(θ(τ)) , S2(θ(τ)) =
∞∑
m=0

P(M̃p = m)M2(θ(τ))

The approach we have presented to derive the Approximation-2 of load may be used to derive

the kth CD and NND for the PLP-PPP. The kth CD and NND plays a critical role in the

analysis of wireless network [20]. For example, the kth distance distributions are frequently

used to determine the coverage probability under the dominant interference.

Distance distributions: Now we present the CDFs and PDFs for the kth CD and NND for

PLP-PPP.

kth CD: The kth CD is defined as the distance of the kth point of Ψp from an arbitrary point

in R2. Let the number Sp(r) denotes the points of Ψp falling in b2(o, r). From the definition of

kth CD as

FRk
(r) = 1−

k−1∑
m=0

P [Sp(r) = m] .

Hence using Theorem 2 eq. (13), we get the following result.

Theorem 7. The kth CD for Ψp is

FRk
(r) = 1−

k−1∑
m=0

exp (−2πλlr + gp,0(r))
∑
Nm

(gp,1(r))
n1 · · · (gp,k(r))nm

n1! · · ·nm!
, (29)

where gp,k(r) is provided in (14).

Corollary 7.1. The CDF and PDF of CD for k = 1, 2 is

FR1(r) = 1− e−2πλlr+gp,0(r), fR1(r) = exp (−2πλlr + gp,0(r))
(
g
(1)
p,0(r)− 2πλl

)
(30)

FR2(r) = 1− e−2πλlr+gp,0(r) (1 + gp,1(r)) , fR2(r) = fR1(r)(1 + gp,1(r))− e−2πλlr+gp,0(r)g
(1)
p,1(r)

(31)

nth NND: Similar to kth CD, the nth NND is defined as the distance of nth nearest point

from the typical point of Ψp. Without loss of generality, we assume that the typical point is

located at the origin hence o ∈ Ψp. Let Mp(r) denote the number of points number of points of

Ψp \ {o} falling in b2(o, r) conditioned on o ∈ Ψp. From the definition [21], CDF of nth NND

is

FR′
n
(r) = 1−

n−1∑
m=0

P [Mp(r) = m] .
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The CDF of nth NND can be derived using the similar method presented in the proof of Theorem

3.

Theorem 8. The CDF FR′
n
(r) for nth NND of Ψp is

= 1−
n−1∑
m=0

m∑
k=0

(
m

k

)
e(−2πλlr+gp,0(r))

∑
Nk

(gp,1(r))
n1 · · · (gp,k(r))nk

n1! · · ·nk!

∫ ∞

co=0

(λco)
m−ke−λcofCo(co)dco,

(32)

where gp,k is provided in (14).

Corollary 8.1. The CDF and PDF of NND for n = 1, 2 is

FR′
1
(r) = 1− exp (−2πλlr + gp,0(r))

∫ ∞

co=0

exp (−λco)fCo(co)dco, (33)

fR′
1
(r) = exp (−2πλlr + gp,0(r))

(
2πλl − g

(1)
p,0(r)

)∫ ∞

co=0

exp (−λco)fCo(co)dco. (34)

FR′
2
(r) = 1− exp (−2πλlr + gp,0(r)) (1 + gp,1(r))

∫ ∞

co=0

exp (−λco)fCo(co)dco

− exp (−2πλlr + gp,0(r))

∫ ∞

co=0

(λco) exp (−λco)fCo(co)dco, (35)

fR′
2
(r) = (1 + gp,1(r)) fR′

1
(r)− exp (−2πλlr + gp,0(r)) g

(1)
p,1(r)

∫ ∞

co=0

exp (−λco)fCo(co)dco

+ exp (−2πλlr + gp,0(r))
(
2πλl − g

(1)
p,0(r)

)∫ ∞

co=0

(λco) exp (−λco)fCo(co)dco. (36)

Coverage analysis in non line of sight communication: Turning our interest to applications of

distance distribution in vehicular networks. We assume that the BS and the vehicles broadcasts

messages to the other vehicles to communicate various data set. For wireless propagation along

urban roads, the pathloss model should be different for line- and non-light-of-sight (NLoS)

vehicles [22, Fig. 5]. The vehicles with NLoS connections suffer from serious diffraction losses

due to the propagation of wireless signals around the corner. In Fig. 5 (a) the distribution of the

signal-to-noise ratio (SNR) for the 10 nearest vehicles with LoS connection to the BS depicted.

Assuming a distance-based propagation pathloss r−α, where r stands for the distance of vehicles

from BS, and a diffraction loss L, it is straight- forward to convert the distance distributions

into received signal level distributions. Then, it also remains to scale the obtained CDFs by the

noise power level No. Specifically, for the k-th nearest vehicle with NLoS connection the SNR
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from BS to vehicle and vehicle to vehicle is

SNRk,b2v =
LR−α

k

No

. (37)

Theorem 9. The SNR distribution for kth LOS vehicle for b2v is

FSNR,k(τ) = P[SNRk ≤ τ ] = P
[
LR−α

k

No

≤ τ

]
= 1− P

[
Rk ≤

(
τNo

L

)−1/α
]

(38)

Broadcast range and node degree: The node degree Np is defined as the number of vehicular

users falling in the broadcast range of a typical vehicular users. A vehicle can establish a

communication link with a vehicle present in its broadcast range Rb. The node degree for a

typical vehicular user is

P
[
Ñp = m

]
=

1

m!

m∑
k=0

(
m

k

)
exp (−2πλlRb + gp,0(Rb))

k!
B (gp,1(Rb), . . . , gp,k(Rb))

× (λRb)
k exp (−λRb)

IV. NUMERICAL RESULTS

In this section, we first validates the obtained analytical PMFs with the simulation results.

Validation of approximation To validate the approximation with the exact simulation results, we

plot the Bhattacharya’s coefficient [23] of the approximations with the exact simulation results.

The BC coefficients for the two PMF is p(ω) and q(ω) is defined as

DBC(p, q) =
∑
ω∈Ω

√
p(ω)q(ω).

Here, we would like to highlight that that BC lies between 0 to 1, and closer to 1 denotes

the better approximation. From Fig 1 we observe that the BC for the load on the typical and

tagged BS is closer to 1. Therefore the approximation closely follows the simulation. Further

we observe that the Approximation-1 have smaller BC coefficient than the Approximation-2 and

therefore is not the exact results as suggested in [9].

Validation CD, NND and mean, variance for typical and tagged load The Fig. 2 shows the CD

and NND for the Ψp. The simulations obtained are matching with analytical results. The Fig.

3 depicts the mean and variance of load on the typical and tagged BS. For the typical case,

we have plotted the mean and the variance of both the approximations and the simulations.

The mean load of the both approximations are coinciding with the simulations, however the

variance shows a tremendous deviation for approximation-1 for smaller values of λb. Therefore,
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Fig. 1: The analytical expressions obtained using approximation closely follow simulation for the typical and tagged load

distribution as the BC is close to 1.

the Approximation-2 is closer to the actual load distribution. For tagged case, we have only

one expression. It can be observed that the mean coincides with the simulation results while

the variance have deviations. For higher values of λb the variance start converging to the exact

simulation results.

Validation of rate coverage and meta distribution The Fig. 4 (a) shows the rate coverage for

two different values of threshold. We have plotted the active probability with the base station

density λb. We see that the active probability closely matching with the simulation as it is

an approximation. The active probability reduces with increase in the BS station density and

therefore more and more BS will turn off and hence the power consumption reduces. The Fig.

4 (b) presents the meta distribution for the rate coverage. We have used the beta approximation

to plot the meta distribution. The approximation closely follows the simulation.

Validation of SNR distribution and node degree The Fig. 5 (a) presents the SNR distribution

upto 10 nearest vehicle from a typical BS. In the Fig.5 (b) and (c) we have shown the node

degree for a typical vehicle. It is evident from the Fig. that node degree increases with the

broadcast range of the vehicle.

V. CONCLUSION

In this paper, we have derived the PGF of the load on the typical and the tagged BS.

Using the PGF, we have further derived corresponding mean and variance. We have presented

the two approximations and compared the exact simulation results. We have shown that the

Approximation-1 which is claimed in the literature to be the exact expression for the load on
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Fig. 2: The diagram showing the kth CD and NND for PLP-PPP. The parameters are λ = 2 vehicle/km, λl = 5/π km and

λb = 1 BS/km2.
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Fig. 3: The plot showing the mean and the variance for the load on the typical and the cell. The parameter are λl = 5/π km−1,

λ = 15 vehicle/km. The Approx. 2 is closer to the simulations as compare to Approx. 1.
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Fig. 4: Rate coverage for two different values of threshold. The values of α = 3.5 and B = 20 MHz. The second Fig. presents

the meta distribution for the PLP-PPP process. The parameters are µl = 5, λ = 2 vehicles/km, λb = 1/km2 and threshold rate

τ = 0.1 Mb.

the typical cell is actually another approximation. Further approximating the Voronoi with a

circle provides the load distribution closer to the simulation. Using the load distribution, we
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Fig. 5: Plot (a) showing the SNR distribution for 10 nearest vehicle from a typical BS. The plot (b) and (c) presents the node

degree for the broadcast range RB = 10, 50 m. Increasing the broadcast range increase the node degree of a typical vehicle.

have derived the rate coverage and meta distribution for the rate coverage. Using the method

adopted in Approx.-2, we have derived the CDFs of kth CD and NND for PLP-PPP. We have

shown two diffrent applications of distance distribution by deriving the SNR distribution from

a BS to a typical vehicle and deriving the node degree.

APPENDIX

A. Proof of Proposition-1

We have considered an irregular convex n-gon with perimeter Z as shown in the Fig. 6. Using
the triangular inequality we can obtain the following inequalities

|PP1|+ |P1P2| ≥ |PP2|, |PP2|+ |P2P3| ≥ |PP3| |PP3|+ |P3Q| ≥ PQ (39)

From the above, it can be concluded that

|PP1|+ |P1P2|+ P2P3 + P3Q ≥ PQ. (40)

Similarly, we can proof that

|QP4|+ |P4P5|+ . . .+ |Pn−1Pn|+ |PnP| ≥ |PQ|. (41)

Taking the summation of (40) and (41), we get the following

2|PQ| ≤ |P1P2|+ |P2P3|+ . . .+ |Pn−1Pn|, =⇒ 2|PQ| ≤ Z, (42)

solving the further completes the proof of Proposition-1.
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Fig. 6: The irregular convex n-gon with perimeter Z.

B. Proof of Proposition-2

To proof the dependency between the length of the chords we pic two chords in which we
know the length of one chord. Further we show that the length of other chord is upper bounded
by the length of given chord and a constant ϵ. Let the length of the given chord and unknown
chords are C1 and C2 respectively. Using the technique presented in the proof of Proposition-1
we can proof the following inequality

C2 ≤ C1 + ϵ : ϵ ∈ [0, Z/2] (43)

The inequity 43, proves the dependency between the length distribution of two chords. Further,

the length of a typical chord in a Voronoi with given perimeter is upper bounded by the half of

the perimeter. Hence we truncate the distribution of fC(c) between 0 to Z/2 [?].

C. Proof of Lemma-1

The number of points falling in the typical cell (typical Voronoi) is

Ŝp =
∑
lk∈Φ

ψlk (Vt) .

Let n be the number of chords intersecting a typical Voronoi cell. The PGF expression is

PŜp|N (s) = EΨp

[
sŜp

∣∣∣N = n
]
= EΨp

[
n∏
k=1

sψlk
(Vt)
∣∣∣N = n

]
=

[∫ z/2

0

eh(s,c)f
′

C(c)dc

]n
,

where h(s, c) = λc(s− 1). As the number of chords intersecting a typical Voronoi n is Poisson
random variable with mean λlZ, where Z denotes the perimeter of typical Voronoi. Hence
conditioned on Z = z, first we decondition over n to get the PGF as

PŜp|Z=z(s) =

∞∑
n=0

e−λlz(λlz)
n

n!
PŜp|N (s) = e−λlz(1−

∫ z2
0
eh(s,c)fC(c)dc). (44)
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Deconditioning with the distribution of Z, we get the PGF. From the PGF of Ŝp, we get the
PMF of Ŝp as

P
[
Ŝp = k

]
=

[
P(k)

Ŝp

(s)/k!

]
s=0

= (1/k!)

∫ ∞

z=0

P(k)

Ŝp|Z
(s)fZ=z(z)dz. (45)

The conditional PGF PŜp|Z
(s) is in form of exp (·). The kth derivative of conditional PGF can

be determined using (4). After obtaining the kth derivative using (45) we get the PMF of Sp.

D. Proof of Theorem 2

Let ψlk (b2(o, rt)) denotes number of vehicles on kth road of Φ falling inside ball b2(o, rt).

S̃p =
∑
lk∈Φ

ψlk (b2(o, rt)) .

A road l which is ρ distance away from the origin o have the length 2
√
r2t − ρ2. The average

number of point falling inside b2(o, rt) located on l is 2λ
√
r2t − ρ2. Hence conditioned on

Rt = rt and ρ the PGF of number of points falling on the line inside b2(o, rt) is

Pψl(b2(o,rt))|ρ,Rt

(
s,
√
r2t − ρ2

)
= e

h
(
s,
√
r2t−ρ2

)
,

where h
(
s,
√
r2t − ρ2

)
= 2λ

√
r2t − ρ2(s− 1). Note that ρ is a uniform random variable in the

range [−rt, rt]. Hence, deconditioning over ρ the PGF expression reduces to

PS̃p|Rt
(s, rt) =

1

2rt

∫ rt

−rt
e

(
h
(
s,
√
r2t−ρ2

))
dρ

(a)
=

∫ rt

t=0

eh(s,t)tdt√
t2 − ρ2

,

replacing
√
r2t − ρ2 = t, we get the step (a). Let there be n such lines hence the joint PGF is

the product of individual PGFs of n line which is equal to

P
S̃p

∣∣N,Rt
(s, rt) =

(∫ rt

t=0

eh(s,t)tdt√
t2 − ρ2

)n
,

here n is a Poisson RV with mean λl2πrt. From the law of total probability deconditioning

over n we get the PGF conditioned on Rt = rt. Finally deconditioning over Rt, we get the PGF

of S̃p. Thee PGF PS′
p
(s) can be written as

PS̃p
(s) =

∫ ∞

0

exp (gp (s, rt)) fRt(rt)drt,

where gp(s, rt) is

gp(s, rt) = 2πλl

(∫ rt

0

exp (2λ(s− 1)t)tdt√
r2t − t2

− rt

)
(46)
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Hence, the kth derivative P(k)

S̃p
(s, rt) with respect to s is given by

P(k)

S̃p
(s)

(a)
=

∫ ∞

0

exp (gp(s, rt))B
(
g(1)p (s, rt), ...g

(k)
p (s, rt)

)
fRt

(rt)drt, (47)

the step (a) is obtained using the Faà di Bruno’s formula [13]. The g(k)p (s, rt) can be written as

= 2πλl

∫ rt

0

(2λt)k
exp ((s− 1)2λt)√

r2t − t2
tdt. (48)

From (47), (48) and replacing s = 0, we get the PMF of S̃p.

E. Proof of Corollary 2.1

To derive the variance of S̃p, we need the second derivative of the PGF that is given as

[
P2
S̃p
(s)
]
s=1

=

∫ ∞

0

(2πλl(2λ)∫ rt

0

t2√
r2t − t2

dt

)2

+ 2πλl(2λ)
2

∫ rt

0

t3√
r2t − t2

dt

 fRt
(rt)drt

=

∫ ∞

0

[(
4πλlλ

π

4
r2t

)2
+ 8πλlλ

2 2

3
r3t

]
fRt

(rt)drt = (πλp)
2E[r4t ] +

16

3
λλpE[r3t ].

Using the (1) and the second derivative, we derive the variance of S̃p. To derive the mean and

the variance using the Approximation-1, the first derivative of the PGF is[
P(1)

Ŝp
(s)
]
s=1

=

∫ ∞

z=0

λlz

∫ ∞

0

λcfC(c)dcfZ(z)dz

= λlλ

∫ ∞

0

cfC(c)dc

∫ ∞

z=0

zfZ(z)dz,

solving further we get the mean of Ŝp. To get the variance of Ŝp, we need the second derivative
of PŜp

(s) which is given as

P(2)

Ŝp
(s) = (λlλE[C])2 E[Z2] + λlλ

2E[Z]E[C2],

using (1), we get the variance of Ŝp.

F. Proof of Theorem 3

The M̃p is sum of two independent RV, the first is the number of points falling on chord of
length co and the second is number of vehicles falling inside ball of radius ro.

M̃p = ψlo (b1 (o, co/2)) + Ψp(b2(o, ro)), (49)

where ψlo (b1 (o, co/2)) denotes the number of points on tagged chord of length co with PGF

exp (λco(s− 1)) and Ψp(b2(o, ro)) denotes the number of points of Ψp falling inside a ball of

radius ro and the area is equal to the area of Voronoi cell Vto . The PGF of Ψp(b2(o, ro)) can

determined using the Theorem 2. Multiplying the two PGFs we get the PGF of M̃p.
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G. Proof of Theorem 5

The coverage probability conditioned on the nearest BS distance R is

Pr(τ) = E [P (SIR > τ) |Φb] = E
[
P
(
h0r

−α

I
> τ

)]
= E [P (h0 > τIrα)] = [E [exp (−τIrα) |Φb]]

(a)
=

[
1

1 + τrα||y||−α

]
,

here (a) is obtained using the LF of interference [24]. Hence the qth moment of Pr(τ) is

Mq(τ) = EΦb

 ∏
y∈Φb

1

(1 + τrα||y||−α)q
∣∣∣R
 ,

using the PGFL of PPP and deconditioning over R, we get the q-th moment of the coverage
probability.

= 2πλb

∫ ∞

r=0

exp

(
−2πponλb

∫ ∞

r

(
1− 1

(1 + τrαy−α)
q

)
ydy

)
e−λbπr

2

rdr,

which further simplified by replacing r/y = z and λbπr
2 = u which completes the proof of

Theorem 5. Further the q-th moment of the rate coverage is

Sq(θ(τ)) = E
[(

P
(
(R > τ)

∣∣Φb, M̃p

))q]
= E

[(
P

(
B

M̃p + 1
log2 (1 + SIR) > τ

) ∣∣∣ Φb, M̃p

)q]

= E
[(

P
((

SIR > 2
(M̃p+1)τ

B − 1

) ∣∣∣Φb, M̃p

))q]
=
[
P
(
Mq (θ(τ))

∣∣∣M̃p

)]
,

where θ(τ) = 2
(M̃p+1)τ

B − 1. deconditioning over M̃p, we get the qth moment of rate coverage

probability.

H. Proof of Theorem 6

From the definition of meta distribution

FPr(τ)(x) = P(Pr(τ) > x)

=
1

2
+

1

π

∫ ∞

0

Im
[
e−it ln(x)Sit(θ(τ))

]
t

dt

=
1

2
+

1

π

∞∑
m=0

P(M̃p = m)

∫ ∞

t=0

Im
[
e−it ln(x)Mit (θ(τ))

]
t

dt

We can further simplify the above expression to extract the imaginary part of the above equation.

Mit(θ(τ)) =

∫ ∞

u=0

exp

(
−2ponu

∫ 1

0

(
1− 1

(1 + θ(τ)zα)it

)
dz

z3

)
e−udu
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we can write

(1 + θ(τ)zα)−it = e−it ln(1+θ(τ)z
α) = cos (t ln (1 + θ(τ)zα))− i sin (t ln (1 + θ(τ)zα))

= fr(t, θ(τ), z)− ifi(t, θ(τ), z);

replacing the above and simplifying further we get

Mit(θ(τ)) =

∫ ∞

u=0

exp

(
−2ponu

∫ 1

z=0

(1− fr(t, θ(τ), z) + ifi(t, θ(τ), z))
dz

z3

)
e−udu

=

∫ ∞

u=0

exp

(
−u2pon

∫ 1

z=0

(1− fr(t, θ(τ), z))
dz

z3

)
exp

(
−iu2pon

∫ 1

z=0

fi(t, θ(τ), z)
dz

z3

)
e−udu

Let f1,i(t, θ(τ)) = 2pon

∫ 1

z=0
(1− fi(t, θ(τ), z))

dz
z3

and f1,r(t, θ(τ)) = 2pon

∫ 1

z=0
(1− fr(t, θ(τ), z))

dz
z3

.

Im
[
e−it ln(x)Mit (θ(τ))

]
= Im

(∫ ∞

u=0

exp (−uf1,r(t, θ(τ))) exp (−i (t ln(x) + uf1,i(t, θ(τ))))

)
e−udu

= −
∫ ∞

u=0

exp (−uf1,r(t, θ(τ))) sin (t ln(x) + uf1,i(t, θ(τ))) e
−udu

Therefore the meta distribution F Pr(τ)(x) reduces to

=
1

2
− 1

π

∞∑
m=0

P(M̃p = m)

∫ ∞

t=0

∫ ∞

u=0

exp (−uf1,r(t, θ(τ))) sin (t ln(x) + uf1,i(t, θ(τ))) e
−udu

dt

t
.

Substituting the above and simplifying further, we get

=
1

2
− 1

π

∞∑
m=0

P(M̃p = m)

∫ ∞

t=0

∫ ∞

u=0

exp (−u (1 + f1,r(t, θ(τ)))) sin (t ln(x) + uf1,i(t, θ(τ))) du
dt

t
,

(a)
=

1

2
− 1

π

∞∑
m=0

P(M̃p = m)

∫ ∞

t=0

f1,i(t, θ(τ)) cos (t ln(x)) + ((f1,r(t, θ(τ) + 1) sin (t ln(x))))

(f1,r(t, θ(τ)) + 1)2 + (f1,i(t, θ(τ)))
2

dt

t
,

here step (a) is obtained by apply sin (t ln(x) + uf1,i(t, θ(τ))) = sin(t ln(x)) cos (uf1,i(t, θ(τ)))+

cos(t ln(x)) sin (uf1,i(t, θ(τ))) and than using the following integral identity∫ ∞

0

e−ax sin(bx) =
b

a2 + b2
,

∫ ∞

0

e−ax cos(bx) =
a

a2 + b2
.

Solving further from step (a), we get the meta distribution for the rate coverage.
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