EE210: Analog Electronics

Question Set 8

Instructor: Imon Mondal, imon@iitk.ac.in

1) Consider the current mirror in Fig. 1. $I_0 = 100\mu A$, $(W/L)_1 = (W/L)_2 = (W/L)_3 = (W/L)_4=10$ and $V_{tn}=1V$. Neglect body effect. Also, consider $\mu_n C_{ox} = 0.2mA/V^2$ and $\lambda = 0.1V^{-1}$.

a) : Find V_{S3}, V_{S4}, V_{G3} . Who sets the voltages V_{S3} and V_{S4} ? (Neglect CLM for calculating Q-point)

b) : Find the incremental R_{out} .

c) : Find the minimum V_X while keeping all transistors in saturation.

d): If V_X changes by 100 mV (while keeping M4 is saturation) how much change in current will you observe through M2?

e): If V_X changes by 100 mV, how much change in V_{S4} will you observe?

f): What will you do if you want to reduce V_{S3} and V_{S4} by 100 mV without affecting anything else?

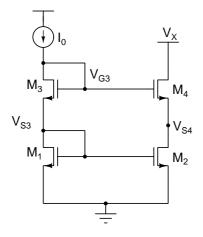


Figure 1: Problem 1.

2) Consider the circuit in Fig. 2. The currents I_0 , and the transistors M1 - M4 are identical to that of Q3.

a) : Is it possible to have $V_{Xmin} = 2V_{ov|M2,M4}$? b) : What must V_{G5} be to realize the condition in a)?

c): How will you size M5 to set this V_{G5} ?

3) Consider Fig. 3. (W/L) = 10 for all transistors, $V_{tn}=1$ V, $\mu_n C_{ox}=200 \ \mu A/V^2$. Assume

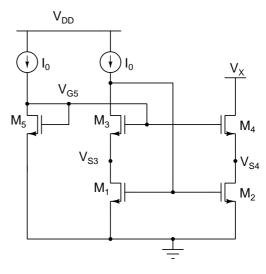


Figure 2: Problem 2.

the amplifier to be a VCVS of gain 100.

a) : Find V_B such that M2 is biased just at the edge of saturation region.

b) : Assume $I_{DS2} \approx 1mA$. Find the incremental R_{out} .

c) : How does this architecture fare with respect to the previous ones?

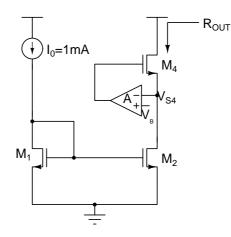


Figure 3: Problem 3.

4) Consider the Fig. 4. The amplifier in Q3. has been replaced by a common source stage. (Neglect channel length modulation for M5)

a): Size M5 such that $V_{DS_{M2}} = V_{DS_{M1}}$.

b): What is the gain of the common source stage?

c) : If you want to move the $V_{DS_{M2}}$ up or down, what will you change in the circuit? d) : If I_0 changes to $I_0 + \Delta I$, what will be the

d) : If I_0 changes to $I_0 + \Delta I$, what will be the total voltage at the drain of M2? (Nelgect channel length modulation for this part).

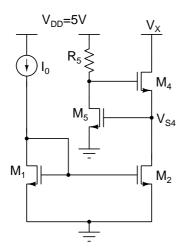


Figure 4: Problem 4.