EE210A: Microelectronics I

Problem Set 1

Instructor: Imon Mondal, imon@iitk.ac.in

1) : Consider the circuit in Fig. 1. Assume that the forward biased voltage of the diode is 650 mV for finding the quiescent points. Consider $I_{B}=2.65 m A$, $V_{i n}=0, R_{1}=2 k \Omega, R_{2}=2 k \Omega$.

Fig. 1. Problem 1
a) : Find the quiescent current through all the elements in the network.
b) : Now assume $I_{B}=2.65 m A+0.5 m A \sin (\omega t)$. Using the small signal analysis taught in the class, find the incremental and the total voltage across the diode.
c) : Assume $I_{B}=2.65 m A+0.5 m A \sin (\omega t)$ and $V_{i n}=100 \mathrm{mV} \sin (\omega t)$. Find the total voltage across the diode. (Hint: You can use superposition when network is linear.)
d) : Assume $I_{B}=2.65 m A+0.5 m A \sin (\omega t)$ and $V_{i n}=1.65 \mathrm{~V}+100 \mathrm{mV} \sin (\omega t)$. Find the total voltage across the diode. (Careful: You cannot use superposition when a network is non-linear.)
2) : Consider the circuit in Fig. 2(a). Assume that the forward biased voltage of the diode is 650 mV for finding the quiescent points. $R=1 k \Omega$.
a) : If $I_{A}=0$, sketch the small signal equivalent circuit of the given network. Express the small signal parameters in terms of $V_{D D}$
b) : If $V_{D D}=2.3 V$, and $I_{A}=0.1 m A \sin (\omega t)$ find the total voltage at V_{0}.

Fig. 2. Problem 2
3) : Consider the circuit in Fig. 3. $I_{B}=2 m A, V_{i n}=$ $0, R_{1}=2 k \Omega, R_{2}=2 k \Omega$. The I-V characteristics of the non-linear element is given by $I_{N}=\alpha V_{N}^{2}$, for $V_{N} \geq 0$, and $I_{N}=0$ for $V_{N}<0$, where $\alpha=1 \mathrm{~mA} / V^{2}$.

Fig. 3. Problem 3
a) : Find the quiescent current through all the elements in the network.
b) : Now assume $I_{B}=2 m A+0.1 m A \sin (\omega t)$. Using the small signal analysis taught in the class, find the incremental and the total voltage across the nonlinear element.
c) : Assume $I_{B}=2 m A+0.1 m A \sin (\omega t)$ and $V_{i n}=10 \mathrm{mV} \sin (\omega t)$. Find the total voltage across the non-linear element.
4) : Consider the circuit in Fig. 4. $I_{B}=2 m A, R=$ $1 k \Omega$. The I-V characteristics of the non-linear element is given by $I_{N}=\alpha\left(V_{N}-1\right)^{2}$, for $V_{N} \geq 1$, and $I_{N}=0$ for $V_{N}<1$, where $\alpha=1 \mathrm{~mA} / V^{2}$.

Fig. 4. Problem 4
a) : Find the quiescent current through all the elements in the network. Find the total quiescent power dissipated in R and E.
b) : Now assume $I_{B}=2 m A+0.1 m A \sin (\omega t)$. Using the small signal analysis taught in the class, find the incremental and the total voltage across the nonlinear element.
c) : Find the total average power dissipated in R and E under the condition of (b). (Note: Average power $=$ time-average of $(I \times V)$, where I and V are the total currents and voltages respectively.)
5) : Consider the circuit in Fig. 5(a). The $I-V$ characteristic of the non-linear element E is shown in Fig. 6(b). $R 1=1 k \Omega$.
a) : Find the ranges of V_{A} such that $0<V_{N}<2 V$ and $V_{N}>2 V$.
b) : Sketch the incremental network for the circuit shown in the figure for the ranges you evaluated in part a).
c) : Find total V_{N} if $V_{A}=6 V+0.2 V \sin (\omega t)$.
d) : Find total V_{N} if $V_{A}=3 V+0.2 V \sin (\omega t)$.
6) : Consider the circuit in Fig. 6(a). $R 1=1 k \Omega$. The $I-V$ characteristic of the non-linear element E is shown in Fig. 6(b).
a) : Find V_{A} such that $V_{N}=3 V$. Let us call this value $V_{A Q}$.
b) : In $V_{A}=V_{A Q}+10 m V \sin (\omega t)$, find the total

Fig. 5. Problem 5

Fig. 6. Problem 6 V_{N}.

