## **EE210A:** Microelectronics I

Problem Set 3

Instructor: Imon Mondal, imon@iitk.ac.in

Assume  $\mu_n C_{ox} = 200 \mu A/V^2$  and  $V_{tn} = 1V$  for all transistors in the problem set.

1) : Consider  $V_{DD} = 5V$ , W/L = 10, and  $R_L = 1k\Omega$ .

Plot  $V_D$  with respect to  $V_B$ , when  $V_B$  is swept from 0 to 5V. Mark the points corresponding to the regions of operation in the plot.



Figure 1: Problem 1.

2) : Consider the Fig. 2.  $V_{DD} = 5V$ ,  $R_L = 10k\Omega$ .

a) : Find  $V_B$  and W/L of M1 for a small signal gain of -10 between  $v_i$  and  $v_o$ . Is the solution unique?

b) : If  $v_i = V_p \sin(\omega_0 t)$ , find  $V_B$  and W/L while ensuring maximum possible  $V_P$  for which M1 remains in saturation and away from cutoff (Use Qpoint + incremental model for analysis), and ensuring a gain of -10.

3) : Consider Fig. 3.  $V_{DD} = 5V$ ,  $(W/L)_1 = 10$ ,  $(W/L)_2 = 5$ ,  $V_B = 2V$ ,  $R_1 = 2k\Omega$ ,  $R_2 = 1k\Omega$ .

a) : Find the small signal gain between  $v_i$  and  $v_{d1}$ , and between  $v_i$  and  $v_{d2}$ .

b) : If  $v_i = V_p \sin(\omega_0 t)$ , find the maximum  $V_p$  such that M1 remains in saturation and away from cutoff region of operation. (Use linear incremental



Figure 2: Problem 2.

analysis)

c): If  $v_i = V_p \sin(\omega_0 t)$ , find the maximum  $V_p$  such that both M1 and M2 remain in saturation and away from cutoff region of operation. (Use linear incremental analysis)

d): Sketch the waveforms at the gates and the drains of M1 and M2 under these conditions. e): If another common-source stage is cascaded to  $V_{D2}$ , comment on the maximum allowable amplitude of the input sinusoid with respect to the circuit shown in the figure.



Figure 3: Problem 3.

4) : Sketch the incremental (small-signal) Norton's equivalent network for the following configurations. Replace the transistor with its small signal model, assuming saturation region of operation. (Note that the input  $v_i$  has not been applied between the gate and source. Make necessary adjust-



Figure 4: Problem. 4a



Figure 6: Problem. 4c



Figure 5: Problem. 4b



Figure 7: Problem. 4d

5) : Consider the Fig. 8.  $V_{DD}$ =3V,  $R_L = 1k\Omega$ , (W/L) = 10.

a): Find  $V_B$  such that the quiescent  $V_0=0.5$ V. b): What is the small signal gain between  $v_i$  and  $v_o$ ?

c) : If  $v_i = V_p \sin(\omega_0 t)$ , what is the maximum  $V_p$  that you can apply while ensuring M1 remains in the saturation and away from the cutoff. (Use quiescent + incremental model for analysis)



Figure 8: Problem 5.