EE210A: Microelectronics I

Problem Set 3

Instructor: Imon Mondal, imon@iitk.ac.in
A ssume $\mu_{n} C_{o x}=200 \mu A / V^{2}$ and $V_{t n}=1 V$ for all transistors in the problem set.

1) : Consider $V_{D D}=5 \mathrm{~V}, W / L=10$, and $R_{L}=1 k \Omega$.

Plot V_{D} with respect to V_{B}, when V_{B} is swept from 0 to 5 V . Mark the points corresponding to the regions of operation in the plot.

Figure 1: Problem 1.
2) : Consider the Fig. 2. $V_{D D}=5 V, R_{L}=$ $10 \mathrm{k} \Omega$.
a) : Find V_{B} and W / L of M1 for a small signal gain of -10 between v_{i} and v_{o}. Is the solution unique?
$b)$: If $v_{i}=V_{p} \sin \left(\omega_{0} t\right)$, find V_{B} and W / L while ensuring maximum possible V_{P} for which $M 1$ remains in saturation and away from cutoff (Use Qpoint + incremental model for analysis), and ensuring a gain of -10 .
3) : Consider Fig. 3. $V_{D D}=5 V$, $(W / L)_{1}=10,(W / L)_{2}=5, V_{B}=2 V$, $R_{1}=2 k \Omega, R_{2}=1 k \Omega$.
a) : Find the small signal gain between v_{i} and $v_{d 1}$, and between v_{i} and $v_{d 2}$.
$b)$: If $v_{i}=V_{p} \sin \left(\omega_{0} t\right)$, find the maximum V_{p} such that $M 1$ remains in saturation and away from cutoff region of operation. (Use linear incremental

Figure 2: Problem 2.
analysis)
c) : If $v_{i}=V_{p} \sin \left(\omega_{0} t\right)$, find the maximum V_{p} such that both $M 1$ and $M 2$ remain in saturation and away from cutoff region of operation. (Use linear incremental analysis)
d): Sketch the waveforms at the gates and the drains of $M 1$ and $M 2$ under these conditions. e): If another common-source stage is cascaded to $V_{D 2}$, comment on the maximum allowable amplitude of the input sinusoid with respect to the circuit shown in the figure.

Figure 3: Problem 3.
4) : Sketch the incremental (small-signal) Norton's equivalent network for the following configurations. Replace the transistor with its small signal model, assuming saturation region of operation.
(Note that the input v_{i} has not been applied between the gate and source. Make necessary adjust-

Figure 4: Problem. 4a

Figure 6: Problem. 4c

Figure 7: Problem. 4d
5) : Consider the Fig. 8. $V_{D D}=3 \mathrm{~V}, R_{L}=1 k \Omega$, $(W / L)=10$.
a) : Find V_{B} such that the quiescent $V_{0}=0.5 \mathrm{~V}$.
$b)$: What is the small signal gain between v_{i} and v_{o} ?
$c)$: If $v_{i}=V_{p} \sin \left(\omega_{0} t\right)$, what is the maximum V_{p} that you can apply while ensuring $M 1$ remains in the saturation and away from the cutoff. (Use quiescent + incremental model for analysis)

Figure 8: Problem 5.

