## EE210A: Microelectronics I

## Problem Set 5

Instructor: Imon Mondal, imon@iitk.ac.in
1): Consider $\mu_{n} C_{o x}=200 \mu A / V^{2}, V_{D D}=6 \mathrm{~V}$, $V_{t n}=1 V,(W / L)_{1}=1, I_{o}=0.1 m A$ and $R_{D}=$ $2 k \Omega$.
a): Size $M 2, M 3, R 1$ and $R 2$ such that $g m_{M 2}=$ $1 m S, g m_{M 3}=2 m S, M 3$ is at least 100 mV away from saturation at quiescent.
b) : Find the constraint on $C_{1}$ and $C_{2}$ such that $v_{o} / v_{i} \approx-4 @ \omega_{o}=100 \mathrm{Mrad} / \mathrm{s}$.
$c)$ : If $v_{i}=V_{p} \sin \left(\omega_{0} t\right)$, find the maximum $V_{p}$ while keeping all transistors in saturation.
$d)$ : Find $v_{o} / v_{i}$ if $C_{2}=0$. What's the intuition behind the result?


Figure 1: Problem 1.
2) : Consider $\mu_{n} C_{o x}=200 \mu A / V^{2}, I_{0}=$ $0.1 \mathrm{~mA}, V_{t n}=0.5 \mathrm{~V}$.
a) : Size $M 1, M 2$ and find $V_{B}$ such that $M 2$ is just at the edge of saturation, and $M 1$ is 100 mV away from the edge of saturation.
$\underline{\text { Hint: }}$ Express $V_{G S_{M 1, M 2}}=V_{t n}+V_{o v_{M 1, M 2}}$ for ease of analysis.
$b)$ : Without changing $V_{B}$, what will you do to bias $M 2$ in saturation with a margin of 100 mV ?
c) : How much will the voltages at $V 1$ and $V 2$ change if $I_{0}$ changes by $\pm 10 \mu A$. (Assume (b) to be the quiescent).
$d)$ : What will be the effect of change of $V_{t n}$ of M1 by 10 mV ?
$e)$ : What will be the effect of change of $V_{t n}$ of M2 by 10 mV ?


Figure 2: Problem 2.
3) : Consider $\mu_{n} C_{o x}=200 \mu A / V^{2}$, $V_{t} n=0.5 V, I_{0}=1 m A,(W / L)_{1}=2.5$, $(W / L)_{2}=160, R_{L}=10 k \Omega$.
a) : Bias $V_{B}$ such that M1 is in saturation with a margin of 100 mV .
b) : Assume $v_{i}=V_{p} \sin (\omega t)$, and $C_{1}$ and $C_{2}$ are shorted at signal frequencies. Find $V_{o}$.
$c)$ : Find the max. allowable $V_{p}$ while keeping M1,M2 in saturation.
d): Find the time constant associated with $C_{1}$ and $C_{2}$. While finding the time constant for $C_{1}$ assume $C_{2}$ is infinitely large, and vice-versa.
$e)$ : Assume $C_{1}=0$. Find time-constant associated with $C_{2}$.


Figure 3: Problem 3.

4a) : Design a common source amplifier for a gain of $-20 . V_{D D}=3 V, V_{t n}=1 V$, $\min \left(V_{G S}-V_{t n}\right)=100 \mathrm{mV}$. Show the biases and $(W / L)$ of the transistor explicitly.
$4 b$ ) : Now the user wants to drive an $R_{L}$ (with one end connected to ground) and achieve a minimum gain of -18 when $R_{L}$ varies between $100 \Omega$ to $200 \Omega$. Without changing your design in part $a$ ) what else will you add to the network to realize the specification?

