EE210A: Microelectronics I

Problem Set 5

Instructor: Imon Mondal, imon@iitk.ac.in

I): Consider $\mu_n C_{ox} = 200 \mu A/V^2$, $V_{DD} = 6$ V, $V_{tn} = 1V$, $(W/L)_1 = 1$, $I_o = 0.1mA$ and $R_D = 2k\Omega$.

a): Size M2, M3, R1 and R2 such that $gm_{M2} = 1mS$, $gm_{M3} = 2mS$, M3 is at least 100 mV away from saturation at quiescent.

b) : Find the constraint on C_1 and C_2 such that $v_o/v_i \approx -4 @ \omega_o = 100 Mrad/s$.

c) : If $v_i = V_p \sin(\omega_0 t)$, find the maximum V_p while keeping all transistors in saturation.

d) : Find v_o/v_i if $C_2 = 0$. What's the intuition behind the result?

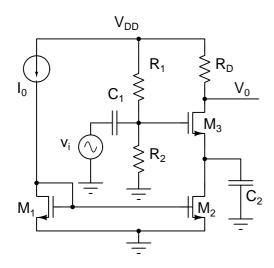


Figure 1: Problem 1.

2) : Consider $\mu_n C_{ox} = 200 \mu A/V^2$, $I_0 = 0.1mA$, $V_{tn} = 0.5V$.

a) : Size M1, M2 and find V_B such that M2 is just at the edge of saturation, and M1 is 100mV away from the edge of saturation.

<u>*Hint*</u>: Express $V_{GS_{M1,M2}} = V_{tn} + V_{ov_{M1,M2}}$ for ease of analysis.

b) : Without changing V_B , what will you do to bias M2 in saturation with a margin of 100mV?

c) : How much will the voltages at V1 and V2 change if I_0 changes by $\pm 10\mu A$. (Assume (b) to be the quiescent).

d) : What will be the effect of change of V_{tn} of M1 by 10mV?

e) : What will be the effect of change of V_{tn} of M2 by 10mV?

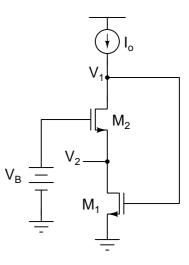


Figure 2: Problem 2.

3) : Consider $\mu_n C_{ox} = 200 \mu A/V^2$, $V_t n = 0.5V$, $I_0 = 1mA$, $(W/L)_1 = 2.5$, $(W/L)_2 = 160$, $R_L = 10k\Omega$.

a) : Bias V_B such that M1 is in saturation with a margin of 100mV.

b) : Assume $v_i = V_p \sin(\omega t)$, and C_1 and C_2 are shorted at signal frequencies. Find V_o .

c) : Find the max. allowable V_p while keeping M1,M2 in saturation.

d): Find the time constant associated with C_1 and C_2 . While finding the time constant for C_1 assume C_2 is infinitely large, and vice-versa.

e): Assume $C_1 = 0$. Find time-constant associated with C_2 .

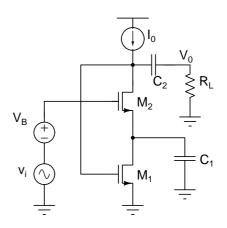


Figure 3: Problem 3.

4a) : Design a common source amplifier for a gain of -20. $V_{DD} = 3V$, $V_{tn} = 1V$, $\min(V_{GS} - V_{tn}) = 100$ mV. Show the biases and (W/L) of the transistor explicitly.

4b): Now the user wants to drive an R_L (with one end connected to ground) and achieve a minimum gain of -18 when R_L varies between 100 Ω to 200 Ω . Without changing your design in part *a*) what else will you add to the network to realize the specification?