EE210A: Microelectronics I

Problem Set 6

Instructor: Imon Mondal, imon@iitk.ac.in

- 1) Consider the circuit in Fig 1. $\mu_n C_{ox} = 0.2mA/V^2$, $I_0 = 1mA$, $V_{DD} = 6V$, $R_1 = R_2 = 3k\Omega$, $V_{tn} = 1V$. Assume $g_{mb} = 0.2g_m$. (Neglect channel length modulation)
- a) Size M1 and M2 such that M1 is in saturation with a margin of 500 mV, and $g_{M1} = 1$ mS.
- b) Find the incremental resistances r_1 and r_2 .
- c) Use the configuration to implement a common source amplifier.
- *d)* If you want to implement a CCCS, where and how will you apply the i/p and take the o/p?
- *e)* How is this config. different from a standard common gate config.?
- f) If you want to implement a VCVS having gain ≈ 0.9 while driving a load $R_L \approx 1 \text{k}\Omega$ to $2 \text{k}\Omega$, what will you do?

Figure 1: Problem 1.

- 2) The circuit shown in Fig. 2 is used to generate a bias voltage $V_B=V_{tn}+V_{ov}$. If we want to generate a bias voltage of $V_B=V_{tn}+2V_{ov}$, how will you change the circuit?
- 3) Consider the current mirror in Fig. 3. $I_0=100\mu A$, $(W/L)_1=(W/L)_2=(W/L)_3=(W/L)_4$ =10 and V_{tn} =1V. Neglect body effect. Also, consider $\mu_n C_{ox}=0.2mA/V^2$ and $\lambda=0.1V^{-1}$
 - a): Find V_{S3} , V_{S4} , V_{G3} . Who sets the voltages

Figure 2: Problem 2.

 V_{S3} and V_{S4} ? (Neglect CLM for calculating Q-point)

- b): Find the incremental R_{out} .
- c): Find the minimum V_X while keeping all transistors in saturation.
- d): If V_X changes by 100 mV (while keeping M4 is saturation) how much change in current will you observe through M2?
- e): If V_X changes by 100 mV, how much change in V_{S4} will you observe?
- f): What will you do if you want to reduce V_{S3} and V_{S4} by 100 mV without affecting anything else?

Figure 3: Problem 3.

- 4) Consider the circuit in Fig. 4. The currents I_0 , and the transistors M1 M4 are identical to that of Q3.
- a): Is it possible to have $V_{Xmin} = 2V_{ov|M2,M4}$?
- b): What must V_{G5} be to realize the condition in a)?
- c): How will you size M5 to set this V_{G5} ?

Figure 4: Problem 4.

- 5) Consider Fig. 5. (W/L)=10 for all transistors, V_{tn} =1V, $\mu_n C_{ox}$ =200 $\mu A/V^2$.
- a) : Assume $I_{DS2}=1mA$. Find the incremental R_{out} .
- b): How does this architecture fare with respect to the previous ones?

Figure 5: Problem 5.

- 6) Consider the Fig. 6. The amplifier in Q5. has been replaced by a common source stage. (Neglect channel length modulation for M5)
- a) : Size M5 such that $V_{DS_{M2}} = V_{DS_{M1}}$.
- b): What is the gain of the common source stage?

- c): If you want to move the $V_{DS_{M2}}$ up or down, what will you change in the circuit?
- d): If I_0 changes to $I_0 + \Delta I$, what will be the total voltage at the drain of M2? (Nelgect channel length modulation for this part).

Figure 6: Problem 6.