EE210A: Microelectronics I

Problem Set 6

Instructor: Imon Mondal, imon@iitk.ac.in

1) Consider the circuit in Fig 1. $\mu_{n} C_{o x}=$ $0.2 \mathrm{~mA} / V^{2}, I_{0}=1 \mathrm{~mA}, V_{D D}=6 V, R_{1}=R_{2}=$ $3 k \Omega, V_{t n}=1 V$. Assume $g_{m b}=0.2 g_{m}$. (Neglect channel length modulation)
a) Size $M 1$ and $M 2$ such that $M 1$ is in saturation with a margin of 500 mV , and $g_{M 1}=1 \mathrm{mS}$.
b) Find the incremental resistances r_{1} and r_{2}.
c) Use the configuration to implement a common source amplifier.
d) If you want to implement a CCCS, where and how will you apply the i / p and take the o / p ?
$e)$ How is this config. different from a standard common gate config.?
f) If you want to implement a VCVS having gain ≈ 0.9 while driving a load $R_{L} \approx 1 \mathrm{k} \Omega$ to $2 \mathrm{k} \Omega$, what will you do?

Figure 1: Problem 1.
2) The circuit shown in Fig. 2 is used to generate a bias voltage $V_{B}=V_{t n}+V_{o v}$. If we want to generate a bias voltage of $V_{B}=V_{t n}+2 V_{o v}$, how will you change the circuit?
3) Consider the current mirror in Fig. 3. $I_{0}=$ $100 \mu A,(W / L)_{1}=(W / L)_{2}=(W / L)_{3}=$ $(W / L)_{4}=10$ and $V_{t n}=1 \mathrm{~V}$. Neglect body effect. Also, consider $\mu_{n} C_{o x}=0.2 m A / V^{2}$ and $\lambda=$ $0.1 V^{-1}$.
a) : Find $V_{S 3}, V_{S 4}, V_{G 3}$. Who sets the voltages

Figure 2: Problem 2.
$V_{S 3}$ and $V_{S 4}$? (Neglect CLM for calculating Q-point)
b) : Find the incremental $R_{\text {out }}$.
c) : Find the minimum V_{X} while keeping all transistors in saturation.
d): If V_{X} changes by 100 mV (while keeping $M 4$ is saturation) how much change in current will you observe through M2?
$e)$: If V_{X} changes by 100 mV , how much change in $V_{S 4}$ will you observe?
f): What will you do if you want to reduce $V_{S 3}$ and $V_{S 4}$ by 100 mV without affecting anything else?

Figure 3: Problem 3.
4) Consider the circuit in Fig. 4. The currents I_{0}, and the transistors $M 1-M 4$ are identical to that of Q3.
a) : Is it possible to have $V_{X \text { min }}=2 V_{o v \mid M 2, M 4}$?
b) : What must $V_{G 5}$ be to realize the condition in
a)?
c) : How will you size $M 5$ to set this $V_{G 5}$?

Figure 4: Problem 4.
5) Consider Fig. 5. $(W / L)=10$ for all transistors, $V_{t n}=1 \mathrm{~V}, \mu_{n} C_{o x}=200 \mu \mathrm{~A} / V^{2}$.
a): Assume $I_{D S 2}=1 \mathrm{~mA}$. Find the incremental $R_{\text {out }}$.
b) : How does this architecture fare with respect to the previous ones?

Figure 5: Problem 5.
6) Consider the Fig. 6. The amplifier in $Q 5$. has been replaced by a common source stage.
(Neglect channel length modulation for M5)
a) : Size $M 5$ such that $V_{D S_{M 2}}=V_{D S_{M 1}}$.
b) : What is the gain of the common source stage?
c) : If you want to move the $V_{D S_{M 2}}$ up or down, what will you change in the circuit?
d) : If I_{0} changes to $I_{0}+\Delta I$, what will be the total voltage at the drain of $M 2$? (Nelgect channel length modulation for this part).

Figure 6: Problem 6.

