(1)

(a) Use the p-input differential pair in a feedback loop to obtain a closed loop gain of -2 . You may use sue coupling capacitor to isolate the $D C$-bias and the ac-input if necessary.
(b) Find the steady state error. Make appropriate assumptions on $g_{d s}$ of the transisions. (Hint: $g_{m} \gg g d s$ and $g_{d s} \gg 0$)
(c) What is the minimum $V_{D D}$ required to keep all the transistors in saturation.
(d) Find (i) $v_{0} / v_{d d}$ and (ii) $v_{0} / v_{g n d}$ for the same configuration (ie under negative feedback).
For (i) neglect the gas of all transistors other them mo
For (ii) neglect the gas of all transistors other than M3 and M4.
(2)

(3)

$M 1 \equiv M 2 \quad M 3 \equiv M 4$
(a) Find expressions for A_{1} and Aam
(b) Find the ICMR ${ }^{+}$and $I\left(M R^{-}\right.$for this configuration.

Consider the figure on the loft (taken from Analog (mos Integrated clits by B. Razavi)
(a) Considering the gds of $M 1-M 5$, find A_{d} and Atm.
(b) Find $1 e M R^{+}$and ICMR-.
(4)

(a) Fird A_{d} and A am. (Neglect gds)
(b) Find ICMP ${ }^{+}$and ICMR

$$
\begin{aligned}
& V_{D D}=1.8 \mathrm{~V} \quad I_{0}=200 \mu \mathrm{~A} \\
& \mu_{n} C_{o y}=200 \mu \mathrm{~A} / \mathrm{v}^{2} \\
& \mu_{p} C_{o y}=100 \mu \mathrm{~N} / \mathrm{v}^{2} \\
& V_{t_{n_{n}}}=0.5 \mathrm{~J}, \quad V_{f_{n p}}=-0.5 \mathrm{~V}
\end{aligned}
$$

$$
(w / 2)_{M O_{a}, M_{5}}=4
$$

$$
(w / L)_{M_{1}, M_{2}}=2
$$

(a) Find the minimums common mode input voltage for $M 1, M_{2}, M 5$ to be in saturation
(b) Sike M3 and M4 so that they are at the edge of saturation regrown.
c) Find $\frac{V_{\text {out }}-V_{\text {out }}}{}$ while neglecting Foes of MS.

