Proof that operator norm is a norm

January 7, 2013

Some definitions:

1. Any norm $\|$.$\| (vector or matrix) satisfies the following properties:$
(P1)
(P2)

$$
\begin{align*}
\|\mathbf{x}\| & \geq 0 & \forall \mathbf{x} \tag{1}\\
\|\mathbf{x}\| & =0 \Leftrightarrow \mathbf{x}=0 & \\
\|t \mathbf{x}\| & =|t|\|\mathbf{x}\| & \forall t \in \mathbb{R}, \mathbf{x} \tag{P3}\\
\|\mathbf{x}+\mathbf{y}\| & \leq\|\mathbf{x}\|+\|\mathbf{y}\| & \forall \mathbf{x}, \mathbf{y} \tag{P4}
\end{align*}
$$

2. The operator norm for a matrix \mathbf{A} is defined as

$$
\begin{equation*}
\|\mathbf{A}\|_{a, b}:=\sup _{\|\mathbf{x}\|_{b} \leq 1}\|\mathbf{A} \mathbf{x}\|_{a} \tag{5}
\end{equation*}
$$

for any two vector norms $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ which satisfy P1-P4.
3. The sup notation is defined as (for any function f and constraint set \mathcal{X})

$$
\begin{equation*}
\sup _{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \geq f(\mathbf{v}) \forall \mathbf{v} \in \mathcal{X} \tag{6}
\end{equation*}
$$

For example,

$$
\begin{equation*}
\sup _{\|\mathbf{x}\|_{b} \leq 1}\|\mathbf{A} \mathbf{x}\|_{a} \geq\|\mathbf{A v}\|_{a} \quad \forall\|\mathbf{v}\|_{b} \leq 1 \tag{7}
\end{equation*}
$$

The operator norm satisfies all the four properties of a norm. (P1) This one is trivial.

$$
\begin{array}{rrr}
\|\mathbf{A} \mathbf{x}\|_{a} \geq 0 & \text { for all } \mathbf{A} \text { and } \mathbf{x} \\
\Rightarrow \sup _{\mathbf{x}}\|\mathbf{A} \mathbf{x}\|_{a} \geq 0 & \text { for all } \mathbf{A} \\
\Rightarrow \sup _{\|\mathbf{x}\|_{b} \leq 1}\|\mathbf{A} \mathbf{x}\|_{a} \geq 0 & \text { for all } \mathbf{A} \tag{10}
\end{array}
$$

(P2) First consider $\mathrm{A}=0$, the all-zero matrix. Clearly,

$$
\begin{equation*}
\|\mathbf{0}\|_{a, b}=\sup _{\|\mathbf{x}\|_{b} \leq 1}\|\mathbf{0} \mathbf{x}\|_{a}=0 \tag{11}
\end{equation*}
$$

Next suppose that $\|\mathbf{A}\|_{a, b}=0$ for some \mathbf{A}. Then,

$$
\begin{array}{rlr}
\sup _{\|\mathbf{x}\|_{b} \leq 1}\|\mathbf{A} \mathbf{x}\|_{a}=0 & \\
\Rightarrow\|\mathbf{A v}\|_{a}=0 & \text { for all }\|\mathbf{v}\|_{b} \leq 1, \text { by definition } \\
\Rightarrow \mathbf{A v} & =0 & \text { from (P2), for all }\|\mathbf{v}\|_{b} \leq 1 \\
\Rightarrow \mathbf{A} & =\mathbf{0} & \tag{15}
\end{array}
$$

The last step follows since, if A has even a single non-zero entry, it will always be possible to find an $\mathbf{v}:\|\mathbf{v}\|_{b} \leq 1$, such that $\mathbf{A v} \neq 0$.
(P3) Trivial, since

$$
\begin{equation*}
\sup _{\|\mathbf{x}\|_{b} \leq 1}\|t \mathbf{A} \mathbf{x}\|_{a}=\sup _{\|\mathbf{x}\|_{b} \leq 1}|t|\|\mathbf{A} \mathbf{x}\|_{a}=|t| \sup _{\|\mathbf{x}\|_{b} \leq 1}\|\mathbf{A} \mathbf{x}\|_{a} \tag{16}
\end{equation*}
$$

from (P3) for vector norm.
(P4) Consider the rhs

$$
\begin{align*}
\|\mathbf{A}\|_{a, b}+\|\mathbf{B}\|_{a, b} & =\sup _{\|\mathbf{x}\|_{b} \leq 1}\|\mathbf{A} \mathbf{x}\|_{a}+\sup _{\|\mathbf{y}\|_{b} \leq 1}\|\mathbf{B y}\|_{a} & \text { by definition } \tag{17}\\
& \geq\|\mathbf{A v}\|_{a}+\|\mathbf{B u}\|_{a} & \forall\|\mathbf{v}\|_{b} \leq 1,\|\mathbf{u}\|_{b} \leq 1 \tag{18}
\end{align*}
$$

This statement holds for all \mathbf{u}, \mathbf{v} such that $\|\mathbf{v}\|_{b} \leq 1,\|\mathbf{u}\|_{b} \leq 1$. Therefore it also holds when $\mathbf{u}=\mathbf{v}$ with $\|\mathbf{u}\|_{b} \leq 1$, i.e.,

$$
\begin{array}{rlr}
\|\mathbf{A}\|_{a, b}+\|\mathbf{B}\|_{a, b} & \geq\|\mathbf{A u}\|_{a}+\|\mathbf{B u}\|_{a} & \forall\|\mathbf{u}\|_{b} \leq 1 \\
& \geq\|\mathbf{A u}+\mathbf{B u}\|_{a} & \forall\|\mathbf{u}\|_{b} \leq 1 \quad \text { from (P4) } \tag{20}
\end{array}
$$

which implies that

$$
\begin{align*}
\|\mathbf{A}\|_{a, b}+\|\mathbf{B}\|_{a, b} & \geq \sup _{\|\mathbf{u}\|_{b} \leq 1}\|\mathbf{A u}+\mathbf{B u}\|_{a} \tag{21}\\
& =\|\mathbf{A}+\mathbf{B}\|_{a, b} \tag{22}
\end{align*}
$$

