SUPERSATURATED IDEALS

ASHUTOSH KUMAR AND DILIP RAGHAVAN

Dedicated to the memory of Ken Kunen

ABSTRACT. An ideal 7 on a set X is supersaturated iff add(Z) > ws and for
every family F of Z-positive sets with |F| < add(Z), there exists a countable
set that meets every set in 7. We show that many well-known ccc forcings
preserve supersaturation. We also show that the existence of supersaturated
ideals is independent of ZFC plus “There exists an wi-saturated o-ideal”.

1. INTRODUCTION

Saturation properties of ideals are ubiquitous in modern set theory and there
is a considerable body of work (for example, see [3, Bl [, [7]) on the study of a
large number of such properties. Throughout this paper, by an ideal Z on X, we
mean an ideal Z on X that contains every finite subset of X. Supersaturation is a
strengthening of wq-saturation defined as follows.

Definition 1.1. Suppose T is an ideal on X and X is a cardinal. We say that T
is A\-supersaturated iff add(Z) > AT and for every A C I+, if |A| < add(Z), then
there exists W € [ X]|<* such that for every A€ A, ANW # (). T is supersaturated
iff it is wi-supersaturated.

Suppose Z is a supersaturated ideal on X. Since add(Z) > wy, it follows that Z*
cannot have an uncountable subfamily of pairwise disjoint sets because no countable
set can meet all of them. So Z is w;-saturated. Let p = add(Z). Ulam showed that
either u is a measurable cardinal or p is a weakly inaccessible cardinal < ¢. Solovay
showed that p admits a normal wy-saturated ideal J and p is a measurable cardinal
in the inner model L[J]. For proofs of these facts, see [7].

Though closely related to some of the works of Fremlin, supersaturated ideals
were formally introduced in [4] where it was shown that if x < ¢ admits a normal
supersaturated ideal then the order dimension of the Turing degrees is at least
k. An earlier motivation for investigating these ideals comes from the following
question of Fremlin — See Problem EG(h) in [IJ.

Question 1.2 (Fremlin). Suppose & is real valued measurable and m : P(k) — [0, 1]
is a witnessing normal measure. Let F be a family of subsets of k such that | F| < k
and for every A € F, m(A) > 0. Must there exist a countable N C k such that for
every A€ F, NNA#(?

So Question [1.2] is asking if the null ideal of every normal witnessing measure
on a real valued measurable cardinal must be supersaturated. One of the standard
ways of obtaining wi-saturated ideals on cardinals below the continuum is to start
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with a measurable cardinal x and a witnessing normal prime ideal Z on &, and force
with a ccc forcing P that adds > k reals. Let J be the ideal generated by Z in
VP, Then J is always an wi-saturated normal ideal on x < ¢. But whether or not
J is supersaturated will depend on the choice of P. This motivates the notion of
supersaturation preserving forcings (Definition . In Section [2, we show that a
large class of ccc forcings for adding new reals are supersaturation preserving. In
particular, the following holds.

Theorem 1.3. Let Randomy denote the forcing for adding A random reals.

(1) Ewery o-linked forcing is supersaturation preserving.
(2) Randomy is supersaturation preserving for every \.

The question of whether every wj-saturated ideal must be supersaturated was
raised in [4]. Our main result shows that this is independent.

Theorem 1.4. Each of the following is consistent.

(1) There is an wy-saturated ideal on a cardinal below the continuum and there
are no supersaturated ideals.

(2) There is an wy-saturated ideal on a cardinal below the continuum and every
w1 -saturated ideal is supersaturated.

Notation: Let Z be an ideal on X. Define Z* = P(X) \ Z. add(Z) denotes
the least cardinality of a subfamily of Z whose union is in ZT. For A C X, define
I1A={Y CX:YNAE€Z} SupposeV CW are transitive models of set theory,
X, T €V and V | “T is an ideal on X”. Recall that the ideal generated by Z in
WisJ={AeW:(3BeI)(ACB)}.

For a set of ordinals X, otp(X) denotes the order type of X. An ordinal J is
indecomposable iff for every X C 4, either otp(X) = 6 or otp(6\ X) = 0. If P, Q are
forcing notions, we write P < Q iff P C Q and every maximal antichain in P is also
a maximal antichain in Q. Coheny denotes the forcing for adding A Cohen reals.
Random) is the measure algebra on 2* equipped with the usual product measure
denoted by py. If A is clear from the context, then we drop it and just write p.

2. CCC FORCINGS AND SUPERSATURATION

Definition 2.1. A forcing P is k-ssp (ssp = supersaturation preserving) iff for
every normal supersaturated ideal T on r, V¥ |= “the ideal generated by T is super-
saturated”. P is ssp iff it is k-ssp for every k.

In [4], the following forcings were shown to be k-ssp for every x.
(a) Coheny for any A.
(b) Any finite support iteration of ccc forcings of size < k.
It was also shown that Random), is k-ssp for any measurable k. The next theorem
improves this to all .

Theorem 2.2. Random) is k-ssp for every k and \.

Proof. Fix a normal supersaturated ideal Z on k. Put B = Random) and let 7 be
the ideal generated by Z in VEB. Suppose § < x and IFg (A; : i < 6) is a sequence of
J-positive sets. It suffices to find B € [k]¥° such that IFg (Vi < 0)(A; N B # ().

For i < § and a < k, put p; o = [[a € A]Jg. So each Di.a is a Baire subset of 2*.
Put T; = {a < Kk : pi.o # OB}.
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Claim 2.3. For eachp € B\ {Og}, {a € T; :pia Np#Og} €.

Proof. Put X, = {a € T} : p;.o Np # O} and suppose X, € Z. Since the empty
condition forces that A; € J+, it follows that for every X € Z, {Pia: e\ X}
is predense in B. But every condition in {p; . : & € T; \ X} is incompatible with
p which is impossible. [l

For a finite partial function f from X to 2, define [f] = {z € 2* : 2 | dom(f) = f}.
For a clopen K C 2%, define supp(K) to be the smallest finite set S C A such that
(Vo,ye2M(z [ S=y|S = (r€ K < y€ K)). If supp(K) = S, then there
there is finite list {fx ., : n < n,} where fx ,’s are pairwise distinct functions from
Sto2and K =[], _, [frnl]

Definition 2.4. Suppose C is a family of clopen sets in 2*. We say that C is a
strong A-system of width (ny, Ny) iff ne, Ny < w and the following hold.
(a) (supp(K): K €C) is a A-system with root R.
(b) For every K € C, |supp(K) \ R| = n,.
(c) For every K € C, K = ||, . [fx.n] where each fx n : supp(K) — 2 and
fr.n’s are pairwise distinct.
(d) For every K1, Ko € C and n < N,
(Z) le,n I R= fK2,n I R and
(i) if for m € {1,2}, {7 : j < |R|+n.} lists supp(K.y,) in increasing
order, then lej(ﬁjl) = fKMv(ij) for every j < |R| + n,.

Lemma 2.5. Suppose p C 2* is Baire and C is an infinite strong A-system of
clopen sets in 2% of width (n., N,). Let € > 0 and assume that for infinitely many
KeC, ulpNnK)>e. Then for all but finitely many K € C, u(pN K) > ¢/2.

Proof. Let R be the root of (supp(K) : K € C). For each K € C, fix (fx.n : 1 < Ny)
such that K = | |,y [fx.n]- First suppose that p is clopen. Let C, = {K € C :
(supp(K) \ R) Nsupp(p) = 0}. Then C\ C, is finite and for each K € Cp,

ppNE) =Y w0 [fxal) =27 > ppN[frn | R])

n<N, n<N,

which does not depend on K € C,. It follows that the result holds if p is clopen.
The general case follows by applying the previous case to a clopen ¢ C 2* satisfying
n(pAq) < e/2. 0

For each a € Ty, fix S; o € [A]® such that Di,o is supported in S; o. For every
i < 8, o € T; and € > O rational, choose a clopen set K; o C 2X with supp(K ae) C
Si,o such that
ﬂ(pi,aAKi,oz,s)
M(Ki,a,a)
Claim 2.6. For each i < 6 and € > 0 rational, we can find F;. C I and
((nie, v, Niey) : Y € Fi o) such that the following hold.
(1) Fie is a countable family of pairwise disjoint sets and T; \|J Fic € Z.
(2) For each' Y € Fio, {Kine : a € Y} is a strong A-system of width
(Nie,ys Niey)-

<e€
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Proof. Fix i < 8 and € > 0 rational. To simplify notation, we write K, instead of
K .. It suffices to show that for every Z-positive X C Tj, there exists Y C X such
that Y € Z* and there exist (ny, Ny ) such that {K, : a € Y} is a strong A-system
of width (ny, Ny). Since then we can take F; . to be a maximal disjoint family of
such Y’s. That each F; . is countable follows from the fact that 7 is w;-saturated.

Fix a club F C k such that for every v € E and « € T; N v, max(supp(Ky,)) <
~v. Suppose X C T;NE and X € Z7. Since Z is normal and the map o
max(supp(K, N a)) is regressive on X, we can find R C  finite and ¥; C X such
that Y1 € I, (Va € Y1) (supp(K,) N = R) and |supp(K,) \ R| = n. does not
depend on « € Y;. It also follows that (supp(K,) : a € Y7) forms a A-system with
root R. For each a € Y1, let Ko = ||,y [fa,n] Where each fq , @ supp(Ka) — 2.
Choose Y5 C Y; such that Yo € ZT and N, = N, does not depend on a € V5.
Finally, choose Y C Y5 such that Y € Z+ and {K, : a € Y} is a strong A-system
of width (n4, N,). O

Since T is supersaturated, we can choose B € [r]*° such that for every i < 6,
¢ > O rational and Y € F; ., we have |[BNY| = Ny. It suffices to show that for each
i <0, {pio:a € B} is predense in B.

Suppose not. Fixi < 6 and p C 2* Baire such that u(p) > 0 and for every o € B,
w(PiaNp)=0. Let X ={a €T;: pu(piaNp) > 0}. By Claim X € I+. Using
the argument in the proof of Claim [2.6] we can choose ¢ > 0 rational, X, C X and
Ny, N, < w such that

(a) X, € I and for each « € X, pu(pio Np) > 4de.
(b) {Kiac:a€ X} is astrong A-system of width (n, N,).

Choose Y € F; . such that YN X, € ZT. Since |[Y N X,| > Ry and |Y N B| = Ry,
by Lemma we can choose o € Y N B such that pu(p N K; o) > 2¢. But since
1(Di,a AK; 0 c) < epp(Ki o) < g, it follows that u(pNp; o) > € > 0: Contradiction.
This completes the proof of Theorem [2.2] [

Theorem 2.7. Every o-linked forcing is k-ssp for every k.

Proof. Let T be a normal supersaturated ideal on k. Suppose P is a o-linked forcing
and J is the ideal generated by Z in VF. Fix § < x and WLOG, assume that the

o

trivial condition forces that (A4; : i < 6) is a sequence of J-positive sets. It suffices
to construct X € [k]¥ such that IFp (Vi < 0)(X N A; # 0).

Since P is o-linked, we can write P = [ J{L,, : n < w} where each L, C P has
pairwise compatible members. For each i < 6 and n < w, define

Bin={a<k:(3peL,)(plFaci)}

Claim 2.8. W; = J{L, :n <w,B;,, € Z'} is dense in P.

Proof. Suppose not and fix p € P such that no extension of p lies in W;. Put
C={a<k:(3¢<p)lqgFac A} Since no extension of p lies in W;, it
follows that C C (J{Bin : n < w,B;, € I} and hence C' € Z. It now follows that
p - AZ € J which is impossible. O

Since 7 is supersaturated, we can find a countable X C « such that for every i < 0
and n < w, if B; , € Z7, then X N B, ,, # 0. We claim that IF (Vi < 0)(X NA; # 0).
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Suppose not and fix p € P and 7 < 6 such that pIF X N /011- = (). Using Claim
choose n < w and p’ < p such that p’ € L,, and B;,, € Z*. Choose o € B;,, N X
and q € L, such that ¢ IF a € AZ Since L,, is linked, we can find a common
extension r € Pof p’,q. But rlFa € XN A;: Contradiction. (]

Corollary 2.9. Fach of the following forcings is ssp: Cohen, random, Amoeba,
Hechler, Eventually different real forcing.

We do not know if we can improve Theorem[2.7] to the class of o-finite-cc forcings.
For example, one can ask the following.

Question 2.10. Suppose B is a boolean algebra and m : B — [0,1] is a strictly
positive finitely additive measure on B. Must B be supersaturation preserving?

The next two facts are well known.
Fact 2.11. Suppose P is a separative o-linked forcing. Then |P| < c.

Fact 2.12. Let ((Pg,(@g) : € < \) be a finite support iteration with limit Py where
for every £ < X\, VFe |= Qg is o-linked. Assume A\ < ¢*. Then Py is also o-linked.

Theorem 2.13. Let Z be a normal supersaturated ideal on x and let X\ < w7T.
Suppose ((Pe, QE) : € < \) is a finite support iteration with limit Py where for every
E< )\ VP = @5 is o-linked. Let J be the ideal generated by T in VF>. Then J is
supersaturated.

Proof. By induction on \. First suppose k < ¢. If A < x™, then by Fact Py
is o-linked and the claim holds by Theorem So assume A = k1 and fix any
Py-generic filter G over V. Let (A; : i < 6) be a sequence of J-positive sets in
V[G,] where 8 < k. Since Py is a finite support iteration of ccc forcings, there
exists n < A = k™ such that (4; : i < 0) € V[G,] where G,, = P, N G\. Note that
each A; is J,-positive where 7, is the ideal generated by Z in V[G,]. By inductive
hypothesis, there is a countable set that meets A; for every i < 6. Hence J is
supersaturated.

Next assume k > ¢. Then k is measurable and 7 is a normal prime ideal on k.
First suppose A < k. By Fact |Pe| < |€-¢| < & for every £ < k. Hence by
Theorem 4.9 in [4], it follows that J is supersaturated. Next suppose K < A < k.
Note that VP~ |= ¢ > & since Cohen reals are added at each stage of cofinality w.
So we can work in VP and repeat the argument for the case x < c. O

It is now natural to ask the following.
Question 2.14 ([4]). Suppose k is measurable. Is every ccc forcing k-ssp?

In Section [, we’ll show that the answer is negative. We end this section with
the following weaker positive result.

Theorem 2.15. Suppose k is measurable and I is a mormal prime ideal on k.
Let B be a ccc complete boolean algebra. Then VE |= “the ideal generated by T is
wa -supersaturated.”

Proof. It suffices to show that the following holds in VB: For every A C JT, if
|A| < &, then there exists X € [k]™* such that X meets every member of A.
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Suppose 0 < x and IFp {AZ 11 <0} C J+. Choose Y C x of Z-measure one such
that for every ¢ < 8 and a € Y, p; o = [[a € A;]] > 0. Using the inaccessibility of
K, the following claim is easy to check.

Claim 2.16. There exists (B, : @ < k) such that the following hold.
(i) Bo <B and B,| < k.
(ii) B s are increasing and continuous at o when cfa) > V.

(ili) {pip: B <,i<08} CB,.

Let 7., : B — B, be a projection map witnessing B, <B. Choose f : Kk — & such
that for every i < 6 and o < k, we have a < f(a) and p; o € By (o). Choose Y1 CY
of measure one and o, < & such that for every i < 0, mo(pi,o) = Pi,» € By, does
not depend on « € Y7 and range(f [ o) C « for every a € Y7. Note that p; . = 1p
since IFp Az € JT. Let X CY \ a be such that otp(X) = w; and for every a < 3
in X, f(a) < f(B).

Claim 2.17. For every i < 0, {p; o : o € X} is predense in B.

Proof. Let sup(X) = ~,. Then cf(v,) = X; and hence B,, = [J{B, : v € X}. Fix
i < 0. Given p € B, choose v € X such that 7., (p) € B,. Now since

B =B, +B, /B, +B/B,,
we can decompose p = (7, (p),1,z) and p; , = (1,y,1). Hence p, p; , are com-
patible. (Il

It follows that J is we-supersaturated. O

3. CONSISTENTLY, THERE ARE w1-SATURATED IDEALS ON ¢ AND ALL OF THEM
ARE SUPERSATURATED

The aim of this section is to show that it is consistent that every w-saturated
o-ideal is supersaturated.

Theorem 3.1. It is consistent that there is a normal supersaturated ideal on ¢ and
every wi -saturated o-ideal is supersaturated.

Lemma 3.2. Suppose that every o-ideal T satisfying (i)-(iv) below is supersatu-
rated.

(i) Z is a uniform ideal on A,

(ii) p< A,

(iii) for every X € I, add(Z | X) = p and
(iv) Z is wy-saturated.

Then every wi-saturated o-ideal is supersaturated.

Proof. Suppose J is an wi-saturated o-ideal on X. Note that for every A € JT,
there exists B C A such that (x)p holds where

(%) g says the following: B € J, [B]<IPI C J and for every C C B, if C € J+,
then add(7 | C) = add(J | B).

Since J is wi-saturated, we can find a countable partition F of X such that for
each B € F, (x)p holds. Now by assumption, each 7 | B is supersaturated. Hence
J is also supersaturated. O
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Lemma 3.3. Suppose P is a ccc forcing, k > ¢ and VF |= J is a k-complete w; -
saturated uniform ideal on \. Let T = {X C k:1plk X € J}. Then there is a
countable partition F of X such that for every A€ F, T A={Y CA:YNAeT}
is a k-complete prime ideal on A.

Proof. 1t is clear that Z is a s-complete uniform ideal on A. Suppose F C I is
an uncountable family of pairwise disjoint sets. For each A € F, choose py € P
such that py IF A ¢ J. Since P is ccc, some p € P forces uncountably many
pa’s into the P-generic filter. But this contradicts the fact that J is wi-saturated
in VP. So T is wj-saturated. Since T is s-complete and x > ¢, Z is nowhere
atomless. Hence there is a countable partition F of A such that for every A € F,
I1A={Y CA:YNAE€T}is a k-complete prime ideal on A. O

Lemma 3.4. Suppose k is an inaccessible cardinal and U is a k-complete uniform
ultrafilter on \. Let P = Cohen,,. Let J be the ideal generated by the dual ideal of
U in VE. Then for each A C J7+, if |A| < K, then there exists a countable set that
meets every member of A.

Proof. We identify conditions p € P as members of the Baire algebra on 2" which is
the o-algebra generated by clopen subsets of 2%. Note that for every Baire p C 2~
there is a countable S C k such that for every z,y € 2" satisfying x [ S =y [ .5,
we have z € p iff y € p. We call such an S, a support of p. The ordering on Cohen,
is defined by p < ¢ iff p \ ¢ is meager in 2%. Recall that if p C 2% is Baire and
S € [k]M0 is a support of p then there is a countable family P of clopen subsets of
2% each supported in S such that the symmetric difference of p and |J P is meager.
So p is completely determined by the family P.

It is clear that J is a k-complete uniform ideal on A. Suppose # < k and
<Al ;4 < ) is a sequence of J-positive sets in V. WLOG, assume that the trivial
condition forces this. For i < 6 and a < A, let p;o = [[@ € Aj]lp. Note that
for each i < 0, and Z € U, {pin : @ € Z} is predense in P since otherwise some
condition will force Al € J. Since U is k-complete, we can choose X € U such that
for every i < § and « € X, p; o > Op. Let S; o € [k]° be a support of p; . Since
K is inaccessible, we can choose Y C X such that Y € U/ and for each ¢ < 6, the
following hold.

(a) For every o, B € Y, (Sia, 2%, pi0) = (Sip,2%%,p; 5). Put otp(S;q) =
vi. Let hi o @ v; = Si o be the order isomorphism and define H;  : 27 —
2% by H; o(z) =z 0 h;é Choose p; C 27 such that H; o[pi] = pi.a-

(b) For each v < «;, either [{hia(y) : @ € Y}| = 1 or for every Z € U,
{hia(v)ia€eZnY} >k Put Iy ={y <7 : [{hia(y) :a € Y} =1}
and hi,a[ri] = Rl

Define

Bio={x€ ofti {y 1 (Sia \Ri) 1y €pia ANy | R; = x} is meager}.
Then B; o = B; does not depend on o € Y and B; is meager in 27 gince other-

wise {p; o : @ € Y} will not be predense in P.

Using (b), choose B € [Y]¥ such that for every i < § and a # 3 in B, S; o N
Si.p = R;. It follows now that for every i < 0, {p; o : @ € B} is predense in P.

Hence I (Vi < 0)(B N A; # 0). 0
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Proof of Theorem Let V | “c = w; and k is the least measurable
cardinal”. Let P = Cohen,. We already know that there is a normal supersaturated
ideal on k = ¢ in VF. Let us check that, V¥ = “Every w;-saturated o-ideal is
supersaturated”. By Lemma [3.2] it suffices to consider ideals J that satisfy the
following for some wy < u < A.

(i) J is a uniform ideal on A,
(ii) for every X € J+, add(J | X) = p and
(ii) J is wy-saturated.

Since V¥ |= ¢ = K, we can assume that u < k. Otherwise there is a count-
able partition £ of A into J-positive sets such that for each X € £, J | X is a
p-complete prime ideal and it easily follows that J is supersaturated.

Towards a contradiction, suppose 1 < k. Working in V¥, define an ideal K on p
as follows. Since add(J) = u, we can choose a family {4; : i < u} C J of pairwise
disjoint sets such that (J;, A; € J*. Define

IC:{I‘Q,U:U{AZ':Z'GF}GJ}

It is easy to see that K is a p-additive wj-saturated ideal on p. For simplicity,
assume that 1p I+ Kis a p-additive wy-saturated ideal on u. Coming back to V,
define K’ = {X C pu: 1p Ik X € K}. Tt is clear that V |= K/ is a p-additive ideal on
p. We claim that V' = K’ is w-saturated. Suppose not and fix ((Ag,pe) : € < wi)
such that A¢’s are pairwise disjoint subsets of p and for every & < wr, pe IF A¢ ¢ K.
Since P is ccc, we can find some p, € P that forces uncountable many p¢’s into the
generic Gp. But this means that p, IF K is not wi-saturated which is impossible. So
V E K’ is wy-saturated. So p is weakly inaccessible in V. Since V = pu > wy =,
it follows that p must be measurable in V. But « is the least measurable cardinal
in V. Hence p > k: Contradiction.

So we must have = k. Let Z={Y CA:1p |k X € J}. By Lemma[3.3] there
is a countable partition F of A such that for each X € F, T | X is a k-complete
prime ideal on . For each X € F, let Zx be the ideal generated by Z | X in V.
By Lemma for every A C I;, if |A| < k, then there is a countable set that
meets every member of A. Since Z4 C J | A and add(J | A) = k, it follows that
J | A is supersaturated for each A € F. Since F is a countable partition of A, it
follows that J is also supersaturated. ([

4. KILLING SUPERSATURATED IDEALS

Definition 4.1. Suppose 6 < w; is indecomposable and k is an infinite cardinal.
Let Qf consist of all countable partial maps from k to 2 such that

(1) otp(dom(p)) < & and

(2) {€ € dom(p) : p(§) =1} is finite.
For p,q € Qf definep < q iff ¢ C p. Let P, be the finite support product of
{Q5 : 6 <wr,d indecomposable}.

Lemma 4.2. Let Py, be as in Definition [{.1]
(1) Py is ccc.
(2) If kK > w1, then Py is not o-finite-cc.
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Proof. (1) Towards a contradiction, suppose A = {p; : i < wy} is an uncountable
antichain in P,. Put D; = dom(p;). By passing to an uncountable subset of A, we
can assume that D;’s form a A-system with root D. For each 6 € D and i < wy, put
sis = {v :pi(0)(v) =1} and X; 5 = {7 : p;(0)(v) = 0}. Note that otp(X; ) < 0.
Choose B € [A]“* such that for each 6 € D, (s;5 : ¢ € B) is a A-system with root
ss and for every i < j in B, s;5 N X; 5 = 0.

Choose j € B and 6 € D such that letting C = {i € BN j : p;(d) Lo, p;(6)},
every transversal of {s; 5 \ ss : 4 € C} has order type > 6. Now observe that X; s
has to meet s; 5 \ s5 for every i € C. Hence otp(Xjs) > d: Contradiction.

(2) It is enough to show that Q = Q5 is not o-finite-cc. Towards a contradiction,
suppose Q = | |, ., W, where no W), has an infinite antichain. Choose (A4, : n < w)
as follows.

(a) Ao € Wy is a maximal antichain of conditions p such that max(dom(p)) =
7vp exists and p(7y,) = 1. Define vo = max ({7, : p € Ao}).

(b) Ap41 € Wyq1 is a maximal antichain of conditions p € W, 41 such that
max(dom(p)) = 7, exists, 7, > v, and p(y,) = 1. If A1 # 0, define
Ynt+1 = max({7p : p € Apt1}). Otherwise, vp41 = Vn.

Put A = U, ., An and v = sup({y, : n» < w}). Fix 7, € (y,w1). Let p, be
defined by dom(p,) = {7, : p € A} U {~} and for every £ € dom(p,), p(§) = 1 iff
¢ = 7. Note that otp(dom(p)) < w+ 1 < w? and hence p, € Q. Choose n < w
such that p, € W,,. But now A, U{p,} C W, is an antichain which contradicts the
maximality of A,,. O

Theorem 4.3. Suppose w1 < k < A, T is an wy-saturated uniform ideal on X and
add(Z) = k. Let P, be as in Definition . Let J be the ideal generated by T
in VE<. Then there evists A C J+ such that |A| = wy and there is no countable
set that meets every member of A. Hence VEr |= J is an wi-saturated r-complete
uniform ideal on \ which is not supersaturated.

Proof. As P, is ccc, it is easy to see that in VFr, 7 is an w;-saturated x-complete
uniform ideal on A. So it suffices to show that in V=, there exists A C J+ such
that |A] = w; and there is no countable set that meets every member of A.

Since add(Z) = &, we can fix Y € Z% and a partition Y = | |, _, W, such that
for each T' € [k]<*, U,er Wa € Z. Let G be Py-generic over V. Let G5 = {p(9) :

p € G}. So Gs is Qs-generic over V. Define A5 € VF» NP()) by
yeds <= Fpe@)(p6)(a)=1AyeW,)

Suppose Y € T and p € P, with § € dom(p). Choose o < k such that W, \' Y # 0
and « ¢ dom(p(d)). Let ¢ < p be such that ¢(d)(a) = 1. Then g lkp, A5 \'Y # 0.
Hence IFp, As € JT.

Towards a contradiction suppose that in VF=, there is a countable X C A that
meets each 1215. Since P satisfies ccc, we can assume that X € V. Fix p € P, such
that p IFp (VO)(X NAs #0). Put W ={a <rk:WanNX #0}. SoW C & is
countable. Choose ¢ € w; \ dom(p) indecomposable such that § > otp(W). Define
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q € P, by dom(q) = dom(p) U {6}, ¢ | dom(p) = p and ¢(d) € Qs is constantly
zero on W. Then g < p and ¢ IFp, X N As = (: Contradiction. It follows that
A ={As5: 6 < wi,d indecomposable} is as required. O

Definition 4.4. Let ((S;,R;) : i < k™, j < k) be the finite support iteration defined
by

(a) Sp is the trivial forcing.

(b) For eachi < rt, VSi ER; =P,.

The next theorem shows how to kill all atomless supersaturated ideals.

Theorem 4.5. Suppose V |= “c = w1 and k is the least measurable cardinal with
a witnessing normal prime ideal T”. Put S = S,.+. Then the following hold in V.
(a) ¢ = k" and the ideal generated by I is a normal wi-saturated ideal on k.
(b) Whenever J is a supersaturated ideal on a set X, there is a countable
partition F of X such that for each A € F, J | A is a prime ideal. In
particular, there is no supersaturated ideal on any cardinal < c¢.

Fact 4.6. Suppose Ty, I are wy-saturated o-ideals on X and Iy C Io. Then there
s a partition X = AU B such that A€ Iy and Iy | B=1; | B.

Proof. Take A to be the union of a maximal family of pairwise disjoint sets in
L\ L. O

The following lemma will be used in the proofs of Theorems and [4.8(d).
Recall that an ideal J is nowhere prime iff every [J-positive set can be partitioned
into two J-positive subsets.

Lemma 4.7. Suppose J is a nowhere prime supersaturated ideal on X and p =
add(J). Then p < ¢ and there exists a p-additive supersaturated ideal on p.

Proof. Towards a contradiction, suppose p > ¢. Construct a tree (4, : 0 € 2<%1)
of subsets of X as follows.
(i) Ag = X.
(i) If A, € JT, then {440, Ay1} is a partition of A, into two J-positive sets.
This is possible since J is nowhere prime.

(111) If A,T € j, then AO‘O = Aal = AU.

(iv) If & < wy is limit and o € 2%, then A, = {451 : 5 < a}.

Put F = {A, : 0 € 2<¥t and A, € J}. We claim that X = [JF. Suppose not
and fix y € X \ |JF. Now observe that {4y, : 0 € 2SNk <2Ay € (As \ Aok)}
is an uncountable family of pairwise disjoint J-positive sets which contradicts the
fact that J is wp-saturated. So X = JF. But since |F| < |2<“| = ¢, this contra-
dicts the fact that add(J7) = u > ¢. Hence p < c.

Since add(J) = u, there are Y € J* and a partition Y = | |
for every T' € [pu]<*, Uper Wa € J. Define

K={rcCu:|JW.eg}

acl’

W, such that

a<p

Then K is a p-additive wi-saturated ideal on u. So u is weakly inaccessible.
We claim that K must also be supersaturated. To see this, suppose A C KT and
|A] < p. For each A € A, define Y4 = | |,cpWa. Then {Y4 : A€ A} C JT.



SUPERSATURATED IDEALS 11

Since J is supersaturated, we can choose a countable T" C Y that meets Y, for
every A € A Let B={a < p:TNW, # 0}. Then B C p is countable (as
W, 's are pairwise disjoint) and it meets every A € A. Hence K is a p-additive
supersaturated ideal on . [

Proof of Theorem Clause (a) is easy to check. Let us prove Clause (b).
Suppose J is a supersaturated ideal on X. Put g = add(J). We claim that it
suffices to show that VS = 1 > ¢. First note that, by Lemma 4.7 this would imply
that for every Y € J ™, there exists J-positive Z C Y such that J | Z is a prime
ideal. Hence by wj-saturation of J, we can find a countable partition of X into
J-positive sets such that the restriction of 7 to each one of them is a prime ideal.

So towards a contradiction, assume Vs Eu<ece FixY eJ + such that for
every J-positive Z C Y, add(J [ Z) = p. Since p < ¢, it follows that J [ Y
is a nowhere prime supersaturated ideal. Using Lemma [£.7] again, we can get a
p-additive supersaturated ideal I on u. Let us assume that the trivial condition in
S forces all of this about K.

Since VS |= “u < ¢ = k1 and p is weakly inaccessible”, we must have u < k. We
consider two cases.

Case p < k: InV, define 7/ = {X Cp:1gl- X € K}. Since Sis cee, V =T is
a p-additive wi-saturated ideal on u. As V = p > wy = ¢, p is measurable in V.
Since k is the least measurable cardinal in V', p > k: Contradiction.

Casep=r: InV defineZ’ ={X Ck:1slF X € K}. Since V E Kk > ¢ = wy, we
must have V' |= 7' is a x-additive prime ideal on k. Let K’ be the ideal generated
by I’ in V5. Then VS = K’ C K are w-saturated s-additive ideals on . Using
Fact [4.6] fix B € K+ such that K' | B=K | B.

Choose v < kT such that B € V5. Let K” be the ideal generated by Z’ in
VSv. By Theorem it follows that in VS+1, the ideal generated by K” | B
is not supersaturated. Now observe that £ [ B = K’ | B is the ideal generated
by K" | B in V5. It follows that K is not a supersaturated ideal: Contradiction. [

Using some results about separating families and supersaturated ideals from
[2, [], we can also get the following.

Theorem 4.8. Suppose k is a measurable cardinal with a witnessing normal prime
ideal . Let P, be the forcing in Definition . Then the following hold in V.

(a) ¢ =k and the ideal generated by T is a normal wi-saturated ideal on k.

(b) There is a family F C P(k) such that |F| = wy and for every countable
X Ck and a € k\ X, there exists S € F such that « € S and SN X = 0.

(¢) The order dimension of Turing degrees is wy.

(d) There are no nowhere prime supersaturated ideals.

Proof. (a) Since QF adds x Cohen reals, ¢ > k. The other inequality follows by
a name counting argument using the facts that P, is a ccc forcing, |P;| = k and
k“ = k. That the ideal generated by Z is a normal w;-saturated ideal on k follows
from the fact that P, is ccc.
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(b) For each indecomposable § < wy, define
Ss={a<k:(IpeGp,)(d €dom(p) Ap(d)(e) =1)}

Let F = {Ss : 6 < wy is indecomposable}. Suppose X C & is countable and
a € k\ X. We'll find an S5 € F such that a € S5 and X NS5 = . Since P, is ccc,
we can find a countable Y € V such that X CY C k\ {a}. Now an easy density
argument shows that the set

Doy = {p € Py : (36 € dom(p))[p(6)(e) = 1 A (VB € Y)(p(6)(8) = 0)]}

is dense in IP,.. So we can choose p € D,y NGp,. Let 6 witness that p € Dy y.
Then it is clear that a € S5 and X N S; CY NS5 = 0.

(c) This follows from Theorem 3.9 in [2] and part (b) above.

(d) Suppose not. Then by Lemma we can find some p < ¢ = k and a
p-additive supersaturated ideal on p. Let F be as in part (b) above. Define
E={SNu:8 € F}. Then €| =w; and for every countable X C p and o € p\ X,
there exists S € & such that « € S and SN X = ). Now applying Lemma 4.2 in [4]
gives us a contradiction. ([l

We conclude with the following questions.

(1) Suppose Z,J are normal ideals on k, Z is supersaturated and P(k)/Z is
isomorphic to P(x)/J. Must J be supersaturated?

(2) Suppose k is regular uncountable, Z is a k-complete normal ideal on k and
P(k)/Z is a Cohen algebra. Must Z be supersaturated?

(3) Do o-finite/bounded-cc forcings preserve supersaturation? What about
Boolean algebras that admit a strictly positive finitely additive measure?
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