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On efficient parameter estimation of
elementary chirp model

Anjali Mittal, Rhythm Grover, Debasis Kundu, and Amit Mitra

Abstract—Elementary chirp signals can be found in
various fields of science and engineering. We propose
two computationally efficient algorithms based on the
choice of two different initial estimators to estimate the
parameters of the elementary chirp model. It is observed
that the proposed efficient estimators are consistent;
they have the identical asymptotic distribution as that
of the least squares estimators and they are also less
computationally intensive. We also propose sequential
efficient procedures to estimate the parameters of the
multi-component elementary chirp model. The asymp-
totic properties of the sequential efficient estimators
coincide with the least squares estimators. The impor-
tant point about the efficient and sequential efficient
algorithms is that these algorithms produce efficient
frequency rate estimators in a fixed number of iterations.
Another important point is that the under normal error
assumption the theoretical variances of the proposed
estimators achieve the Cramér-Rao lower bounds asymp-
totically. Simulation experiments are performed to see
the performance of the proposed estimators, and it is
observed that they are computationally efficient, take less
time in computation than the other existing methods and
perform well when two frequency rates are close to each
other upto a reasonably low degree of separation. On
an EEG dataset, we demonstrate the performance of the
proposed algorithm.

Index Terms—Elementary chirp, efficient algorithm,
least squares, sequential efficient algorithm, frequency
rate, consistency, asymptotic normality.

I. INTRODUCTION

IN this paper we consider the multi-component
elementary chirp model embedded in noise and it

can be expressed as follows:

y (t) =

p∑
k=1

A0
ke

iβ0
kt

2

+ ϵ (t) ; t = 1, . . . , N. (1)

Here A0
ks are unknown complex-valued non-zero am-

plitude parameters, β0
ks are unknown frequency rates

which are distinct and strictly lie between 0 and 2π,
and ϵ (t) is an additive error present in the observed
signal y (t), satisfying assumption 1. The number of
components, i.e., p is assumed to be known. Based on
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the observed data of size N , the problem is to estimate
the unknown parameters A0

ks and β0
ks.

The elementary chirp signal can be found in many
areas of statistical signal processing. This model has
applications in radar [9], sonar [1], micro-Doppler
signal [3], acoustic signal [2], see also Mboup and
Adali [14], Casazza and Fickus [7], Mittal et al. [15]
and the references cited therein. Estimating the chirp
rate, i.e., the frequency rate, is crucial here. Some
estimation techniques focus primarily on estimating the
instantaneous frequency rate (IFR), which is twice the
chirp rate. To name a few, the cubic phase function
(CPF) [18] method and other methods inspired by
CPF, for example, integrated CPF (ICPF) [20] and
product CPF (PCPF) [22] are among them. Estima-
tion methods for chirp signals based on fractional
auto-correlation and fractional Fourier transform [17],
fractional Fourier transform and the Wigner distribu-
tion [13], time-frequency rate distribution [19], and
simplified linear canonical transform [12] have been
discussed in the literature. In the literature, there is also
a discussion of the Wigner-Hough transform-based ap-
proach for chirp signal detection [21]. Recently, least
squares estimators (LSEs) [15] have been developed
to estimate the frequency rates and the amplitude
parameters of the elementary chirp model. It has been
derived that the LSEs are consistent and follow normal
distribution asymptotically.

The LSEs provide optimal rates of convergence for
the amplitude parameters and the frequency rates, that
are Op

(
N− 1

2

)
and Op

(
N− 5

2

)
, respectively. Here,

aN = Op

(
N−δ

)
means that NδaN is bounded in

probability. Finding the LSEs is a computationally
challenging problem due to the extremely non-linear
nature of the function that needs to be optimized in
terms of their parameters. We use Nelder-Mead method
to obtain these estimators. However, obtaining them is
a computationally intensive problem.

The objective of this paper is to obtain efficient esti-
mators of the amplitude parameters and frequency rates
that have the same optimal rates of convergence as the
LSEs. We put forward two efficient algorithms based
on choosing two different initial estimators of fre-
quency rates to find efficient frequency rate estimates.
It is observed that if we start with the initial estimate of
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β0 with convergence rate Op

(
N−2

)
, then the proposed

iterative procedure produces efficient frequency rate
estimator in three steps, and if we start with the initial
estimate of β0 with convergence rate Op

(
N− 3

2

)
,

then the proposed iterative procedure produces efficient
frequency rate estimator in five steps. In these efficient
algorithms, we do not use the whole sample size at
every step. At the initial steps, we use some fractions
of the whole sample size, and at the final step, we use
the whole sample size. Also, our iterative processes
stop after a fixed number of steps. Further theoretical
variances of the proposed estimators achieve their
corresponding Cramér-Rao lower bound (CRLB) when
errors follow normal distribution.

We do some numerical studies to assess the per-
formance of the proposed finite step iterative algo-
rithms for varying sample size and error variance. It
is observed that the efficient algorithms work quite
satisfactorily. The mean squared errors (MSEs) of
the efficient estimators match well with the MSEs
of the LSEs and the MSEs of all these methods
are close to their theoretical asymptotic variance. The
proposed efficient algorithms take significantly less
time in computing the frequency rate estimates than
the LSEs. Similar observations are recorded for the
sequential efficient estimators in the case of multi-
component model. We also observe that the sequential
efficient estimators perform well when two frequency
rates are close to each other to a certain degree of
separation. Thus, for practical implementation, we can
go with the sequential efficient estimators, which are
computationally efficient.

The rest of the paper is structured as follows.
We propose efficient algorithm for the one-component
elementary chirp model and discuss the statistical
properties of the efficient estimators in Section II.
In Section III, we study statistical properties of the
sequential efficient estimators for the multi-component
elementary chirp model (1). We present simulation
results in Section IV. Real data analysis is presented
in Section V. In Section VI we conclude the paper.
Proofs of all the results are given in the appendices.

II. ONE-COMPONENT MODEL

Consider the one-component elementary chirp
model, mathematically expressed as follows:

y (t) = A0eiβ
0t2 + ϵ (t) ; t = 1, . . . , N. (2)

The aim is to estimate the unknown model parameters,
i.e. the amplitude parameter and the frequency rate
parameter, under the assumption on the error random
variables ϵ (t)s stated below.

Assumption 1: ϵ (t)s are i.i.d. complex-valued ran-
dom variables with mean 0 and variance σ2

2 for both
real and imaginary parts. Real and imaginary parts of

ϵ (t) are assumed to be independent. Also, fourth order
moment of ϵ (t) exists.
The following is the assumption on the unknown
parameters:

Assumption 2: Let θ0 be an interior point of the
parameter space Θ = [−S, S]× [−S, S]× [0, 2π], and∣∣A0
∣∣ > 0.

We will use the following notations in this paper. AR

and AI denote the real and the imaginary part of A; re-
spectively, and ϵR (t) and ϵI (t) denote the real and the
imaginary part of ϵ (t); respectively. θ = (AR, AI , β),
the parameter vector, θ0 =

(
A0

R, A
0
I , β

0
)
, the true

parameter vector, θ̂ =
(
ÂR, ÂI , β̂

)
, the LSE of θ0,

and θ̆ =
(
ĂR, ĂI , β̆

)
, the efficient estimators of θ0.

LSEs are the most natural estimators to estimate
the unknown parameters of the non-linear model. The
LSEs of the parameters of the model (2) are de-
termined by minimizing the following error sum of
squares, say;

R (A, β) =

N∑
t=1

∣∣∣y (t)−Aeiβt
2
∣∣∣2 (3)

with respect to A and β simultaneously. Here, we do
one-dimensional non-linear optimization to obtain the
LSEs. For details, please see [15].

It has been proved that the LSEs of θ0 are strongly
consistent and follow normal distribution asymptoti-
cally [15] as follows:

(θ̂−θ0)D−1 d−→ N3

(
0, σ2Σ−1

)
as N → ∞, (4)

where D = diag
(

1√
N
, 1√

N
, 1
N2

√
N

)
and

Σ−1 =


1
2 +

5A02

I

8|A0|2
−5A0

RA0
I

8|A0|2
15A0

I

8|A0|2

−5A0
RA0

I

8|A0|2
1
2 +

5A02

R

8|A0|2
−15A0

R

8|A0|2
15A0

I

8|A0|2
−15A0

R

8|A0|2
45

8|A0|2

 . (5)

In the next subsection, we propose two finite step
iterative procedures based on the choice of initial
estimators similar to the procedure of Bai et al. [4].
These methods give frequency rate estimators that
converge at the same rate as the LSEs and identical
in distribution as the LSEs.

A. Efficient Algorithm

We now introduce an iterative procedure that pro-
duces a frequency rate estimator with the same rate
of convergence and asymptotic variance as the LSEs.
First, we provide the algorithm, and then the theoretical
justification is provided in Theorem 1.

If β̃ is a consistent estimator of β0, such that β̃ −
β0 = Op

(
N−2−δ

)
, for some δ > 0, then improved

estimator of β0 can be obtained as follows:
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β̆ = β̃ +
11.25

N4
Im

(
P β̃
N

Qβ̃
N

)
(6)

where,

P β̃
N =

N∑
t=1

y (t)

(
t2 − N2

3

)
e−iβ̃t2 (7)

and

Qβ̃
N =

N∑
t=1

y (t) e−iβ̃t2 . (8)

Here, Im (. ) denotes the imaginary part of a complex
number. We start with a consistent estimator β̃ as the
initial estimator and then improve it using (6). The
following result motivates the proposed algorithms.

Theorem 1: If β̃ − β0 = Op

(
N−2−δ

)
, where δ ∈(

0,
1

2

]
, then (a) β̆ − β0 = Op

(
N−2−2δ

)
if δ ≤ 1

4
.

(b) N
5
2

(
β̆ − β0

)
d−→ N

(
0, 45σ2

8|A0|2

)
if δ >

1

4
.

Proof: See Appendix A.
Now, we propose an efficient algorithm for two

cases. First, when we use the estimator obtained using
the dechirping method as the initial estimator. Second,
when we use a periodogram-type estimator as the
initial estimator.

1) Method 1: In this subsection, we propose an
efficient algorithm based on the dechirping method.
First, we present the approach to compute the estimator
using dechirping method [6]. Here we obtain data from
y (t) y (t+ 1) which can be written in the following
expression:

z (t) = y (t) y (t+ 1) = B0e−i2β0t + e (t) ;

t = 1, . . . , N − 1;
(9)

where, B0 = |A0|2e−iβ0

and e (t) =
A0eiβ

0t2ϵ (t+ 1)+A0e−iβ0(t+1)2ϵ (t)+ ϵ (t) ϵ (t+ 1).
Here, H represents conjugate of a complex number
H .

From equation (9), it is clear that this is a sinusoidal
model with the frequency parameter −2β0 and ampli-
tude parameter B0. Then the LSEs of B0 and β0, say,
B̃ and β̃, respectively, are determined by minimizing
the following error sum of squares:

R (B, β) =

N−1∑
t=1

∣∣z (t)−Be−i2βt
∣∣2 , (10)

with respect to B and β, simultaneously. Note that
we have to minimize (10) when β0 ∈ (0, π), because
(10) is a error sum of squares of a sinusoidal model
with frequency −2β0. Thus, we can only use the
dechirping method for elementary chirp model when
β0 ∈ (0, π). However, the range of β0 is (0, 2π) in
general. We denote by BR and BI as the real and the

imaginary parts of the B; respectively, and the real and
the imaginary parts of the e (t) as eR (t) and eI (t);
respectively. Also, we denote ṽ =

(
B̃R, B̃I , β̃

)
as the

LSE of v0 =
(
B0

R, B
0
I , β

0
)
.

It can be shown that the dechirping method pro-
vides an estimator of β0 with the convergence rate
Op

(
N− 3

2

)
, i.e., β̃ − β0 = Op

(
N− 3

2

)
.

Now, we propose the finite step algorithm when ini-
tial estimator is the estimator obtained using dechirping
method. We start with the LSE of β0 obtained using
dechirping method and improve it at each step using
the following finite step iterative algorithm. The mth

step estimator β̆(m) is calculated from the (m− 1)
th

step estimator β̆(m−1), by the formula

β̆(m) = β̆(m−1) +
11.25

N4
m

Im

 P β̃
Nm

Qβ̃
Nm

 , (11)

where P β̃
Nm

and Qβ̃
Nm

can be determined from P β̃
N

and Qβ̃
N by replacing N and β̃ with Nm and β̆(m−1),

respectively. Here, Nm is the sample size at the mth

iterative step. In the following steps, ⌈x⌉ denotes the
least integer function, i.e., the least integer greater than
or equal to x. We use formula given in (11) repeatedly
by choosing Nm at every step as follows:

Step 1 Choose N1 = ⌈N 2
3 ⌉ for m = 1 and

β̆(0) = β̃. Note that β̃ − β0 = Op

(
N− 3

2

)
=

Op

(
N

−2− 1
4

1

)
. Then applying part (a) of theo-

rem 1, we have;

β̆(1) − β0 = Op

(
N

−2− 1
2

1

)
= Op

(
N− 5

3

)
.

Step 2 Choose N2 = ⌈N 3
4 ⌉ for m = 2 and calculate

β̆(2) from β̆(1) using (11). Since β̆(1) − β0 =

Op

(
N− 5

3

)
= Op

(
N

−2− 2
9

2

)
, thus using part

(a) of theorem 1, we have;

β̆(2) − β0 = Op

(
N

−2− 4
9

2

)
= Op

(
N− 11

6

)
.

Step 3 Choose N3 = ⌈N 22
27 ⌉ for m = 3 and calculate

β̆(3) from β̆(2) using (11). Since β̆(2) − β0 =

Op

(
N− 11

6

)
= Op

(
N

−2− 1
4

3

)
, therefore using

part (a) of theorem 1, we have;

β̆(3) − β0 = Op

(
N

−2− 1
2

3

)
= Op

(
N− 55

27

)
.

Step 4 Choose N4 = ⌈N 220
243 ⌉ for m = 4 and calculate

β̆(4) from β̆(3) using (11). Since β̆(3) − β0 =

Op

(
N− 55

27

)
= Op

(
N

−2− 1
4

4

)
, therefore using

part (a) of theorem 1, we have;

β̆(4) − β0 = Op

(
N

−2− 1
2

4

)
= Op

(
N− 550

243

)
.

Step 5 Choose N5 = N for m = 5 and calculate
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β̆(5) from β̆(4) using (11). Since β̆(4) − β0 =

Op

(
N− 550

243

)
= Op

(
N

−2− 64
243

5

)
and 64

243 > 1
4 ,

therefore using part (b) of theorem 1, we have;

N
5
2

(
β̆ − β0

)
d−→ N

(
0,

45σ2

8 |A0|2

)
.

2) Method 2: In this subsection, we propose an
efficient algorithm based on the periodogram-type es-
timator. First, we see how to obtain the periodogram-
type estimator. The periodogram-type function for the
elementary chirp model [15] is expressed as follows:

I (β) =
1

N

∣∣∣∣∣
N∑
t=1

y (t) e−iβt2

∣∣∣∣∣
2

. (12)

The periodogram-type estimator is obtained by max-
imising the periodogram-type function (12) over the

grid of the type
2πk

N2
, k = 1, . . . , N2 − 1 which has

the convergence rate Op

(
N−2

)
.

Now, we propose the finite step algorithm when
initial estimator is the periodogram-type estimator. We
start with the periodoram-type estimator of β0 and
improve it at each step using the following finite step
iterative algorithm. We apply formula given in (11)
repeatedly by choosing Nm at every step as follows:

Step 1 Choose N1 = ⌈N 8
9 ⌉ for m = 1 and β̆(0) =

β̃, the periodogram-type estimator. Note that
β̃ − β0 = Op

(
N−2

)
= Op

(
N

−2− 1
4

1

)
. Then

applying part (a) of theorem 1, we have;

β̆(1) − β0 = Op

(
N

−2− 1
2

1

)
= Op

(
N− 20

9

)
.

Step 2 Choose N2 = ⌈N 80
81 ⌉ for m = 2 and calculate

β̆(2) from β̆(1) using (11). Since β̆(1) − β0 =

Op

(
N− 20

9

)
= Op

(
N

−2− 1
4

2

)
, therefore apply-

ing part (a) of theorem 1, we have;

β̆(2) − β0 = Op

(
N

−2− 1
2

2

)
= Op

(
N− 200

81

)
.

Step 3 Choose N3 = N for m = 3 and calculate
β̆(3) from β̆(2) using (11). Since β̆(2) − β0 =

Op

(
N− 200

81

)
= Op

(
N

−2− 38
81

3

)
and 38

81 > 1
4 ,

therefore, using part (b) of theorem 1, we have:

N
5
2

(
β̆ − β0

)
d−→ N

(
0,

45σ2

8 |A0|2

)
.

Therefore, if we have an estimator of order
Op

(
N−2−δ

)
at any step, then using the above dis-

cussed algorithms, one can obtain an estimator with
improved rate of convergence Op

(
N−2−2δ

)
if δ ≤

1
4 , otherwise it provides an efficient estimator. Here,
initial estimators are obtained using the dechirping
method and the periodogram-type estimator, which
are of orders Op

(
N− 3

2

)
and Op

(
N−2

)
, respectively.

Since, an estimator of order Op

(
N−2−δ

)
is required

to implement these algorithms, we choose a fraction
of the full sample size at the first step of these
algorithms, and then we get the initial estimator of
order Op

(
N−2−δ

)
. Gradually, we increase the sample

size in the subsequent steps of these algorithms to get
an efficient estimator of the frequency rate.

The key advantage of the proposed efficient algo-
rithms is that they provide an efficient estimator of
frequency rate with optimal rate of convergence in a
fixed number of iterations. Once β̆ is obtained, the
amplitude parameters can be easily estimated using
simple linear regression. Explicitly, we can write Ă
as Ă = ĂR + iĂI , where,

ĂR =
1

N

N∑
t=1

(
yR (t) cos

(
β̆t2
)
+ yI (t) sin

(
β̆t2
))

,

(13)

ĂI =
1

N

N∑
t=1

(
yI (t) cos

(
β̆t2
)
− yR (t) sin

(
β̆t2
))

.

(14)
Here, yR (t) and yI (t) are the real and imaginary parts
of the data y (t), (2), and expressed as follows:

yR (t) = A0
R cos

(
β0t2

)
−A0

I sin
(
β0t2

)
+ϵR (t) (15)

yI (t) = A0
R sin

(
β0t2

)
+A0

I cos
(
β0t2

)
+ ϵI (t) (16)

The following theorem provides the asymptotic distri-
bution of the efficient amplitude estimator.

Theorem 2: If assumptions 1 and 2 hold true,
asymptotic distributions of ĂR and ĂI are given as
follows:
N

1
2

(
ĂR −A0

R

)
d−→ N

(
0,

(
1
2 +

5A02

I

8|A0|2

)
σ2

)
;

N
1
2

(
ĂI −A0

I

)
d−→ N

(
0,

(
1
2 +

5A02

R

8|A0|2

)
σ2

)
.

Proof: See Appendix A.
Therefore, we have efficient estimators of the un-

known parameters of model (2) that are consistent,
have the optimal rate of convergence, and have the
same asymptotic distribution as that of the LSEs.

Remark: Note that the values of the Nm that we
choose here are not unique. There are several other
combinations of Nms which can be chosen such that
the proposed iterative algorithms converge in five steps
as discussed in subsection II-A1 and in three steps
as discussed in subsection II-A2, respectively. For
example, N1 = ⌈N 67

100 ⌉, N2 = ⌈N 74
100 ⌉, N3 = ⌈N 82

100 ⌉,
N4 = ⌈N 91

100 ⌉ and N5 = N is another set of such
Nms for which the algorithm converges in five steps
and N1 = ⌈N 90

100 ⌉, N2 = ⌈N 96
100 ⌉ and N3 = N is

another set of Nms for which the algorithm converges
in three steps. Therefore, we can choose one of the
sets of the Nms among several such sets. Also, it has
been observed that results are more or less the same
for different sets of Nms.
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III. MULTI-COMPONENT MODEL

In this section, we consider the multi-component
elementary chirp model (1). We propose a sequential
efficient algorithm under the error assumption 1. Let
us denote by µ the parameter vector for the model
(1), µ = (AR1, AI1, β1, . . . , ARp, AIp, βp). Also, µ0

denote the true parameter vector.
The underlying assumptions of the unknown param-

eters are as follows:
Assumption 3: µ0 is an interior point of the param-

eter space Θ(p); Θ = [−S, S]× [−S, S]× [0, 2π] and
the frequency rates β0

ks are distinct for k = 1, · · · , p.
Assumption 4: The amplitude parameters; A0

ks sat-
isfy the following relationship:

2S2 >
∣∣A0

1

∣∣2 >
∣∣A0

2

∣∣2 > · · · >
∣∣A0

p

∣∣2 > 0.

A. Sequential Efficient Algorithm

We now propose an iterative procedure that produces
estimators of frequency rates with the same rate of
convergence and asymptotic variance as the LSEs.
First, we provide the algorithm, and then the theoretical
justification is provided in Theorem 3. If β̃k is a
consistent estimator of β0

k , for k = 1, · · · , p, such
that β̃k − β0

k = Op

(
N−2−δ

)
, for some δ > 0, then

improved estimator of β0
k can be obtained as follows:

β̆k = β̃k +
11.25

N4
Im

(
P β̃k

N

Qβ̃k

N

)
(17)

where,

P β̃k

N =

N∑
t=1

yk (t)

(
t2 − N2

3

)
e−iβ̃kt

2

(18)

and

Qβ̃k

N =

N∑
t=1

yk (t) e
−iβ̃kt

2

. (19)

Here, yk (t) is the data at the kth step of the sequential
algorithm. We start with any consistent estimator β̃k as
the initial estimator and then improve it using (17). The
following result motivates the proposed algorithm:

Theorem 3: If β̃k − β0
k = Op

(
N−2−δ

)
, for k =

1, · · · , p, where δ ∈
(
0,

1

2

]
, then

(a) β̆k − β0
k = Op

(
N−2−2δ

)
if δ ≤ 1

4
.

(b) N
5
2

(
β̆k − β0

k

)
d−→ N

(
0, 45σ2

8|A0
k|2
)

if δ >
1

4
.

Proof: See Appendix B.
Now, we propose a sequential efficient algorithm for

two cases. First, when we use LSEs obtained through
the dechirping method as the initial estimators; second,
when we use periodogram-type estimators as the initial
estimators.

1) Method 1: In this subsection, we propose a
sequential efficient algorithm based on the dechirping
method. In the sequential procedure, components of the
model (1) are estimated in a sequential manner [15].
We estimate the first chirp component as discussed
in subsection II-A1 and then remove its effect from
the original data. Then, we use the adjusted data to
estimate the second chirp component, and continue to
do so until all p-chirp components have been estimated.
The data at the kth step of the sequential algorithm is
given as follows:

yk (t) = yk−1 (t)−Ăk−1e
iβ̆k−1t

2

; t = 1, . . . , N. (20)

To apply this algorithm, we need that β̃k − β0
k =

Op

(
N− 3

2

)
; ∀k = 1, . . . , p, which can be proved.

Remark: For the usual multi-component chirp
model where we also have the frequency term the
dechirping method does not work. Because in that case
we have global maxima that occur far from the true
parameter value due to the cross product term (see [5]
for details).

2) Method 2: In this subsection, we propose a se-
quential efficient algorithm based on the periodogram-
type estimator. In this procedure, we estimate the first
chirp component as discussed in subsection II-A2 and
then remove its effect from the original data. Then,
we estimate the second chirp component using the
adjusted data, and we keep doing this until we have
estimated all the p-chirp components.

Through the following theorem, we provide the
asymptotic distribution of the amplitude estimators at
every step.

Theorem 4: If assumptions 1, 3 and 4 hold true,
asymptotic distributions of ĂRk and ĂIk ∀k =

1, . . . , p, are given as follows: N
1
2

(
ĂRk −A0

Rk

)
d−→

N
(
0,

(
1
2 +

5A02

Ik

8|A0
k|2
)
σ2

)
and

N
1
2

(
ĂIk −A0

Ik

)
d−→ N

(
0,

(
1
2 +

5A02

Rk

8|A0
k|2
)
σ2

)
.

Here, ĂRk and ĂIk denote the real and imaginary parts
of Ăk at kth step and they can be obtained along the
similar lines as ĂR (13) and ĂI (14).

Proof: See Appendix B.
Next, we provide the results for the consistency of

the proposed sequential efficient estimators, when p are
unknown.Therefore, we take the following situations:
(a) when the fitted model’s number of components is
less than or equal to the true number of components,
and (b) when the fitted model’s number of components
is more than the true number of components.

Theorem 5: If assumptions 1, 3 and 4 hold true, θ̆k
is a consistent estimator of θ0

k, i.e.,
θ̆k

p−→ θ0
k as N → ∞, ∀k = 1, · · · , p.

Proof: The result follows from theorems 3 and 4.
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Theorem 6: If assumptions 1, 3 and 4 hold true, the
following is true:

ĂR(p+k)
p−→ 0, ĂI(p+k)

p−→ 0 as N → ∞,
∀k = 1, 2, · · · .

Proof: See Appendix B.
The results indicate that the sequential efficient

estimators are consistent and have the same rate of
convergence and the identical asymptotic distribution
as the LSEs. They can also be computed with less
computational complexity. Thus, we can use sequential
efficient estimators to estimate the unknown param-
eters, which can be obtained in finite number of
iterations.

IV. SIMULATION RESULTS

In this section, we provide results for various nu-
merical studies for different choices of sample size
N , signal-to-noise ratio (SNR) and error variance
σ2, to assess the performance of the proposed effi-
cient algorithms. The SNR is defined as SNR =

10 log10

(∑p
k=1|A0

k|2
σ2

)
. We also compare the perfor-

mance of the proposed algorithms with the existing
methods. We present results for a one-component and
for a multi-component elementary chirp model in the
following subsections.

The bias is almost negligible in the simulations pre-
sented in this paper. That is the reason that the MSEs
are equivalent to the asymptotic theoretical variances.
Hence, we present the MSEs of the proposed efficient
estimators and compare them with their asymptotic
theoretical variances.

A. One-Component Model

Consider the following one-component elementary
chirp model:

y (t) = ei1.5t
2

+ ϵ (t) ; t = 1, . . . , N. (21)

Here, ϵ (t)s are i.i.d. complex-valued normal
random variables that satisfy assumption 1.
We take N = 101, 201, 301, 401, 501, and
σ2 = 0.1, 0.25, 0.5, 0.75, 1. We generate the data
1000 times for each sample size and error variance.
We estimate the frequency rate using efficient
algorithms discussed in subsections II-A1 and II-A2,
LSE [15] and CPF method [18]. We calculate MSEs
of frequency rate estimates for all these methods. The
theoretical asymptotic variance for all these methods
has also been reported to validate the accuracy of
the estimates. We also compute the time involved in
estimating the frequency rate using these methods. In
all the figures, “EFFDCHP” represents MSE of the
efficient estimator obtained using efficient algorithm
discussed in subsection II-A1, “EFFPTE” represents
MSE of the efficient estimator obtained using efficient

algorithm discussed in subsection II-A2, “AVARTH”
represents the theoretical asymptotic variance of
the LSE and “CPFTH” represents the theoretical
asymptotic variance of the estimate obtained through
CPF method.

We also provide the CP function for model (2) as
follows for reference:

CPF (t,Ω) =

(N−1)
2∑

m=0

y (t+m) y (t−m) e−iΩm2

.

(22)
Here, Ω is IFR and its estimator ˆ̂

Ω at time t can be
obtained as

ˆ̂
Ω = argmax

Ω
|CPF (t,Ω)| . (23)

As in [18], we have chosen the time point t = N+1
2 ,

i.e., the centre of the observed data, in the present case.
Once ˆ̂

Ω is obtained, the estimate of frequency rate, ˆ̂
β,

is obtained as ˆ̂
β =

ˆ̂
Ω
2 .

To compute the efficient frequency rate estimate
based on dechirping method discussed in subsection
II-A1, we obtain an initial value for β to com-
pute the initial estimate by minimising the objec-
tive function (10) over the Fourier grid, πk

N−1 , k =
1, 2, . . . , N−2. To compute the efficient frequency rate
estimate discussed in subsection II-A2 and the LSE,
the periodogram-type estimate has been used as the
initial estimate. The initial value in the CPF method
has been obtained by maximising the CPF over the

grid points
πk

N2
, k = 1, . . . , N2 − 1. We have used

the Nelder-Mead optimization method to optimize the
corresponding objective function in all these estimation
methods. Here, the grid search is restricted among
10 number of points around the true value in all the
methods to save computational time. Once we have
estimate of the frequency rate, we can estimate the
amplitude parameters using simple linear regression.

Fig. 1 shows the plot of MSEs of different frequency
rate estimates versus sample size for different error
variances. From this figure, we observe that the MSEs
of the proposed estimators decrease as the sample
size increases, which validates the consistency of the
proposed estimators. Similar behaviour is observed for
the LSE and estimator based on CPF. Furthermore, the
MSEs of the discussed estimators match well with the
corresponding theoretical variances.

Fig. 2 illustrates MSEs and theoretical asymptotic
variances of different frequency rate estimates versus
SNR for varying sample sizes. This figure shows that as
the SNR increases, MSEs decrease for all the methods.
From this figure, it is clear that the SNR threshold is -6
for the efficient estimator obtained using periodogram-
type estimator discussed in subsection II-A2 and LSE
when the sample size is 301. For lower SNR values, the
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AVARTH
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CPFTH

Fig. 1: MSEs and theoretical asymptotic variances of
different estimates of frequency rate of the model (21)
with A0 = 1 and β0 = 1.5 for different error variances
versus sample size.
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CPFTH

Fig. 2: MSEs and theoretical asymptotic variances of
different estimates of frequency rate of the model (21)
with A0 = 1 and β0 = 1.5 for different sample sizes
versus SNR.

MSE of the efficient estimator based on periodogram-
type estimator is closer to the theoretical variance
than those of the LSE. The SNR threshold is 0 for
the efficient estimator based on dechirping method
discussed in subsection II-A1, when the sample size
is 301. This is because, for the lower SNR, the LSE
obtained using dechirping method is not that good
(near to the true value). When the sample size is 301,
the SNR threshold for CPF method is −2 .

The plot of the time in computing the frequency rate
estimates using the different estimation methods versus
sample size is shown in Fig. 3. From this figure, it is
evident that the efficient algorithm based on dechirping
method discussed in subsection II-A1 takes the least
time for estimating the frequency rate as compared

101 201 301 401 501
N

0

25
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125

150

175

ti
m

e
(in

se
co

n
d
s)

2 = 0.1

LSE
EFFPTE
EFFDCHP
CPF

Fig. 3: Computational time in estimating the frequency
rate using different estimation methods for the model
(21) with A0 = 1 and β0 = 1.5 versus sample size.

with the efficient algorithm based on periodogram-type
estimator discussed in subsection II-A2, LSE and the
CPF method. The reason behind this is that in efficient
algorithm based on dechirping method, we have to do
grid search among N grid points, whereas, in other
estimation methods, we have to do grid search among
N2 number of points. The efficient algorithm based
on periodogram-type estimator takes a bit less time
in computing than the LSE. Moreover, the time in
computing the estimates increases as the sample size
increases. The proposed algorithms provide estimators
with the optimal efficiency. Therefore, from Fig. 2
and Fig. 3 , we refer to the efficient algorithm based
on periodogram-type estimator for estimation when
SNR is very low; otherwise, we may use the efficient
algorithm based on dechirping method.

B. Multi-Component Model

Consider the following two-component elementary
chirp model:

y (t) = 2ei2.5t
2

+ ei1.5t
2

+ ϵ (t) ; t = 1, . . . , N. (24)

The simulation study has been done for the above
model (24) for the varying sample sizes, and error
variances same as those used for the simulation study
of the one-component model (21). The error random
variables follow the same distribution as used for
one-component model (21). We estimate frequency
rates using sequential efficient algorithms discussed in
subsections III-A1 and III-A2, sequential LSEs [15]
and PCPF method [22].

The following is the PCP function for the model (1)
for the given L different time points:

PCPF (Ω) =

L∏
l=1

CPF (tl,Ω) . (25)
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Fig. 4: MSEs and theoretical asymptotic variances of
different estimates of frequency rates of the model (24)
with A0

1 = 2, β0
1 = 2.5, A0

2 = 1 and β0
2 = 1.5 for

different error variances versus sample size.
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Fig. 5: MSEs and theoretical asymptotic variances of
different estimates of frequency rates of the model (24)
with A0

1 = 2, β0
1 = 2.5, A0

2 = 1 and β0
2 = 1.5 for

different sample sizes versus SNR.

In this case, we have selected two different time
points, t1 = N+1

2 and t2 = 0.4N as in [22]. To
optimize the associated objective function in each of
these estimating techniques, we employed the Nelder-
Mead simplex algorithm. We employed the grid search
discussed in the previous subsection IV-A for all the
methods to find the initial values.

We report MSEs of the frequency rate estimates
based on 1000 replications. We also report the the-
oretical asymptotic variances of all the methods to
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N
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Fig. 6: Computational time in estimating the frequency
rates using different estimation methods for the model
(24) with A0

1 = 2, β0
1 = 2.5, A0

2 = 1 and β0
2 = 1.5

versus sample size.

compare with their corresponding MSEs. In all the fig-
ures, “PCPFTH” represents the theoretical asymptotic
variance of the estimates obtained through the PCPF
method. The MSEs and the theoretical asymptotic
variances of frequency rate estimates for various error
variances versus sample size are shown in Fig. 4. From
this figure, it is observed that the MSEs decrease as N
increases for all the methods, which shows that the
frequency rate estimates get closer to the true param-
eter values as sample size increases. In most cases,
MSEs of the frequency rate estimates are very close
to the corresponding theoretical variances. Further, the
MSEs of proposed sequential efficient estimators are
at par with the sequential LSEs.

Fig. 5 depicts the plot of the MSEs and the theoret-
ical variances versus the SNR. From here, it is visible
that the SNR threshold is 4 for the sequential efficient
estimators based on periodogram-type estimators dis-
cussed in subsection III-A2 and sequential LSEs when
the sample size is 101. The SNR threshold is 8 for
the efficient estimators based on dechirping method
discussed in subsection III-A1. The SNR threshold
is 8 and 4 for the PCPF method when the sample
size is 101 and 301, respectively. For lower SNR
values, MSEs of the sequential efficient estimators
obtained using periodogram-type estimators are nearer
to their corresponding theoretical variances than those
of the sequential LSEs. We also observe that the MSEs
decrease as the SNR increases.

The computational time to evaluate the estimates
of the frequency rates using the different estimation
methods versus sample size is shown in Fig. 6. Here,
we report the time involved in computing both the
frequency rates of the model (24). From this figure,
it is clear that the sequential efficient algorithm based
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on dechirping method takes the least time in compar-
ison with the sequential efficient algorithm based on
periodogram-type estimators, sequential LSEs and the
PCPF method. The PCPF method takes the maximum
time for computation. The sequential efficient algo-
rithm based on periodogram-type estimators takes a bit
less time in computing than the sequential LSE. The
proposed efficient algorithms provide the estimators
with the optimal rates of convergence and also take
less time in computation. Therefore, the proposed
algorithms are suggested to study the real life data.

C. Case of low degree of separation of frequency rates

In this subsection, we study the performance of
the proposed sequential efficient estimators when two
frequency rates are close to each other in a two-
component elementary chirp model. Here, we consider
the following model:

y (t) = 3eiβ
0
1t

2

+eiβ
0
2t

2

+ϵ (t) ; t = 1, . . . , 300, (26)

where we vary β0
1 by bringing it closer to β0

2 =
1.5 while keeping all other parameters fixed. Here,
ϵ (t)s satisfy assumption 1 and follow complex-
valued normal distribution with σ2 = 0.1. The
SNR value is 20. The values of β0

1 are taken as
1.50001, 1.500055, 1.5001, 1.501 and 1.51. We repli-
cate the experiment 1000 times and calculate the MSEs
and theoretical asymptotic variances of the frequency
rate estimates. Fig. 7 shows the plot of the MSEs versus
the gap between two frequency rates. The gap between
two frequency rates is represented by δ in this figure,
i.e., δ = β0

1 − β0
2 . From this figure we can see that

the MSEs are near to their corresponding theoretical
variances when δ is 10−3 and 10−2. MSEs do not
match well with the theoretical variances when two
frequency rates get further close to each other. We
observe the breakdown point is at δ equal to 10−5

in this particular case. When we increase the sample
size or the SNR value, this breakdown point moves to
a lower value, and vice versa.

V. REAL DATA ANALYSIS

In this section, we present a real data analysis to
demonstrate the applicability of the elementary chirp
model using the proposed method in real world. Here,
we consider an EEG data [23]. The original signal
can be seen in Fig. 8, which has a data size of 256.
We fit an elementary chirp model to this data using
the proposed sequential efficient algorithm III-A2.We
take a maximum of 85 elementary chirp components
to fit the data, and choose that p where the residuals
first satisfy the error assumption of the model. To test
the error assumption of the model, we use the test
for the i.i.d. property of a time series by Dalla et al.
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Fig. 7: MSEs and theoretical asymptotic variances of
different estimates of frequency rates versus the gap
between two frequency rates with A0

1 = 3, A0
2 =

5, β0
2 = 1.5, σ2 = 0.1, SNR = 20 and δ = 10−5, 5.5×

10−5, 10−4, 10−3, 10−2.
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Fig. 8: Plot of the EEG data [23].

[8]. At first, the error assumption is satisfied at the
41st component. We also show the plot of the residual
sum of squares (RSS) and the plot of the absolute
difference of RSS in Figs. 9 and 10, respectively.
These plots show that the RSS does not decrease much
in comparison with the previous step RSS after the
41st component. Thus, we fit the data at the 41st
component. The plot of residuals at the 41st component
can be seen in Fig. 12. We plot the fitted data using 41
elementary chirp components along with the original
data in Fig. 11. The figure shows that the fitting of the
data using the proposed sequential efficient algorithm
III-A2 looks good.

VI. CONCLUSION

In this paper, we propose two efficient algorithms
for estimating the elementary chirp signals. These
algorithms are based on selecting two distinct ini-



10

0 20 40 60 80
p

0

2000

4000

6000

8000

10000

12000

RS
S(

p)

RSS_ele_chirp

Fig. 9: Residuals sum of squares for EEG data using
sequential efficient algorithm III-A2.
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sequential efficient algorithm III-A2.
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Fig. 11: Observed EEG signal and estimated EEG
signal using elementary chirp model.

tial estimators of frequency rates. These estimators
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Fig. 12: Residuals at 41st elementary chirp component.

are periodogram-type estimators and LSEs obtained
through the dechirping method. It has been observed
that the efficient algorithms provide estimators of the
frequency rate with the same rate of convergence as the
LSEs. The proposed algorithms produce efficient fre-
quency rate estimators in a fixed number of iterations.
Also, under the normal error assumption, the proposed
efficient estimators achieve the CRLBs asymptotically.
They are also computationally less intensive and take
less time in computation than the LSEs and other
standard methods. Also, when two frequency rates are
close to each other upto a certain extent, the proposed
sequential efficient estimators can be used for practical
implementation purposes.

There are some open problems that are of interest
for future work. For instance, amplitude is assumed
to be a fixed constant in this paper, but there are
some problems where time-varying amplitude [16] is
considered. It will be interesting to develop an efficient
algorithm for the elementary chirp model in the time-
varying amplitude case. Further, it will be interesting to
develop an efficient algorithm for signals with a more
complicated phase, i.e., a polynomial phase. Djurović
et al. [10] provide a comprehensive discussion on
parameter estimation of signals with a polynomial
phase; also see the references cited therein.
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APPENDIX A

Proof of Theorem 1: Note that,

Qβ̃
N =

N∑
t=1

y (t) e−iβ̃t2 =

N∑
t=1

[
A0eiβ

0t2 + ϵ (t)
]
e−iβ̃t2

=

N∑
t=1

A0ei(β
0−β̃)t2 +

N∑
t=1

ϵ (t) e−iβ̃t2 ,

(27)

P β̃
N =

N∑
t=1

y (t)

(
t2 − N2

3

)
e−iβ̃t2

=

N∑
t=1

A0

(
t2 − N2

3

)
ei(β

0−β̃)t2+

N∑
t=1

ϵ (t)

(
t2 − N2

3

)
e−iβ̃t2 .

(28)

Using Taylor series expansion and lemma 2 of [11],
the 1st term of Qβ̃

N , (27), is written as follows:

N∑
t=1

ei(β
0−β̃)t2 =

N∑
t=1

[
ei(β

0−β0)t2 + i
(
β0 − β̃

)
t2

ei(β
0−β∗)t2

]
=N − iOp

(
N−2−δ

) N∑
t=1

t2ei(β
0−β∗)t2

=N − iOp

(
N−2−δ

) [
Op

(
N3
)
+ iOp

(
N3
)]

=N − iOp

(
N1−δ

)
+Op

(
N1−δ

)
,where, β∗ ∈

(
β0, β̃

)
.

Now, choosing a large L such that 1 − Lδ < 0, then
using Taylor series expansion expand 2nd term of Qβ̃

N ,
(27). Using Lindeberg Feller CLT and lemma 4(b) of
[11], we get:
N∑
t=1

ϵ (t) e−iβ̃t2 =

N∑
t=1

ϵ (t)

[
e−iβ0t2 + e−iβ0t2

L−1∑
l=1(

−i
(
β̃ − β0

)
t2
)l

l!
+

(
−it2

)L
L!

(
β̃ − β0

)L
e−iβ∗t2


= Op

(
N

1
2

)
+

L−1∑
l=1

(−i)
l

l!
Op

(
N−2l−lδ

)
Op

(
N2l+ 1

2

)
+

(−i)
L

L!
Op

(
N−2L−Lδ

)
Op

(
N2L+1

)
= Op

(
N

1
2

)
,where, β∗ ∈

(
β0, β̃

)
.

Thus Qβ̃
N , (27), becomes

QN =A0
[
N − iOp

(
N1−δ

)
+Op

(
N1−δ

)]
+Op

(
N

1
2

)
QN =A0

(
N +Op

(
N1−δ

))
; δ ∈

(
0,

1

2

]
.

Now, we calculate the terms of P β̃
N , (28). Using Taylor

series expansion upto 2nd order and lemma 2 of [11],
1st term of P β̃

N , (28), is written as follows:

N∑
t=1

(
t2 − N2

3

)
ei(β

0−β̃)t2 =

N∑
t=1

(
t2 − N2

3

)
[
ei(β

0−β0)t2 + ei(β
0−β0)t2it2

(
β0 − β̃

)
+(

it2
(
β0 − β̃

))2
2!

ei(β
0−β∗)t2

where, β∗ ∈
(
β0, β̃

)
,

=

(
N2

2
+

N

6

)
+ i
(
β0 − β̃

)[4N5

45
+O

(
N4
)]

−
(
β0 − β̃

)
Op

(
N−2−δ

) [
Op

(
N7
)
+ iOp

(
N7
)]

= O
(
N2
)
−Op

(
N3−2δ

)
+ i
(
β0 − β̃

)[4N5

45
−Op

(
N5−δ

)]
= i
(
β0 − β̃

)[4N5

45
−Op

(
N5−δ

)]
.

Now, choosing a large L such that 1 − Lδ < 0 and
then using Taylor series expansion, Lindeberg-Feller
CLT and lemma 4(b) of [11], we calculate the 2nd

term of P β̃
N , (28), as follows:

N∑
t=1

ϵ (t)

(
t2 − N2

3

)
e−iβ̃t2 =

N∑
t=1

ϵ (t)

(
t2 − N2

3

)
e−iβ0t2 +

L−1∑
l=1

(
−i
(
β̃ − β0

)
t2
)l

l!
e−iβ0t2+

(
−it2

)L
L!

(
β̃ − β0

)L
e−iβ∗t2

]
=

N∑
t=1

ϵ (t)

(
t2 − N2

3

)
e−iβ0t2 +

L−1∑
l=1

(−i)
l

l!
Op

(
N−2l−lδ

)
Op

(
N2l+ 5

2

)
+

(−i)
L

L!
Op

(
N−2L−Lδ

)
Op

(
N2L+3

)
=

N∑
t=1

ϵ (t)

(
t2 − N2

3

)
e−iβ0t2 +

L−1∑
l=1

(−i)
l

l!

Op

(
N

5
2−lδ

)
+

(−i)
L

L!
Op

(
N2
)
,where, β∗ ∈

(
β0, β̃

)
.

Thus P β̃
N , (28), becomes

P β
N =

N∑
t=1

y (t)

(
t2 − N2

3

)
e−iβ̃t2

=

N∑
t=1

ϵ (t)

(
t2 − N2

3

)
e−iβ0t2 +A0i

(
β0 − β̃

)
[
4N5

45
−Op

(
N5−δ

)]
.
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Hence, we get:

β̆ = β̃ +
11.25

N4
Im

(
P β̃
N

Qβ̃
N

)

β̆ = β̃ +
11.25

N4

(
β0 − β̃

) [4N5

45
−Op

(
N5−δ

)]
(N +Op (N1−δ))

+

11.25

N4
Im

∑N
t=1 ϵ (t)

(
t2 − N2

3

)
e−iβ0t2

A0 (N +Op (N1−δ))


β̆ = β0 +

(
β̃ − β0

)
Op

(
N−δ

)
+

45

4N5
Im

∑N
t=1 ϵ (t)

(
t2 − N2

3

)
e−iβ0t2

A0

 .

Using lemma 2 of [11], the variance of G =

45

4N
5
2
Im

∑N
t=1 ϵ (t)

(
t2 − N2

3

)
e−iβ0t2

A0

 is 45σ2

8|A0|2 ,

asymptotically. Thus, if β̃−β0 = Op

(
N−2−δ

)
, where

δ ∈
(
0,

1

2

]
, then β̆ − β0 = Op

(
N−2−2δ

)
if δ ≤ 1

4

and N
5
2

(
β̆ − β0

)
d−→ N

(
0, 45σ2

8|A0|2

)
if δ >

1

4
by

Lindeberg-Feller CLT. Hence the result of theorem 1
follows.

Proof of Theorem 2: Let us consider:

ĂR =
1

N

N∑
t=1

(
yR (t) cos

(
β̆t2
)
+ yI (t) sin

(
β̆t2
))

.

(29)
Here, yR (t) and yI (t) are as defined in (15) and (16),
respectively. Now, expanding cos

(
β̆t2
)

and sin
(
β̆t2
)

around the point β0 using Taylor series, we can rewrite
ĂR as follows:

ĂR =
1

N

N∑
t=1

yR (t)
{
cos
(
β0t2

)
− t2

(
β̆ − β0

)
sin
(
β̄t2
)}

+
1

N

N∑
t=1

yI (t)
{
sin
(
β0t2

)
+ t2

(
β̆ − β0

)
sin
(
β̄t2
)}

,

where, β̄ ∈
(
β0, β̆

)
.

(30)

Now using the Lindeberg-Feller CLT and
lemma 2 of [11], it can be shown that
N− 1

2

(∑N
t=1 ϵR (t) cos

(
β0t2

)
+ ϵI (t) sin

(
β0t2

)) d−→

N
(
0, σ2

2

)
. We have N

5
2

(
β̆ − β0

)
d−→ N

(
0, 45σ2

8|A0|2

)
from theorem 1. Using this result and the
Chebyshev inequality, it can be easily proved
that N2

(
β̆ − β0

)
p−→ 0 as N → ∞. Using these

results and lemmas 2 and 4(b) of [11], we have:

N
1
2

(
ĂR −A0

R

)
d−→ N

(
0,

(
1
2 +

5A02

I

8|A0|2

)
σ2

)
.

Proceeding in the similar manner asymptotic
distribution of ĂI can be obtained. Hence the result.

APPENDIX B

Proof of Theorem 3: First we derive this theorem
for β̆1. Note that,

Qβ̃1

N =

N∑
t=1

y1 (t) e
−iβ̃1t

2

=

N∑
t=1

[
p∑

k=1

A0
ke

iβ0
kt

2

+ ϵ (t)

]
e−iβ̃1t

2

=

p∑
k=1

A0
k

N∑
t=1

ei(β
0
k−β̃1)t2 +

N∑
t=1

ϵ (t) e−iβ̃1t
2

.

(31)

Now, let us see the behaviour of
∑N

t=1 e
i(β0

k−β̃1)t2 for
different k. For k = 1, using Taylor series expansion
and lemma 2 of [11], we get,
N∑
t=1

ei(β
0
1−β̃1)t2 =

N∑
t=1

[
ei(β

0
1−β0

1)t
2

+ i
(
β0
1 − β̃1

)
t2ei(β

0
1−β∗

1)t
2
]
= N − iOp

(
N−2−δ

) N∑
t=1

t2ei(β
0
1−β∗

1)t
2

= N − iOp

(
N−2−δ

) [
Op

(
N3
)
+ iOp

(
N3
)]

= N − iOp

(
N1−δ

)
+Op

(
N1−δ

)
,

where, β∗
1 ∈

(
β0
1 , β̃1

)
.

For k = 2, · · · , p, using conjecture 2 and lemma 2
of [11] and Taylor series expansion upto L-th order,
choosing L large such that 1− Lδ < 0, we get,

N∑
t=1

ei(β
0
k−β̃1)t2 =

N∑
t=1

[
ei(β

0
k−β0

1)t
2

+

L−1∑
l=1

(
−i
(
β̃1 − β0

1

)
t2
)l

l!
ei(β

0
k−β0

1)t
2

+

(
−i
(
β̃1 − β0

1

)
t2
)L

L!
ei(β

0
k−β∗

1)t
2


=op

(
N

1
2

)
+

L−1∑
l=1

(−i)
l

l!
Op

(
N−2l−lδ

)
op

(
N2l+ 1

2

)
+

(−i)
L

L!
Op

(
N−2L−Lδ

)
Op

(
N2L+1

)
=op

(
N

1
2

)
,where, β∗

1 ∈
(
β0
1 , β̃1

)
.

Now, choosing a large L such that 1 − Lδ < 0 and
then using Taylor series expansion, Lindeberg-Feller
CLT and lemma 4(b) of [11], 2nd term of Qβ̃1

N , (31),
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is written as follows:
N∑
t=1

ϵ (t) e−iβ̃1t
2

=

N∑
t=1

ϵ (t)
[
e−iβ0

1t
2

+

L−1∑
l=1

(
−i
(
β̃1 − β0

1

)
t2
)l

l!
e−iβ0

1t
2

+

(
−it2

)L
L!(

β̃1 − β0
1

)L
e−iβ∗

1 t
2

]
=Op

(
N

1
2

)
+

L−1∑
l=1

(−i)
l

l!
Op

(
N−2l−lδ

)
Op

(
N2l+ 1

2

)
+

(−i)
L

L!
Op

(
N−2L−Lδ

)
Op

(
N2L+1

)
=Op

(
N

1
2

)
,where, β∗

1 ∈
(
β0
1 , β̃1

)
.

Thus Qβ̃1

N , (31), becomes

Qβ̃1

N =A0
1

[
N − iOp

(
N1−δ

)
+Op

(
N1−δ

)]
+

Op

(
N

1
2

)
+

p∑
k=2

A0
kop

(
N

1
2

)
=A0

1

(
N +Op

(
N1−δ

))
; δ ∈

(
0,

1

2

]
.

Now, we calculate P β̃1

N .

P β̃1

N =

N∑
t=1

y1 (t)

(
t2 − N2

3

)
e−iβ̃1t

2

=

p∑
k=1

A0
k

N∑
t=1(

t2 − N2

3

)
ei(β

0
k−β̃1)t2 +

N∑
t=1

ϵ (t)

(
t2 − N2

3

)
e−iβ̃1t

2

.

(32)

For, k = 1, using Taylor series expansion and lemma
2 of [11], we get,

N∑
t=1

(
t2 − N2

3

)
ei(β

0
1−β̃1)t2 =

N∑
t=1

(
t2 − N2

3

)
[
ei(β

0
1−β0

1)t
2

+ ei(β
0
1−β0

1)t
2

it2
(
β0
1 − β̃1

)
+(

it2
(
β0
1 − β̃1

))2
2!

ei(β
0
1−β∗

1)t
2

 =

(
N2

2
+

N

6

)
+

i
(
β0
1 − β̃1

)[4N5

45
+O

(
N4
)]

−
(
β0
1 − β̃1

)
Op

(
N−2−δ

) [
Op

(
N7
)
+ iOp

(
N7
)]

= O
(
N2
)
−

Op

(
N3−2δ

)
+ i
(
β0
1 − β̃1

)[4N5

45
−Op

(
N5−δ

)]
=i
(
β0
1 − β̃1

)[4N5

45
−Op

(
N5−δ

)]
,where,

β∗
1 ∈

(
β0
1 , β̃1

)
.

For k = 2, · · · , p, using conjecture 2 and lemma 2
of [11] and Taylor series expansion upto L-th order,
choosing L large such that 3

2 − Lδ < 0, we get,

N∑
t=1

(
t2 − N2

3

)
ei(β

0
k−β̃1)t2 =

N∑
t=1

(
t2 − N2

3

)[
ei(β

0
k−β0

1)t
2

+

L−1∑
l=1

(
−i
(
β̃1 − β0

1

)
t2
)l

l!
ei(β

0
k−β0

1)t
2

+

(
−i
(
β̃1 − β0

1

)
t2
)L

L!

ei(β
0
k−β∗

1)t
2
]

= op

(
N

5
2

)
+

L−1∑
l=1

(−i)
l

l!
Op

(
N−2l−lδ

)
op

(
N2l+ 5

2

)
+

(−i)
L

L!

Op

(
N−2L−Lδ

)
Op

(
N2L+3

)
= op

(
N

5
2

)
+

L−1∑
l=1

(−i)
l

l!
op

(
N

5
2−lδ

)
+

(−i)
L

L!
OP

(
N

3
2

)
= op

(
N

5
2

)
,where, β∗

1 ∈
(
β0
1 , β̃1

)
.

Now, choosing a large L such that 1 − Lδ < 0 and
then using Taylor series expansion, Lindeberg-Feller
CLT and lemma 4(b) of [11], we calculate the 2nd

term of P β̃1

N , (32), as follows:

N∑
t=1

ϵ (t)

(
t2 − N2

3

)
e−iβ̃1t

2

=

N∑
t=1

ϵ (t)

(
t2 − N2

3

)
e−iβ0

1t
2

+

L−1∑
l=1

(
−i
(
β̃1 − β0

1

)
t2
)l

l!
e−iβ0

1t
2

+

(
−it2

)L
L!

(
β̃1 − β0

1

)L
e−iβ∗

1 t
2

]
=

N∑
t=1

[ϵ (t)

(
t2 − N2

3

)
e−iβ0

1t
2

]
+

L−1∑
l=1

(−i)
l

l!
Op

(
N−2l−lδ

)
Op

(
N2l+ 5

2

)
+

(−i)
L

L!
Op

(
N−2L−Lδ

)
Op

(
N2L+3

)
=

N∑
t=1

ϵ (t)

(
t2 − N2

3

)
e−iβ0

1t
2

+

L−1∑
l=1

(−i)
l

l!
Op

(
N

5
2−lδ

)
+

(−i)
L

L!
Op

(
N2
)
,where, β∗

1 ∈
(
β0
1 , β̃1

)
.

Thus P β̃1

N , (32), becomes

P β̃1

N =

N∑
t=1

y1 (t)

(
t2 − N2

3

)
e−iβ̃1t

2

=

N∑
t=1

ϵ (t)

(
t2 − N2

3

)
e−iβ0

1t
2

+A0
1i
(
β0
1 − β̃1

)
[
4N5

45
−Op

(
N5−δ

)]
+

p∑
k=2

A0
kop

(
N

5
2

)
.
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Further,

β̆1 = β̃1 +
11.25

N4
Im

(
P β̃1

N

Qβ̃1

N

)

β̆1 = β̃1 +
11.25

N4

(
β0
1 − β̃1

) [4N5

45
−Op

(
N5−δ

)]
(N +Op (N1−δ))

+
11.25

N4
Im

∑N
t=1 ϵ (t)

(
t2 − N2

3

)
e−iβ0

1t
2

A0
1 (N +Op (N1−δ))

+

11.25

N5
oP

(
N

5
2

)
β̆1 = β0

1 +
(
β̃1 − β0

1

)
Op

(
N−δ

)
+

45

4N5

Im

∑N
t=1 ϵ (t)

(
t2 − N2

3

)
e−iβ0

1t
2

A0
1

+ oP

(
N− 5

2

)
.

(33)

Using lemma 2 of [11], variance of G1 =

45

4N
5
2
Im

∑N
t=1 ϵ (t)

(
t2 − N2

3

)
e−iβ0

1t
2

A0
1

 is 45σ2

8|A0
1|2

,

asymptotically. Therefore, if β̃1 − β0
1 = Op

(
N−2−δ

)
,

where δ ∈
(
0,

1

2

]
, then from (33), β̆1 − β0

1 =

Op

(
N−2−2δ

)
if δ ≤ 1

4
. If δ > 1

4 , then
from (33) and using Lindeberg-Feller CLT, we have

N
5
2

(
β̆1 − β0

1

)
d−→ N

(
0, 45σ2

8|A0
1|2
)

.

Now, we prove the result for β̆2. Using the above result
and the Chebyshev inequality, it can be easily proved
that

N2
(
β̆1 − β0

1

)
p−→ 0 as N → ∞. (34)

Now we will prove the consistency of the amplitude
parameters, i.e., ĂR1

p−→ A0
R1 as N → ∞ and ĂI1

p−→
A0

I1 as N → ∞. Let us consider:

ĂR1 =
1

N

N∑
t=1

(
yR1 (t) cos

(
β̆1t

2
)
+ yI1 (t) sin

(
β̆1t

2
))

.

(35)
Here, yR1 (t) and yI1 (t) are the real and imaginary
parts of the data y1 (t), respectively. Now, expanding
cos
(
β̆1t

2
)

and sin
(
β̆1t

2
)

around the point β0
1 using

Taylor series, we can rewrite ĂR1 as follows:

ĂR1 =
1

N

N∑
t=1

{
cos
(
β0
1t

2
)
− t2

(
β̆1 − β0

1

)
sin
(
β̄1t

2
)}

yR1 (t) + yI1 (t)
{
sin
(
β0
1t

2
)
+ t2

(
β̆1 − β0

1

)
sin
(
β̄1t

2
)}

where, β̄1 ∈
(
β0
1 , β̆1

)
.

(36)

Now using (34) and lemmas 2 and 4(b) of [11], it can
be proved that ĂR1

p−→ A0
R1 as N → ∞. Similarly, we

can show ĂI1
p−→ A0

I1 as N → ∞. Therefore, we have:
ĂR1 = A0

R1 + op (1) , ĂI1 = A0
I1 + op (1) and β̆1 =

β0
1 + op

(
N−2

)
. Consider y2 (t) = y1 (t) − Ă1e

iβ̆1t
2

.
Now using the above result and then proceeding in the
similar manner as done for β̆1, we obtain the desired
result. This result can be proved for k = 3, . . . , p along
the similar lines.
Proof of Theorem 4: This result can be derived along
the similar lines as theorem 2. Let us consider,

ĂR1 =
1

N

N∑
t=1

(
yR1 (t) cos

(
β̆1t

2
)
+ yI1 (t) sin

(
β̆1t

2
))

.

(37)
Now, expanding cos

(
β̆1t

2
)

and sin
(
β̆1t

2
)

around the

point β0
1 using Taylor series, we can rewrite ĂR1 as

follows:

ĂR1 =
1

N

N∑
t=1

yR1 (t)
{
cos
(
β0
1t

2
)
− t2

(
β̆1 − β0

1

)
sin
(
β̄1t

2
)}

+ yI1 (t)
{
sin
(
β0
1t

2
)
+ t2

(
β̆1 − β0

1

)
sin
(
β̄1t

2
)}

,where, β̄1 ∈
(
β0
1 , β̆1

)
.

(38)

Now using the Lindeberg-Feller CLT and
lemma 2 of [11], it can be shown that
N− 1

2

(∑N
t=1 ϵR1 (t) cos

(
β0
1t

2
)
+ ϵI1 (t) sin

(
β0
1t

2
)) d−→

N
(
0, σ2

2

)
. From above theorem we have

N
5
2

(
β̆1 − β0

1

)
d−→ N

(
0, 45σ2

8|A0
1|2
)

. Using these

results, (34) and lemmas 2 and 4(b) of [11], we have

N
1
2

(
ĂR1 −A0

R1

)
d−→ N

(
0,

(
1
2 +

5A02

I1

8|A0
1|2
)
σ2

)
.

Procceding in the similar manner asymptotic
distribution of ĂI1 can be obtained. Now using;
ĂR1 = A0

R1 + op (1), ĂI1 = A0
I1 + op (1) and

β̆1 = β0
1 + op

(
N−2

)
, and y2 (t) = y1 (t) − Ă1e

iβ̆1t
2

,
we can prove the result for k = 2. In the similar
manner, we can prove the result for k = 3, . . . , p.
Hence we obtain the result.
Proof of Theorem 6 : Consider ĂR(p+1) and ĂI(p+1)

the efficient estimators of the linear parameters
A0

R(p+1) and A0
I(p+1), respectively:

ĂR(p+1) =
1

N

N∑
t=1

(
yR(p+1) (t) cos

(
β̆p+1t

2
)
+

yI(p+1) (t) sin
(
β̆p+1t

2
))

,

ĂI(p+1) =
1

N

N∑
t=1

(
yI(p+1) (t) cos

(
β̆p+1t

2
)
−

yR(p+1) (t) sin
(
β̆p+1t

2
))

,
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where, yp+1 (t) is the data obtained by eliminating the
first p-components from the original data y1 (t), and
yR(p+1) (t) and yI(p+1) (t) are the real and imaginary
parts of the data yp+1 (t), respectively. It implies that:

yR(p+1) (t) = yR1 (t)−
p∑

k=1

(
ĂRk cos

(
β̆kt

2
)
− ĂIk

sin
(
β̆kt

2
))

,

yI(p+1) (t) = yI1 (t)−
p∑

k=1

(
ĂRk sin

(
β̆kt

2
)
+ ĂIk

cos
(
β̆kt

2
))

.

(39)

Now using theorem 3 and 4, we have β̆k
p−→ β0

k ,
ĂRk

p−→ A0
Rk and ĂIk

p−→ A0
Ik as N → ∞ ∀k =

1, . . . , p. Thus, (39) can be rewritten as:

yR(p+1) (t) = ϵR (t)+op (1) , yI(p+1) (t) = ϵI (t)+op (1) .

Using these equations, we get:

ĂR(p+1) =
1

N

N∑
t=1

(
ϵR (t) cos

(
β̆p+1t

2
)
+ ϵI (t)

sin
(
β̆p+1t

2
))

+ op (1) ,

ĂI(p+1) =
1

N

N∑
t=1

(
ϵI (t) cos

(
β̆p+1t

2
)
− ϵR (t)

sin
(
β̆p+1t

2
))

+ op (1) .

Using lemma 4(b) of [11], we obtain: ĂR(p+1)
p−→ 0,

ĂI(p+1)
p−→ 0 as N → ∞. Hence, the result follows.
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