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Estimation of the Elementary Chirp Model
Parameters

Anjali Mittal, Rhythm Grover, Debasis Kundu, and Amit Mitra

Abstract—In this paper, we propose some estimation tech-
niques to estimate the elementary chirp model parameters, which
are encountered in sonar, radar, acoustics, and other areas.
We derive asymptotic theoretical properties of least squares
estimators and approximate least squares estimators for the
one component elementary chirp model. It is proved that the
proposed estimators are strongly consistent and follow the normal
distribution asymptotically. We also suggest how to obtain proper
initial values for these methods. The problem of finding initial
values is a difficult problem when the number of components in
the model is large, or when the signal-to-noise ratio is low, or
when two frequency rates are close to each other. We propose
sequential procedures to estimate the multiple component ele-
mentary chirp model parameters. We prove that the theoretical
properties of sequential least squares estimators and sequential
approximate least squares estimators coincide with those of least
squares estimators and approximate least squares estimators,
respectively. Further, the asymptotic variances of the proposed
estimators attain the Cramér-Rao lower bounds asymptotically
when errors are normal random variables and independently
and identically distributed. To evaluate the performance of the
proposed estimators, numerical experiments are performed. It is
observed that the proposed sequential estimators perform well
even in situations where least squares estimators do not perform
well. We illustrate the performance of the proposed sequential
algorithm on a bat data.

Index Terms—Chirp model, approximate least squares, least
squares, sequential least squares, frequency rate, consistency,
asymptotic normality, CRLB.

I. INTRODUCTION

WE consider the problem of parameter estimation of
multiple component elementary chirp model. This

model can be seen in Mboup and Adali [1] where a general-
ization of Fourier transform has been developed to study the
spectral analysis of chirp-like signals. Here, estimation of the
chirp rate i.e. the frequency rate is of utmost importance. Some
of the applications where chirp rate estimation is considered
as of prime importance can be found in mode reconstruction
[2], in sonar pulse detection [3], in micro-Doppler signal
analysis [4], in acoustic signal analysis [5], in focusing on
the synthetic aperture radar images [6], in radar pulse re-
construction [7], in recursive vertical synchrosqueezing [8]
and many more. Radar detection of high-speed maneuvering
targets is one of the widely studied applications of the chirp
model. In the literature, various detection algorithms have been
proposed, including algorithms based on discrete polynomial-
phase transform (DPT) [9], symmetric autocorrelation function
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and scaled Fourier transform [10], three-dimensional scaled
transform [11], and see references cited therein. Fourier trans-
forms of finite chirps and optimized sparse fractional Fourier
transform for chirp signals have been discussed by Casazza
et al. [12] and Zhang et al. [13], respectively. There are some
estimation methods which mainly aim on the estimation of the
instantaneous frequency rate (IFR), which is twice the chirp
rate. One of them is an estimator based on cubic phase function
(CPF) [14] and other methods motivated by CPF have been
discussed in the literature, such as Nonparametric Chirp-Rate
estimator based on CPF [15], viterbi algorithm [16], integrated
CPF (ICPF) [17] and product CPF (PCPF) [18]. A detailed
discussion on CPF based methods can be seen in the article by
Djurović et al. [19]. Chirp rate estimation based on DPT and
weighted combination [20], fractional Fourier transform ([21],
[22]), time-frequency rate distribution [23], modified discrete
chirp Fourier transform [24] and machine learning approach
[25] have also been discussed in the literature.
In this paper, we propose some estimation methods to estimate
the parameters of the one component elementary chirp model
(1) and the multiple component elementary chirp model (14).
We propose least squares estimators (LSEs), approximate least
squares estimators (ALSEs), sequential LSEs and sequen-
tial ALSEs, study their theoretical asymptotic properties and
compare their numerical performances. Model (14) is a non-
linear regression model, as should be noted. In the literature,
theoretical results on the general non-linear regression model
have been established by Jennrich [26] and Wu [27]. It has
been observed that the sufficient conditions of Jennrich [26]
and Wu [27] are not satisfied by model (14) for the LSEs to be
consistent. Thus, one cannot apply the results of Jennrich [26]
and Wu [27] directly to establish the theoretical properties of
the LSEs. The aim of this paper is two-fold. The first aim
is to derive the asymptotic properties of the LSEs, ALSEs,
sequential LSEs and sequential ALSEs. Since this model can
be obtained only as a limiting case of the chirp-like model,
and in case of chirp-like model ([28], [29]) the asymptotic
properties have been developed only when the parameters are
interior points, they cannot be applied directly. One needs
to derive these properties in the case of the boundary, and
that has been done in this paper, as the present model has its
own importance in the signal processing literature. Moreover,
it has been shown that under the assumption of normality,
the asymptotic variances attain the Cramér-Rao lower bound
(CRLB). Another aim of this paper is to implement this
method in practice. We have shown how this method can be
implemented when the two frequency rates are close to each
other.
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To obtain the initial values for the proposed methods in
case of multiple component model (14), we have to do a
multi-dimensional grid search which is a numerically intense
problem in itself. Further, when the variance of the error
random variable is high or when the two frequency rates are
close to each other, multi-dimensional grid search may result
in the initial values which are not close to the true param-
eter values. This may lead to incorrect parameter estimates.
To overcome this problem, we propose a sequential least
squares estimation method and a sequential approximate least
squares estimation method. These sequential methods lower
the computational complexity by reducing the p-dimensional
optimization problem to p, 1-D optimization problems. We
also establish the theoretical properties of sequential LSEs and
sequential ALSEs and find that they have the same theoretical
properties as their respective LSEs and ALSEs.
Furthermore, we perform extensive simulation studies to eval-
uate the performance of the proposed estimation methods
for various sample sizes and error variances. We also ob-
tain frequency rate estimates using other standard estimation
methodologies and assess the effectiveness of the proposed
methods in comparison to these techniques. For the one com-
ponent elementary chirp model, dechirping method [30] and
CPF method [14] and for the multiple component elementary
chirp model, dechirping method and PCPF method [18] have
been used for the comparative study. It is noted that the
proposed estimators perform quite satisfactorily. The mean
squared errors (MSEs) of the proposed estimators are close
to their respective theoretical asymptotic variances. Another
interesting observation that came out of these experiments is
that the proposed sequential estimators are able to resolve
the frequency rates even when two frequency rates are close
to each other whereas LSEs are unable to do so at times.
This motivates us to use the proposed sequential estimators
for the implementation purposes due to their good theoretical
properties and also excellent simulation results in different
presented scenarios. We also show how well the proposed
sequential estimators work by fitting the elementary chirp
model to a real-world data set.
The rest of the paper is structured as follows. In the next
section, we present the statistical properties of the LSEs and
the ALSEs for the one component elementary chirp model. In
Section III, we present theoretical properties of the sequential
LSEs and the sequential ALSEs for the multiple component
elementary chirp model (14). We provide simulation results
to validate the theoretical results of the proposed methods in
Section IV. Real data analysis is presented in Section V. In
Section VI, the paper is concluded. All the necessary proofs
and results are presented in the appendices.

II. ONE COMPONENT ELEMENTARY CHIRP MODEL

In this section, we consider the following one component
elementary chirp model :

y (t) = A0eiβ
0t2 + ϵ (t) ; t = 1, . . . , N. (1)

where, A0 is the complex-valued non-zero amplitude parame-
ter and i =

√
−1. The β0 is the frequency rate parameter,

which strictly lie between 0 and 2π. Also, ϵ (t)
′s are the

complex-valued noise random variables present in the ob-
served signal y (t). Here, we need to estimate the unknown
amplitude parameter and the frequency rate parameter under
the following assumption on the error random variables ϵ (t)′s.

Assumption 1: ϵ (t)′s are i.i.d. complex-valued random vari-
ables with mean 0 and variance σ2

2 for both real and imaginary
parts. Also, fourth order moment of ϵ (t) exists. It is assumed
that real and imaginary parts of ϵ (t) are independent.
We denote by AR and AI , the real and the imaginary part
of the A; respectively, and the real and the imaginary part of
the ϵ (t) are denoted as ϵR (t) and ϵI (t); respectively. We will
use the following notations: θ = (AR, AI , β), the parameter
vector, θ0 =

(
A0

R, A
0
I , β

0
)
, the true parameter vector, θ̂ =(

ÂR, ÂI , β̂
)

, the LSE of θ0 and θ̃ =
(
ÃR, ÃI , β̃

)
, the ALSE

of θ0.
Under the above assumption on the noise, we present two
estimation techniques: the least squares estimation technique
and the approximate least squares estimation technique, in
the following subsections. We also establish the statistical
properties of these estimators.

A. Least Squares Estimators

Least squares estimation method is one of the most intutive
choices to estimate the unknown parameters of the model.
Let us denote Θ1 = [−M,M ] × [−M,M ] × [0, 2π] as a
parameter space. The assumption on the unknown parameters
is mentioned below:

Assumption 2: Let θ0 be an interior point of the parameter
space Θ1, and

∣∣A0
∣∣ > 0.

The LSEs of the parameters of the model (1) are obtained by
minimizing the following residual sum of squares, say:

Q (θ) =

N∑
t=1

∣∣∣y (t)−Aeiβt
2
∣∣∣2 , (2)

with respect to A and β simultaneously, where A = AR+iAI .
In matrix notation, Q (θ) can be expressed as follows;

Q (θ) = [Y −Z (β)A]
H
[Y −Z (β)A] , (3)

where YN×1 =
(
y (1) , . . . , y (N)

)⊤
and Z (β) =[

eiβ , . . . , eiβN
2
]⊤

.

From (3), note that A can be separated from β, as it is a linear
parameter. Therefore, by using separable regression technique,
for fixed β, the LSE of A can be determined as

Â (β) =
[
Z (β)

H
Z (β)

]−1

Z (β)
H
Y . (4)

By replacing A by Â (β) in (3), we get

R (β) = Q
(
Â (β) , β

)
= Y H [I − PZ ]Y , (5)

where

PZ = Z (β)
[
Z (β)

H
Z (β)

]−1

Z (β)
H
,

is the projection matrix on the column space spanned
by the matrix Z (β). Thus, we can obtain the LSE β̂ of
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β0 by minimizing R (β) with respect to β. Then the LSE
of β is used to estimate the LSE of A, by substituting β̂ in (4).

The strong consistency and asymptotic normality of the LSEs
are shown by the following results.

Theorem 1: If assumptions 1 and 2 are satisfied, then θ̂ is
a strongly consistent estimator of θ0, i.e.,

θ̂
a.s.−−→ θ0 as N → ∞.

Proof: See Appendix A-A.
Theorem 2: If assumptions 1 and 2 hold true, then

(θ̂ − θ0)D−1 d−→ N3

(
0, σ2Σ−1

)
as N → ∞,

where D = diag
(

1√
N
, 1√

N
, 1
N2

√
N

)
and

Σ−1 =


1
2 +

5A02

I

8|A0|2
−5A0

RA0
I

8|A0|2
15A0

I

8|A0|2

−5A0
RA0

I

8|A0|2
1
2 +

5A02

R

8|A0|2
−15A0

R

8|A0|2
15A0

I

8|A0|2
−15A0

R

8|A0|2
45

8|A0|2

 .

Proof: See Appendix A-A.
Although LSEs have the desired theoretical asymptotic prop-
erties, obtaining the least squares estimators in practice is
computationally quite challenging. For example, even for a
sinusoidal model, it has been studied that the least squares
surface has a number of local minima around the true pa-
rameter value and due to this reason most of the iterative
methods converge to a local minimum. Therefore, any iterative
procedure requires a good set of initial values (close to the true
parameter value) for its convergence to the global minimum.
We encounter a similar problem for the elementary chirp
model as well. Therefore, computing the LSEs for the model
(1) is also a numerically difficult problem.
Periodogram estimators are one of the most prominent ap-
proaches for determining the initial values of the sinusoidal
model’s frequencies. Maximizing the following periodogram
function [31] provides these estimators:

I0 (ω) =
1

N

∣∣∣∣∣
N∑
t=1

y (t) e−iωt

∣∣∣∣∣
2

, (6)

over the Fourier frequencies
πk

N
, k = 1, . . . , N − 1. Now,

we define a periodogram-type function [29] analogous to the
periodogram function which has the following mathematical
form:

I (β) =
1

N

∣∣∣∣∣
N∑
t=1

y (t) e−iβt2

∣∣∣∣∣
2

. (7)

Analogous to the periodogram estimator, periodogram-type
estimator is obtained by maximizing (7) over the grid of the

type
2πk

N2
, k = 1, . . . , N2−1, which provides the estimator of

β0 with the rate of convergence OP

(
N−2

)
. Here, Op

(
N−δ

)
means NδOp

(
N−δ

)
is bounded in probability. This can be

used as the initial value for the frequency rate parameter.
It has been established in the literature that if I0 (ω) is
maximized over the continuous range [0, π], then the obtained
estimator possesses the same asymptotic properties as the
corresponding LSE and hence known as ALSE [31]. In the
next subsection, we discuss ALSEs for the elementary chirp
model.

B. Approximate Least Squares Estimators

Let us denote Θ2 = (−∞,∞) × (−∞,∞) × [0, 2π] as
a parameter space. Also, the assumption on the unknown
parameters is given as follows:

Assumption 3: Let θ0 be an interior point of the parameter
space Θ2, and

∣∣A0
∣∣ > 0.

The ALSE of the frequency rate is obtained by maximizing the
periodogram-type function (7) continuously over the interval
(0, 2π), that is,

β̃ = argmax
β

I (β) . (8)

The periodogram-type function (7) can also be expressed as
follows:

I (β) =
1

N

{
N∑
t=1

(
yR (t) cos

(
βt2
)
+ yI (t) sin

(
βt2
))}2

+
1

N

{
N∑
t=1

(
yI (t) cos

(
βt2
)
− yR (t) sin

(
βt2
))}2

.

(9)

Here, yR (t) and yI (t) are the real and imaginary parts of the
model (1), respectively, and are expressed as follows:

yR (t) = A0
R cos

(
β0t2

)
−A0

I sin
(
β0t2

)
+ ϵR (t) , (10)

yI (t) = A0
R sin

(
β0t2

)
+A0

I cos
(
β0t2

)
+ ϵI (t) . (11)

Once we obtain β̃, then the ALSEs of the linear parameters
ÃR and ÃI can be determined using the technique of simple
linear regression and expressed as follows:

ÃR =
1

N

N∑
t=1

(
yR cos

(
β̃t2
)
+ yI sin

(
β̃t2
))

, (12)

ÃI =
1

N

N∑
t=1

(
yI cos

(
β̃t2
)
− yR sin

(
β̃t2
))

. (13)

In the following theorems, we present the strong consistency
and the asymptotic distribution results of the ALSEs.

Theorem 3: If assumptions 1 and 3 hold true, then θ̃ is a
strongly consistent estimator of θ0, i.e.,

θ̃
a.s.−−→ θ0 as N → ∞.

Proof: See Appendix A-B.
Theorem 4: If assumptions 1 and 3 hold true, then the

asymptotic distribution of (θ̃ − θ0)D−1 is identical to the
asymptotic distribution of (θ̂ − θ0)D−1 as N → ∞, where
D is same as defined in Theorem 2.

Proof: See Appendix A-B.
The obtained ALSEs achieve the optimal rates of convergence
and are also asymptotically identical to their corresponding
LSEs. Therefore, the obtained estimators are called the ALSEs.
It is important to note that, under the assumption of i.i.d. nor-
mal errors, LSEs and ALSEs achieve the CRLBs. Also, note
that to prove the asymptotic theoretical results of the ALSEs,
we need somewhat weaker assumptions on the parameter space
than those needed for the LSEs.
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III. MULTIPLE COMPONENT ELEMENTARY CHIRP MODEL

In this section, we consider the following multiple component
elementary chirp model :

y (t) =

p∑
k=1

A0
ke

iβ0
kt

2

+ ϵ (t) ; t = 1, . . . , N, (14)

where, A0
ks are the complex-valued non-zero amplitude pa-

rameters and β0
ks are the frequency rate parameters. Also,

ϵ (t) is the error present in the observed signal y (t), satisfying
assumption 1.
Further, p is the number of chirp components and is assumed
to be known. For the observed data y (1) , y (2) , . . . , y (N), the
problem here is to estimate the unknown amplitude parameters
A0

ks and the unknown frequency rates β0
ks. Along with the

assumptions on error random variables, certain assumptions on
the parameters are needed to prove the asymptotic theoretical
properties of the LSEs and sequential LSEs, which are stated
below. In the following subsections, we provide the theoretical
results under the stated assumptions.
Let us denote v as the parameter vector for the model (14),
v = (AR1, AI1, β1, . . . , ARp, AIp, βp). Also, denote v0 as the
true parameter vector, v̂ as the LSE of v0, v̆ as the sequential
LSE of v0 and ṽ as the sequential ALSE of v0.

Assumption 4: Let v0 be an interior point of the parameter
space V1 = Θ

(p)
1 ; Θ1 = [−M,M ]× [−M,M ]× [0, 2π] and

the frequency rates β0
ks are distinct for k = 1, · · · , p.

Assumption 5: The amplitude parameters; A0
ks satisfy the

following relationship:

2M2 >
∣∣A0

1

∣∣2 >
∣∣A0

2

∣∣2 > · · · >
∣∣A0

p

∣∣2 > 0.

A. Least Squares Estimators

The LSEs of the unknown parameters of the multiple com-
ponent elementary chirp model (14) can be obtained by
minimizing the following residual sum of squares:

Q (v) =

N∑
t=1

∣∣∣∣∣y (t)−
p∑

k=1

Ake
iβkt

2

∣∣∣∣∣
2

, (15)

with respect to A1, β1, . . . , Ap and βp simultaneously. Now
the LSE, v̂ of v0, can be obtained in the similar manner as
done in the one component elementary chirp model. Now, we
present the strong consistency and the asymptotic distribution
results of the LSEs.

Theorem 5: If assumptions 1, 4 and 5 hold true, then v̂ is
a strongly consistent estimator of v0, i.e.,

v̂
a.s.−−→ v0 as N → ∞.

Proof: This result can be proved in the similar manner to
Theorem 1.

Theorem 6: If assumptions 1, 4 and 5 are satisfied, then
(v̂ − v0)D−1 d−→ N3p

(
0, σ2E−1

)
as N → ∞.

Here, D = diag(D, . . . ,D︸ ︷︷ ︸
p times

), where D is same as defined in

Theorem 2 and

E−1 =


Σ−1

1 0 . . . 0
0 Σ−1

2 . . . 0
...

...
. . .

...
0 0 0 Σ−1

p

,

with

Σ−1
k =


1
2 +

5A02

Ik

8|A0
k|2

−5A0
RkA

0
Ik

8|A0
k|2

15A0
Ik

8|A0
k|2

−5A0
RkA

0
Ik

8|A0
k|2

1
2 +

5A02

Rk

8|A0
k|2

−15A0
Rk

8|A0
k|2

15A0
Ik

8|A0
k|2

−15A0
Rk

8|A0
k|2

45

8|A0
k|2

 . (16)

Proof: See Appendix B-A.

B. Choice of initial values

In all these methods discussed in section (II), we use the
periodogram-type estimator as an initial value. Also, to find
the LSEs for the multiple component elementary chirp model,
periodogram-type estimators are used as the initial values,
which are the values of frequency rates where we get the peaks
of the periodogram-type function (7). Let us see this through
an illustration for the following two-component elementary
chirp model

y (t) = y1 (t) = 7e1it
2

+ 5e0.5it
2

+ ϵ (t) ; t = 1, . . . , 200.
(17)

Here, ϵ (t)′s are i.i.d. complex-valued normal random variables
and satisfy assumption 1. The value of σ2 is 1. We generate
a signal using (17), where two frequency rates are 1 and
0.5, which are far apart. From Fig. 1, it is clear that we
obtain the two highest peaks near the true frequency rates,
which are clearly resolvable. But, in some situations, even for
p = 2, it might be difficult to get peaks in the periodogram-
type function around the true frequency rates. It may lead to
initial values which are not close to the true parameter values
and hence results in incorrect estimates of the parameters. To
demonstrate such situations, we take two different scenarios:
Case 1: When two frequency rates are close to each other.

y (t) = y1 (t) = 2e1.45it
2

+ 1e1.5it
2

+ ϵ (t) ; t = 1, . . . , 100.
(18)

y2 (t) = y1 (t)− Ă1e
iβ̆1t

2

; t = 1, . . . , 100. (19)

Case 2: When two frequency rates are far apart but error
variance is high.

y (t) = y1 (t) = 4e2it
2

+2e1.5it
2

+ϵ (t) ; t = 1, . . . , 100. (20)

y2 (t) = y1 (t)− Ă1e
iβ̆1t

2

; t = 1, . . . , 100. (21)

The values of σ2 are taken as 0.1 and 3, in case 1 and in case
2, respectively. Ă1 and β̆1 are the estimators of the A0

1 and
β0
1 , respectively. We generate a signal using (18), where two

frequency rates are 1.45 and 1.5, which are close to each other.
Another signal is generated using (20), where two frequency
rates are well separated, but the error variance is relatively
high. When we plot the periodogram-type function for these
signals, we are unable to get the two highest peaks near the
true frequency rates, see Fig. 2 (a) and Fig. 2 (c). To solve this
problem, we use one of the sequential procedures presented in
the next two subsections. It is observed from Fig. 2 (a) and Fig.
2 (c) that we are able to detect the correct peak of one of the
components, having the highest amplitude for both models. So
using these initial values, we estimate the first component of
both the models using the discussed methodologies, namely,
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Fig. 1. Plot of the periodogram-type function (7) of the data obtained from
(17).
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Fig. 2. Plot of the periodogram-type function (7) of the (a) data obtained
from (18), (b) updated data using (19), (c) data obtained from (20) and (d)
updated data using (21).

LSEs or ALSEs. Further, we update our data by eliminating
the effect of the first estimated component using (19) and
(21). Then, we plot the periodogram-type function for the
updated data. We see in Fig. 2 (b) and Fig. 2 (d) that peaks for
the second component of both the models are obtained near
the true frequency rates. Then we obtain the estimates of the
second components of both models by using the updated data.
In cases where periodogram-type functions are able to cor-
rectly resolve the frequency rates, computing the LSEs be-
comes numerically challenging, when p, the number of com-
ponents, is large. To resolve this issue, in the next subsections,
we propose sequential procedures to estimate the parameters
of the model (14).

C. Sequential Least Squares Estimators

In this subsection, we propose a sequential method to estimate
the model (14) parameters. The p-dimensional optimization
problem can be reduced to p, 1-D optimization problems
using the sequential technique. This is possible because of
the orthogonal structure of the chirp components which can
be proved using lemma 2 of [28]. Thus, by using the orthog-
onality of the chirp components of the model (14), we lower
the computational complexity of calculating the LSEs without
losing the efficiency of the estimators. The procedure for the
sequential method is presented in the following steps:
Step 1: Obtain the estimate of the parameters of the first
chirp component, i.e., θ̆1 =

(
ĂR1, ĂI1, β̆1

)
of the multiple

component elementary chirp model (14), using the method
described in subsection II-A for the one component elementary
chirp model (1).
Step 2: Take out the effect of the estimated chirp component
and obtain the adjusted data vector:

y2 (t) = y1 (t)− Ă1e
iβ̆1t

2

; y1 (t) = y (t) .

Step 3: To estimate the parameters of the second chirp
component i.e. θ̆2 =

(
ĂR2, ĂI2, β̆2

)
, minimize the following

residual sum of squares:

Q2 (θ) =

N∑
t=1

∣∣∣y2 (t)−Aeiβt
2
∣∣∣2 .

Repeat this procedure until all the p-chirp components are
estimated.

We now provide the results for the strong consistency of the
proposed sequential LSEs, when p is unknown. Therefore,
we take the following situations: (1) when the fitted model’s
number of components is less than or equal to the true number
of components, and (2) when the fitted model’s number of
components is more than the true number of components.

Theorem 7: If assumptions 1, 4 and 5 hold true, then θ̆1 is
a strongly consistent estimator of θ0

1 , i.e.,
θ̆1

a.s.−−→ θ0
1 as N → ∞.

Proof: See Appendix B-B.
Theorem 8: If assumptions 1, 4 and 5 hold true, then θ̆2 is

a strongly consistent estimator of θ0
2 , i.e.,

θ̆2
a.s.−−→ θ0

2 as N → ∞.
Proof: See Appendix B-B.

This theorem can also be extended for k ≤ p.
Theorem 9: If assumptions 1, 4 and 5 hold true, then θ̆k is

a strongly consistent estimator of θ0
k, i.e.,

θ̆k
a.s.−−→ θ0

k as N → ∞, ∀k ≤ p.
Proof: This theorem can be proved using the similar

argument as in theorem 8.
Theorem 10: If assumptions 1, 4 and 5 hold true, then

ĂR(p+k)
a.s.−−→ 0, ĂI(p+k)

a.s.−−→ 0 as N → ∞, ∀k = 1, 2, · · · .
Proof: See Appendix B-B.

The asymptotic distribution of the proposed sequential estima-
tors is given by the following theorem:

Theorem 11: If assumptions 1, 4 and 5 hold true, then
(θ̆k − θ0

k)D
−1 d−→ N3

(
0, σ2Σ−1

k

)
as N → ∞, ∀k ≤ p,
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where D is same as defined in Theorem 2 and Σ−1
k is same

as defined in (16).
Proof: See Appendix B-B.

D. Sequential Approximate Least Squares Estimators

The following assumptions are required to prove the asymp-
totic properties of sequential ALSEs.

Assumption 6: Let v0 be an interior point of the parameter
space V2 = Θ

(p)
2 ; Θ2 = (−∞,∞)× (−∞,∞)× [0, 2π] and

the frequency rates β0
ks are distinct for k = 1, · · · , p.

Assumption 7: The amplitude parameters; A0
ks satisfy the

following relationship:

∞ >
∣∣A0

1

∣∣ > ∣∣A0
2

∣∣ > · · · >
∣∣A0

p

∣∣ > 0.

The algorithm for the sequential ALSEs is described in the
following steps:
Step 1: Obtain the estimate of the parameters of the first
chirp component, i.e., θ̃1 =

(
ÃR1, ÃI1, β̃1

)
of the multiple

component elementary chirp model (14), using the method
described in subsection II-B for the one component elementary
chirp model (1).
Step 2: Take out the effect of the estimated chirp component
and obtain the new data vector:

y2 (t) = y1 (t)− Ã1e
iβ̃1t

2

; y1 (t) = y (t) .

Step 3: Maximize the following periodogram-type function to
compute β̃2:

I2 (β) =
1

N

∣∣∣∣∣
N∑
t=1

y2 (t) e
−iβt2

∣∣∣∣∣
2

.

Substitute β̃2, yR2 (t) and yI2 (t) in (12) and (13), to obtain
ÃR2 and ÃI2. Thus, we obtain the estimate of the second
chirp component. Repeat this procedure until all the p-chirp
components are estimated.

We now provide the results for the strong consistency of the
proposed sequential ALSEs, when p is unknown. Therefore,
we take the following situations: (1) when the fitted model’s
number of components is less than or equal to the true number
of components, and (2) when the fitted model’s number of
components is more than the true number of components.

Theorem 12: If assumptions 1, 6 and 7 hold true, then θ̃1
is a strongly consistent estimator of θ0

1 , i.e.,
θ̃1

a.s.−−→ θ0
1 as N → ∞.

Proof: See Appendix B-C.
Theorem 13: If assumptions 1, 6 and 7 hold true, then θ̃2

is a strongly consistent estimator of θ0
2 , i.e.,

θ̃2
a.s.−−→ θ0

2 as N → ∞.
Proof: See Appendix B-C.

This theorem can also be extended for k ≤ p.
Theorem 14: If assumptions 1, 6 and 7 hold true, then θ̃k

is a strongly consistent estimator of θ0
k, i.e.,

θ̃k
a.s.−−→ θ0

k as N → ∞, ∀k ≤ p.
Proof: This theorem can be proved using the similar

argument as in theorem 13.
Theorem 15: If assumptions 1, 6 and 7 hold true, then

ÃR(p+k)
a.s.−−→ 0, ÃI(p+k)

a.s.−−→ 0 as N → ∞, ∀k = 1, 2, · · · .
Proof: See Appendix B-C.

Next, using the following theorem, we obtain the asymptotic
distribution of the proposed sequential ALSEs:

Theorem 16: If assumptions 1, 6 and 7 hold true, then the
asymptotic distribution of (θ̃k − θ0

k)D
−1 is identical to the

asymptotic distribution of the (θ̆k − θ0
k)D

−1, ∀k = 1, . . . , p,
where D is same as defined in Theorem 2.

Proof: See Appendix B-C.
From the above discussion, it follows that the sequential LSEs
and the sequential ALSEs are strongly consistent and have
the asymptotic distribution same as that of the LSEs. Also,
they can be computed with lower computational complexity.
For the implementation purpose, we use the sequential LSEs
and the sequential ALSEs, to analyze the considered data.

Remark: All the proposed estimation methods can be easily
extended when the errors come from a stationary linear
process, i.e.,

ϵ(t) =

∞∑
l=−∞

c (l) e (t− l) . (22)

Here, {e (t)} is a sequence of i.i.d. random variables with
mean 0, variance σ2 and finite fourth moment and c (l)

′s are
real numbers such that

∑∞
l=−∞ |c (l)| < ∞.

IV. NUMERICAL EXPERIMENTS

In this section, we present some results obtained from the
simulation studies for a one component and for two multiple
component complex-valued elementary chirp models. Here,
we perform numerical experiments for different sample sizes
N , for varying signal-to-noise ratios (SNRs) and for varying
error variances σ2 and see how the proposed methodologies
work and to compare their performance with some other
existing estimation procedures. The SNR is defined as SNR =

10 log10

(∑p
k=1|A0

k|2
σ2

)
. Here, we are mainly interested in

estimating the non-linear parameters since it is straightforward
to get the estimates of the linear parameters using simple
linear regression once we have the estimates of the non-
linear parameters. Therefore, the estimates of the non-linear
parameters are provided only.

A. Simulation results for a one component elementary chirp
model
We consider a one component elementary chirp model (1) for
this simulation study with the true parameter values given as
follows: A0 = 5 and β0 = 0.5.
Here, ϵ (t)

′s are i.i.d. complex-valued normal random vari-
ables and satisfy assumption 1. We have taken N =
101, 201, 301, 401, and 501 and σ2 = 1, 2 and 3. We esti-
mate the non-linear parameter using LSEs, ALSEs, dechirping
method [30] and CPF method [14]. The dechirping method is
implemented in the following manner.
Consider the complex conjugate of model (1) with lag one
which can be written in the following expression:

y (t+ 1) = A0e−iβ0(t+1)2 + ϵ (t+ 1); t = 1, . . . , N − 1.
(23)
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y (t) y (t+ 1) = |A0|2e−iβ0(2t+1) +A0eiβ
0t2ϵ (t+ 1)

+A0e−iβ0(t+1)2ϵ (t) + ϵ (t) ϵ (t+ 1); t = 1, . . . , N − 1.
(24)

Now, (24) can be rewritten in the following expression:

z (t) = B0e−i2β0t + ϵ1 (t) ; t = 1, . . . , N − 1; (25)

where, B0 = |A0|2e−iβ0

and ϵ1 (t) = A0eiβ
0t2ϵ (t+ 1) +

A0e−iβ0(t+1)2ϵ (t) + ϵ (t) ϵ (t+ 1). From equation (25), it
is clear that this is a sinusoidal model with the frequency
parameter −2β0 and amplitude parameter B0. Then the LSEs
of B0 and β0 are determined by minimizing the following
error sum of squares:

Q (B, β) =

N−1∑
t=1

∣∣z (t)−Be−i2βt
∣∣2 , (26)

with respect to B and β simultaneously. These can be obtained
along the similar lines as discussed for the one component
elementary chirp model in subsection II-A.
For ready reference, we also present the CP function for the
model (1) as follows:

CPF (t,Ω) =

(N−1)
2∑

m=0

y (t+m) y (t−m) e−iΩm2

. (27)

For the computation of the LSEs and the ALSEs, the
periodogram-type estimates have been used as the initial
values as discussed in section II-A. The initial value in CPF
method has been obtained by maximising the CPF (27) over

the grid points
πk

N2
, k = 1, . . . , N2 − 1. In the dechirping

method, we have obtained initial value for β by minimising
the objective function (26) over the Fourier grid, πk

N−1 , k =
1, 2, . . . , N − 2. After computing the initial value, we use
Nelder-Mead simplex algorithm to optimize the corresponding
objective function in all four estimation methods, that is, the
LSEs, the ALSEs, the dechirping method and the CPF method.
We use in-built function “optim” in R software for the Nelder-
Mead algorithm. Here, we have restricted our grid search
among 10 number of points around the true value in all the
methods to save time involved in the computation.
We use 1000 replications for each sample size and each error
variance. We compute MSEs of frequency rate estimates using
all four methods. In all the figures, “DCHP” represents the
MSEs of the estimators obtained using dechirping method.
We also calculate the theoretical asymptotic variances of the
LSEs and, similarly, we calculate the theoretical asymptotic
variances of the CPF method, to compare with their corre-
sponding MSEs, we represent them as “AVAR” and “CPFT”,
respectively.
MSEs and theoretical asymptotic variances of different fre-
quency rate estimates versus different sample sizes are shown
in Fig. 3 for different error variances. From this figure, we
observe that as the sample size increases, the MSEs decreases
for the LSEs as well as for the ALSEs which validates the
consistency of the proposed estimators. Moreover, MSEs of the
discussed estimators match pretty well with the corresponding
theoretical variances for most of the cases.
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Fig. 3. Mean squared errors and theoretical asymptotic variances of different
estimates of frequency rate of the simulated one component model with A0 =
5 and β0 = 0.5 for different error variances versus sample size.
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Fig. 4. Mean squared errors and theoretical asymptotic variances of different
estimates of frequency rate of the simulated one component model with A0 =
5 and β0 = 0.5 for different sample sizes versus SNR.

Fig. 4 depicts MSEs of different estimators versus varying
SNRs. From this figure, it is evident that MSEs of the LSEs
and the ALSEs match well with their corresponding theoretical
asymptotic variances for each value of the SNR. However,
for SNR below −2, the MSE does not match with the
corresponding theoretical variance for the estimate obtained
using CPF. Hence, threshold of SNR for the CPF method for
this case is −2. This figure also shows that MSEs decreases
as the SNR increases.
In Fig. 5, we have plotted the time taken to compute the
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Fig. 5. Computational time in estimating the frequency rate estimate using
different estimation methods for the simulated one component model with
A0 = 5 and β0 = 0.5 versus sample size.

frequency rate estimates using the different estimation methods
with respect to the diffferent sample sizes. From here, it can
be observed that the dechirping method takes the least time
for estimating the frequency rate parameter as compared with
the LSEs, the ALSEs and the CPF method. LSEs and ALSEs
take the maximum time in comparison to other methods but at
the same time they provide the maximum statistical efficiency.
Therefore, there is a trade-off between computational time
and the efficiency. Further, as the sample size increases,
computational time also increases for all the cases, which is
quite natural.

B. Simulation results for a two-component and a three-
component elementary chirp model

We first consider a two-component elementary chirp model
(14) with the true parameter values given as follows: A0

1 =
7, β0

1 = 1, A0
2 = 5 and β0

2 = 0.5. Next, we consider a three-
component elementary chirp model with the true parameter
values given as follows: A0

1 = 9, β0
1 = 1, A0

2 = 7, β0
2 =

0.5, A0
3 = 5 and β0

3 = 0.1.
We perform these simulations for the different sample sizes
and error variances same as those used for the one component
elementary chirp model simulation study. We estimate the
frequency rate parameters using the sequential LSEs, the se-
quential ALSEs, the dechirping method and the PCPF method.
For the dechirping method for multiple component model, we
first estimate the first chirp component using the LSEs as
discussed in the above subsection. Then, we use sequential
procedure as discussed in subsection III-C and estimate the
subsequent chirp components.
Next, we present the PCP function for the model (14) for the
given L different time points, as follows:

PCPF (Ω) =

L∏
l=1

CPF (tl,Ω) . (28)

Here, we have chosen two different time points, t1 = 0.4N
and t2 = N+1

2 as in [18]. We have used Nelder-Mead simplex
algorithm to optimize the corresponding objective function
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Fig. 6. Mean squared errors and theoretical asymptotic variances of different
estimates of frequency rates of the simulated two-component model with
A0

1 = 7, β0
1 = 1, A0

2 = 5 and β0
2 = 0.5 for different error variances

versus sample size.

in all four estimation methods, that is, the sequential LSEs,
the sequential ALSEs, the dechirping method and the PCPF
method. For finding the initial values, we have done the grid
search as discussed in the previous subsection IV-A for all the
methods.

We evaluate the MSEs of the frequency rate estimates
based on 1000 replications. We also calculate theoretical
asymptotic variances of all the methods to compare with their
corresponding MSEs. In all the figures, “PCPFT” represents
the theoretical asymptotic variances of the estimators obtained
using PCPF method. The MSEs and the theoretical asymptotic
variances of different frequency rate estimates for different
error variances versus different sample sizes are shown in Fig.
6 and Fig. 7 for a two-component and a three-component
model, respectively. From these figure, it can be observed
that the MSEs decreases as N increases for all the methods
which depicts that the frequency rate estimates get closer to
the true parameter values as sample size increases. MSEs of
the LSEs, the sequential LSEs, the sequential ALSEs and the
estimators obtained using PCPF method match well with the
corresponding theoretical asymptotic variances for most of the
cases. Also, MSEs of sequential LSEs and sequential ALSEs
are at par.
Fig. 8 shows the plot of the MSEs versus the SNR for a two-
component model. From here, it is clear that MSEs of the
LSEs of the β2 match well with their corresponding theoretical
asymptotic variances till the SNR value −4 when sample
size is 201, and for the sequential LSEs and the sequential
ALSEs, the threshold for SNR is −6. We thus observe that
LSEs start performing poorly at lower SNR value than the
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SNR.

proposed sequential estimators. For SNR lower from 0 and
−2, the MSEs do not match with the corresponding theoretical
variances for the estimate obtained using PCPF method, for
the sample sizes 201 and 401, respectively. We also observe
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Fig. 9. Mean squared errors and theoretical asymptotic variances of different
estimates of frequency rates of the simulated three-component model with
A0

1 = 9, β0
1 = 1, A0

2 = 7, β0
2 = 0.5, A0

3 = 5 and β0
3 = 0.1 for different

sample sizes versus SNR.
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Fig. 10. Computational time in estimating the different estimates of the
frequency rates of the simulated two-component model with A0

1 = 7, β0
1 =

1, A0
2 = 5 and β0

2 = 0.5 versus sample size.

that MSEs decreases as the SNR increases.
Now we provide the result for a three-component model.
Fig. 9 shows the plot of the MSEs versus the SNR for
a three-component model. From here, it is visible that the
SNR threshold is −8 for the LSEs, the sequential LSEs and
the sequential ALSEs of the β1 and it is 0 for the PCPF
method when sample size is 401. The SNR threshold is
−4 for the LSEs, the sequential LSEs and the sequential
ALSEs of the β3 and it is 4 for the PCPF method. For SNR
lower from 4 the MSEs do not match with the corresponding
theoretical variances for the estimate obtained using PCPF
method. Also, we observe that MSEs decreases as the SNR
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increases. The SNR threshold increases as we increase the
number of components in the model.
In Fig. 10, the computational time to find the frequency
rates using the different estimation methods with respect to
the different sample sizes has been shown. Here, we report
the time involved in computing both the frequency rates
of the two-component model. From this figure, it can be
observed that the dechirping method takes the least time in
comparison with the other discussed methods in this paper,
not surprisingly, since here we have to do grid search among
N number of points, whereas, in other estimation methods, we
have to do a grid search among N2 grid points. PCPF method
takes the maximum time in computation and the proposed
estimators in this paper are taking more or less the same time
in computing the estimates. Similar behaviour is observed for
the three-component model. As we have seen that the proposed
estimation methods provide the estimators with the optimal
rates of convergence, we recommend these estimation methods
for analyzing real life data.

C. Simulation results for a two-component elementary chirp
model when two frequency rates are close to each other

In this subsection, we consider a two-component elementary
chirp model (14) when two frequency rates are close to each
other, to evaluate the performance of the proposed estimators
under such a scenario. Here, we take different setups by
fixing amplitude parameters and by bringing two frequency
rates closer and closer. First, we take the gap between two
frequency rates as 10−2, with the true parameter values given
as: A0

1 = 7, β0
1 = 0.51, A0

2 = 5 and β0
2 = 0.5. Here,

ϵ (t)
′s are i.i.d. complex-valued normal random variables and

satisfy assumption 1. We take N = 100, 200, 300, 400, 500
and σ2 = 1. We simulate the experiment 1000 times and
compute the MSEs of the frequency rate estimates. Fig. 11
(a) shows the plot for the MSEs versus sample sizes. From
Fig. 11 (a), it can be observed that MSEs obtained using the
proposed estimation methods are at par with the theoretical
asymptotic variances. Fig. 11 (b) shows the plot for MSEs
versus SNR, when sample size is 200. It can be seen that MSEs
of frequency rate estimates match nicely with theoretical
asymptotic variances when the SNR value is greater than 1.
From these plots it is evident that two frequency rates are
resolvable in this case.
We next consider the following setup: A0

1 = 7, β0
1 =

0.502, A0
2 = 5 and β0

2 = 0.5. Note that, here the gap between
two frequency rates is 2 × 10−3. Fig. 12 (a) depicts the plot
for MSEs versus sample size. From this figure, it can be
observed that the MSEs obtained using sequential LSEs as
well as sequential ALSEs are at par with theoretical asymptotic
variances. In Fig. 12 (a), “LSETV” is representing the MSEs
of the LSEs when true parameter values are taken as the
initial values. It is interesting to note that the MSEs obtained
using LSEs fail to match the theoretical asymptotic variances
when the initial values are obtained using the periodogram-
type function. Fig. 12 (b) shows the plot for MSEs versus
SNR, when the sample size is 200. MSEs of frequency rate
estimates match nicely with theoretical asymptotic variances
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Fig. 11. Mean squared errors and theoretical asymptotic variances of different
estimates of frequency rates with A0
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1 = 0.51, A0

2 = 5 and β0
2 =

0.5 (a) for σ2 = 1 versus sample size (b) for N = 200 versus SNR.
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0.5 (a) for σ2 = 1 versus sample size (b) for N = 200 versus SNR.

when the SNR value is greater than 1, when estimation is done
using the sequential LSEs and the sequential ALSEs. In case of
the LSEs, they do not match with the theoretical asymptotic
variances. From these results we observe that although the
LSEs are not stable in this case but, the sequential LSEs and
the sequential ALSEs give satisfactory and stable results.
Now, we take A0

1 = 7, β0
1 = 0.501, A0

2 = 5 and β0
2 = 0.5.

Note that, here the gap between two frequency rates is 10−3.
Fig. 13 (a) represents the plot for MSEs versus sample sizes.
From this plot, it can be observed that the MSEs obtained
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Fig. 13. Mean squared errors and theoretical asymptotic variances of different
estimates of frequency rates with A0

1 = 7, β0
1 = 0.501, A0

2 = 5 and β0
2 =

0.5 (a) for σ2 = 1 versus sample size (b) for N = 200 versus SNR.

using sequential LSEs as well as sequential ALSEs are at par
with the theoretical asymptotic variances. In Fig. 13 (a), it
can be observed that the MSEs obtained using LSEs fail to
match the theoretical asymptotic variances when the initial
values are obtained using the periodogram-type function. Fig.
13 (b) gives the plot for MSEs versus SNR, when the sample
size is 200. MSEs of frequency rate estimates match nicely
with theoretical asymptotic variances when the SNR is greater
than 0, when estimation is done using sequential LSEs and
sequential ALSEs. In case of the LSEs, threshold of the SNR
is 7, which is quite high SNR threshold as compared to the
threshold of the sequential estimators. From these results,
we can conclude that the two close frequency rates are not
resolvable after a certain threshold using the LSEs, however
sequential LSEs and sequential ALSEs are able to resolve
them.
In the next set of simulations, we fix β2 at 0.5 and
vary β1, taking it close to β2. Values of β1 are taken as
0.501, 0.5015, 0.502, 0.506, 0.51. The values of the amplitude
parameters are A0

1 = 7 and A0
2 = 5, sample size is taken as

N = 300 and error variance is σ2 = 1. Fig. 14 shows the
plot for MSEs versus β1. We observe that the MSEs obtained
using LSEs do not match well with the theoretical asymptotic
variances when β1 gets closer to β2. MSEs obtained using
sequential LSEs and sequential ALSEs are close to the theo-
retical asymptotic variance.

V. REAL DATA ANALYSIS

In this section, we demonstrate a real data analysis which
shows the applicability of the elementary chirp model in real
world. Here, we consider a data of ultrasound produced by bat
[32]. The original signal can be seen in Fig. 15 (a), which is
of length 400. Note that, we have seen that the proposed se-
quential estimators provide the optimal estimators with lower
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Fig. 15. (a) Plot of the bat data [32]. (b) Observed bat signal and estimated
bat signal using elementary chirp model.

computational complexity. Therefore, we fit an elementary
chirp model to this data using the proposed sequential LSE
method. We observe that the traditional information theoretic
criterion does not work nicely for this data. Therefore, we
fit it at the component after which residual sum of squares
(RSS) does not decrease much in comparison with the previous
step RSS. We take a maximum of 105 elementary chirp
components to fit the data and fit it at the 85th component
due to the above discussed reason which is evident in Fig.
16 (a). In Fig. 15 (b), we plot the fitted data along with the
original signal, using 85 elementary chirp components. The
figure indicates that the fit of the data using the proposed
sequential LSE is quite satisfactory and the fit matches the
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Fig. 16. (a) Residuals sum of squares for bat data using sequential LSE.
(b) Residuals at 85th elementary chirp component.

observed data quite well.
We have also performed residual analysis to test the error
assumption of the model. We use Ljung-Box test for this
purpose. We use the in-built function “Box.test” in R software.
For this data set, the Ljung-Box test does not reject the null
hypothesis. Therefore, by using Ljung-Box test and looking
into the residuals plot in Fig. 16 (b), we may conclude that the
residuals are i.i.d.. Thus, the elementary chirp model fits well
the considered data using the proposed sequential estimation
method.

VI. CONCLUSION

In this paper, we propose some parameter estimation methods
to estimate the elementary chirp model parameters. It has
been observed that the proposed estimators, namely, LSEs,
ALSEs, sequential LSEs, and sequential ALSEs provide esti-
mators of the unknown parameters with the optimal rates of
convergence. From the simulation studies, it can be seen that
the proposed estimators work well because their MSEs match
the theoretical asymptotic variances. Further, the proposed
sequential estimators provide the estimators of the unknown
parameters with the same optimal theoretical properties as the
LSEs and ALSEs with lower computational complexity. Also,
the proposed estimators achieve the CRLBs when errors are
normally distributed. It is also observed that the sequential
LSEs and sequential ALSEs are able to resolve the frequency
rates when two frequency rates are close to each other, while
LSEs are unstable in such a case. Therefore, we recommend
the proposed sequential estimators for real signal analysis.
A real data analysis has been performed using the proposed
sequential LSEs. It illustrates the practical importance of the
model and applicability of the proposed sequential estimators.
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APPENDIX A
ONE COMPONENT MODEL

A. Proofs of the theoretical properties of the LSEs

Lemma 1: Consider Sc =
{
θ :
∣∣θ − θ0

∣∣ > c;θ ∈ Θ1

}
. If

for any c > 0,

lim inf inf
θ∈Sc

1

N

[
Q (θ)−Q

(
θ0
)]

> 0 a.s., (29)

then θ̂
a.s.−−→ θ0 as N → ∞.

Proof: Proof of this lemma can be obtained in the similar
manner of lemma 5 of [28].

Proof of Theorem 1: Note that we can write

1

N

[
Q (θ)−Q

(
θ0
)]

= f (θ) + g (θ) ,where,

f (θ) =
1

N

N∑
t=1

{(
A0

R cos
(
β0t2

)
−A0

I sin
(
β0t2

)
−AR

cos
(
βt2
)
+AI sin

(
βt2
))2

+
(
A0

I cos
(
β0t2

)
+

A0
R sin

(
β0t2

)
−AI cos

(
βt2
)
−AR sin

(
βt2
))2}

,

g (θ) =
2

N

N∑
t=1

{
ϵR (t)

(
A0

R cos
(
β0t2

)
−A0

I sin
(
β0t2

)
−

AR cos
(
βt2
)
+AI sin

(
βt2
))

+ ϵI (t)
(
A0

I cos
(
β0t2

)
+A0

R sin
(
β0t2

)
−AI cos

(
βt2
)
−AR sin

(
βt2
))}

.

Now using lemma 4 of [28], it can be proved that:

lim
N→∞

sup
θ∈Sc

g (θ) = 0 a.s.. (30)

Therefore, the following holds,

lim inf inf
θ∈Sc

1

N

[
Q (θ)−Q

(
θ0
)]

= lim inf inf
θ∈Sc

f (θ) .

Consider the following set

Sc =
{
θ :
∣∣θ − θ0

∣∣ ≥ 3c;θ ∈ Θ1

}
⊂ Sc1 ∪ Sc2 ∪ Sc3 = S,

where, Sc1 =
{
θ :
∣∣AR −A0

R

∣∣ ≥ c;θ ∈ Θ1

}
,

Sc2 =
{
θ :
∣∣AI −A0

I

∣∣ ≥ c;θ ∈ Θ1

}
and

Sc3 =
{
θ :
∣∣β − β0

∣∣ ≥ c;θ ∈ Θ1

}
.

Thus, lim inf inf
θ∈Sc

f (θ) ≥ lim inf inf
θ∈S

f (θ) . (31)

Now, set Sc1 is divided as shown below:

Sc1 =
{
θ :
∣∣AR −A0

R

∣∣ ≥ c;θ ∈ Θ1

}
⊂ S1

c1 ∪ S2
c1, where,

S1
c1 =

{
θ :
∣∣AR −A0

R

∣∣ ≥ c;θ ∈ Θ1, β = β0
}

and

S2
c1 =

{
θ :
∣∣AR −A0

R

∣∣ ≥ c;θ ∈ Θ1, β ̸= β0
}
.
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Using lemma 2 of [28], it follows that

lim inf inf
θ∈S1

c1

f (θ) > 0 a.s. as N → ∞,

lim inf inf
θ∈S2

c1

f (θ) > 0 a.s. as N → ∞.

Hence, lim inf inf
θ∈Sc1

f (θ) > 0. In the similar manner, it can

be shown for the remaining sets. Thus, strong consistency of
θ̂ follows from lemma 1.

Proof of Theorem 2: Using multivariate Taylor series expan-
sion, expand Q

′
(θ̂) around the point θ0,

Q
′
(θ̂)−Q

′
(θ0) = (θ̂ − θ0)Q

′′
(θ̄). (32)

Here, θ̄ lies between θ0 and θ̂. Since θ̂ minimizes Q(θ), we
have Q

′
(θ̂) = 0 and thus we rewrite (32) as:

(θ̂ − θ0) = −Q
′
(θ0)[Q

′′
(θ̄)]−1. (33)

Now, multiply both side of (33) by D−1, where D =

diag
(

1√
N
, 1√

N
, 1
N2

√
N

)
, and obtain

(θ̂ − θ0)D−1 = −Q
′
(θ0)D[DQ

′′
(θ̄)D]−1. (34)

Further, using Lindeberg Feller CLT and lemma 2 of [28], it
can be shown that

Q
′
(θ0)D

d−→ N3

(
0, σ2Σ

)
; (35)

where

Σ =

 2 0 − 2
3A

0
I

0 2 2
3A

0
R

− 2
3A

0
I

2
3A

0
R

2
5

∣∣A0
∣∣2
 . (36)

Using the result that θ̂ a.s.−−→ θ0 as N → ∞, we get

lim
N→∞

DQ
′′
(θ̄)D = lim

N→∞
DQ

′′
(θ0)D.

The following can be proved by using lemmas 2 and 4 of [28],

lim
N→∞

DQ
′′
(θ0)D = Σ. (37)

Using (34), (35) and (37), the desired result is obtained.

B. Proofs of the theoretical properties of the ALSEs

Lemma 2: Suppose β̃ is the ALSE of β0 and Sc ={
β :
∣∣β − β0

∣∣ > c
}

. If for any c > 0,

lim sup sup
Sc

1

N

[
I (β)− I

(
β0
)]

< 0 a.s., (38)

then β̃
a.s.−−→ β0 as N → ∞.

Proof: Proof of this lemma can be obtained in the similar
manner to lemma 6 of [29].

Lemma 3: Suppose β̃ is the ALSE of β0. Under assumptions
1 and 3, N2

(
β̃ − β0

)
a.s.−−→ 0 as N → ∞.

Proof: This result can be proved in the similar manner to
lemma 8 of [29].
Proof of Theorem 3: Consider the following difference, to
derive the consistency of ALSE β̃ :

1

N

[
I (β)− I

(
β0
)]

.

Using lemmas 2 and 4 of [28], for some c > 0, following
holds

lim sup sup
Sc

1

N

[
I (β)− I

(
β0
)]

< 0 a.s. as N → ∞.

Hence, using lemma 2, β̃ a.s.−−→ β0 as N → ∞.
We now derive the consistency of the estimators ÃR and ÃI .

ÃR =
1

N

N∑
t=1

(
yR cos

(
β̃t2
)
+ yI sin

(
β̃t2
))

. (39)

Expanding cos
(
β̃t2
)

and sin
(
β̃t2
)

around β0 using Taylor
series expansion and using lemmas 2, 4 of [28] and lemma
3, we get the consistency of ÃR. Consistency of ÃI can be
obtained in the similar manner.

Proof of Theorem 4: We can express Q (θ) as follows:

1

N
Q (θ) =

1

N

N∑
t=1

∣∣∣y (t)−Aeiβt
2
∣∣∣2 = C − 1

N
J (θ) + o (1) .

Here, C = 1
N

∑N
t=1 |y (t)|

2 and

1

N
J (θ) =

2

N

N∑
t=1

[
yR (t)

{
AR cos

(
βt2
)
−AI sin

(
βt2
)}

+yI (t)
{
AR sin

(
βt2
)
+AI cos

(
βt2
)}]

−A2
R −A2

I .

Now we calculate the first derivative of 1
NQ (θ) and 1

N J (θ)
at θ = θ0 and using lemmas 2 and 4 of [28] and conjecture 2
of [28], we get the following relation between these functions:

lim
N→∞

Q
′ (
θ0
)
D = − lim

N→∞
J

′ (
θ0
)
D.

After substituting ÃR and ÃI in J (θ), we obtain:

J
(
ÃR, ÃI , β

)
= 2I (β) .

Thus, the estimator of θ0 which maximises J (θ) is equivalent
to the ALSE of θ0, i.e. θ̃. Expand J

′
(
θ̃
)

using multivariate
Taylor series expansion around the point θ0 and obtain(

θ̃ − θ0
)
= −J

′ (
θ0
) [

J
′′ (

θ̄
)]−1

⇒
(
θ̃ − θ0

)
D−1 = −

[
J

′ (
θ0
)
D
] [

DJ
′′ (

θ̄
)
D
]−1

.

Here, θ̄ lies between θ0 and θ̃. Thus, we have
lim

N→∞
DJ

′′ (
θ̄
)
D = lim

N→∞
DJ

′′ (
θ0
)
D. Using lemmas

2 and 4 of [28], we obtain the following relation

lim
N→∞

DJ
′′ (

θ0
)
D = − lim

N→∞
DQ

′′ (
θ0
)
D = −Σ,

where Σ is as defined in (36). Thus, we have(
θ̃ − θ0

)
D−1 = −

[
J

′ (
θ0
)
D
] [

DJ
′′ (

θ̄
)
D
]−1

.

⇒ lim
N→∞

(
θ̃ − θ0

)
D−1

= − lim
N→∞

[
J

′ (
θ0
)
D
]

lim
N→∞

[
DJ

′′ (
θ̄
)
D
]−1

= − lim
N→∞

[
Q

′ (
θ0
)
D
]

lim
N→∞

[
DQ

′′ (
θ̄
)
D
]−1

.
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Now, using (34), we have

lim
N→∞

(
θ̃ − θ0

)
D−1 = lim

N→∞

(
θ̂ − θ0

)
D−1.

It implies that θ̃ and θ̂ are asymptotically equivalent in
distribution. Hence the result follows.

APPENDIX B
MULTIPLE COMPONENT MODEL

A. Proofs of the theoretical results of the LSEs

Proof of Theorem 6: Using multivariate Taylor series expan-
sion, expand Q

′
(v̂) around the point v0,

Q
′
(v̂)−Q

′
(v0) = (v̂ − v0)Q

′′
(v̄). (40)

Here, v̄ lies between v0 and v̂. We can write (40) as:

(v̂ − v0) = −Q
′
(v0)[Q

′′
(v̄)]−1. (41)

Now, multiplying both side of (41) by D−1, where D =

diag(D, . . . ,D︸ ︷︷ ︸
p times

) and D = diag
(

1√
N
, 1√

N
, 1
N2

√
N

)
, we have

(v̂ − v0)D−1 = −Q
′
(v0)D [DQ

′′
(v̄)D ]−1. (42)

Further, using Lindeberg Feller CLT and lemma 2 of [28], it
can be shown that:

Q
′
(v0)D

d−→ N3p

(
0, σ2E

)
; where, (43)

E =


Σ1 0 . . . 0
0 Σ2 . . . 0
...

...
. . .

...
0 0 0 Σp

 , (44)

with Σk =

 2 0 − 2
3A

0
Ik

0 2 2
3A

0
Rk

− 2
3A

0
Ik

2
3A

0
Rk

2
5

∣∣A0
k

∣∣2
 ∀k = 1, . . . , p.

Using the fact that v̂ a.s.−−→ v0 as N → ∞. We have

lim
N→∞

DQ
′′
(v̄)D = lim

N→∞
DQ

′′
(v0)D .

The following can be proved by using lemmas 2 and 4 of [28],

lim
N→∞

DQ
′′
(v0)D = E . (45)

where E is as defined in (44). After combining the equations,
(42), (43) and (45), the desired result is obtained.

B. Proofs of the theoretical results of the Sequential LSEs

Lemma 4: Let us consider Sc ={
θ :
∣∣θ − θ0

1

∣∣ > c;θ ∈ Θ1

}
. If for any c > 0,

lim inf inf
θ∈Sc

1

N

[
Q1 (θ)−Q1

(
θ0
1

)]
> 0 a.s., (46)

then θ̆1
a.s.−−→ θ0

1 as N → ∞.
Proof: This lemma can be proved in the similar manner

to lemma 1.

Proof of Theorem 7: Note that
1

N

[
Q1 (θ)−Q1

(
θ0
1

)]
= f (θ) + g (θ) , where,

f (θ) =
1

N

N∑
t=1

{(
A0

R1 cos
(
β0
1t

2
)
−A0

I1 sin
(
β0
1t

2
)
−AR

cos
(
βt2
)
+AI sin

(
βt2
))2

+
(
A0

I1 cos
(
β0
1t

2
)
+A0

R1

sin
(
β0
1t

2
)
−AI cos

(
βt2
)
−AR sin

(
βt2
))2}

+

2

N

N∑
t=1

{(
A0

R1 cos
(
β0
1t

2
)
−A0

I1 sin
(
β0
1t

2
)
−AR cos

(
βt2
)

+AI sin
(
βt2
))( p∑

k=2

A0
Rk cos

(
β0
kt

2
)
−A0

Ik sin
(
β0
kt

2
))

+(
A0

I1 cos
(
β0
1t

2
)
+A0

R1 sin
(
β0
1t

2
)
−AI cos

(
βt2
)
−AR

sin
(
βt2
)) ( p∑

k=2

A0
Rk sin

(
β0
kt

2
)
+A0

Ik cos
(
β0
kt

2
))}

,

g (θ) =
2

N

N∑
t=1

{
ϵR (t)

(
A0

R1 cos
(
β0
1t

2
)
−A0

I1 sin
(
β0
1t

2
)
−

AR cos
(
βt2
)
+AI sin

(
βt2
))

+ ϵI (t)
(
A0

I1 cos
(
β0
1t

2
)
+

A0
R1 sin

(
β0
1t

2
)
−AI cos

(
βt2
)
−AR sin

(
βt2
))}

.

Using lemma 4 of [28], lim
N→∞

sup
θ∈Sc

g (θ) = 0 a.s.. Hence,

lim inf inf
θ∈Sc

1

N

[
Q1 (θ)−Q1

(
θ0
1

)]
= lim inf inf

θ∈Sc

f (θ) .

For simplicity, let us assume p = 2. Consider Sc ={
θ :
∣∣θ − θ0

1

∣∣ ≥ 3c;θ ∈ Θ1

}
⊂ Sc1 ∪ Sc2 ∪ Sc3 = S, where,

Sc1 =
{
θ :
∣∣AR −A0

R1

∣∣ ≥ c;θ ∈ Θ1

}
⊂{

θ :
∣∣AR −A0

R1

∣∣ ≥ c;θ ∈ Θ1, β = β0
2 , (AR, AI) =

(
A0

R2, A
0
I2

)}
∪
{
θ :
∣∣AR −A0

R1

∣∣ ≥ c;θ ∈ Θ1, β = β0
1

}
∪{

θ :
∣∣AR −A0

R1

∣∣ ≥ c;θ ∈ Θ1, β = β0
2 , (AR, AI) ̸=

(
A0

R2, A
0
I2

)}
∪
{
θ :
∣∣AR −A0

R1

∣∣ ≥ c;θ ∈ Θ1, β ̸= β0
k, k = 1, 2

}
,

Sc2 =
{
θ :
∣∣AI −A0

I1

∣∣ ≥ c;θ ∈ Θ1

}
⊂{

θ :
∣∣AI −A0

I1

∣∣ ≥ c;θ ∈ Θ1, β = β0
2 , (AR, AI) =

(
A0

R2, A
0
I2

)}
∪
{
θ :
∣∣AI −A0

I1

∣∣ ≥ c;θ ∈ Θ1, β = β0
1

}
∪{

θ :
∣∣AI −A0

I1

∣∣ ≥ c;θ ∈ Θ1, β = β0
2 , (AR, AI) ̸=

(
A0

R2, A
0
I2

)}
∪
{
θ :
∣∣AI −A0

I1

∣∣ ≥ c;θ ∈ Θ1, β ̸= β0
k, k = 1, 2

}
,

Sc3 =
{
θ :
∣∣β − β0

1

∣∣ ≥ c;θ ∈ Θ1

}
Sc3 ⊂

{
θ :
∣∣β − β0

1

∣∣ ≥ c;θ ∈ Θ1, β = β0
2 , (AR, AI) =

(
A0

R2, A
0
I2

)}
∪
{
θ :
∣∣β − β0

1

∣∣ ≥ c;θ ∈ Θ1, β = β0
2 , (AR, AI) ̸=

(
A0

R2, A
0
I2

)}
∪
{
θ :
∣∣β − β0

1

∣∣ ≥ c;θ ∈ Θ1, β ̸= β0
k, k = 1, 2

}
.

Using lemma 2 of [28] for each of the above set, we have
that lim inf inf

θ∈T
f (θ) > 0 a.s., where T can be any of these

sets Sc1, Sc2 or Sc3. Therefore, the result follows.

Lemma 5: Under assumptions 1, 4 and 5,(
θ̆1 − θ0

1

)(√
ND

)−1 a.s.−−→ 0 as N → ∞, where

D = diag
(

1√
N
, 1√

N
, 1
N2

√
N

)
.

Proof: This lemma can be proved in the similar manner
of lemma 10 of [28].
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Proof of Theorem 8: Using the above lemma 5, we have:

ĂR1 = A0
R1+o (1) , ĂI1 = A0

I1+o (1) and β̆1 = β0
1+o

(
N−2

)
.

Thus, we have, Ă1e
iβ̆1t

2

= A0
1e

iβ0
1t

2

+ o (1) . (47)

Using (47) and following the similar arguments as in theorem
7, the result follows.
The proof of the theorem 10 directly follows from the lemma
stated below.

Lemma 6: If ϵ (t) satisfies the assumption 1, and ĂR, ĂI and
β̆ are obtained by minimizing the function given as follows:

Q(p+1) (θ) =
1

N

N∑
t=1

∣∣∣ϵ (t)−Aeiβt
2
∣∣∣2 ,

then ĂR
a.s.−−→ 0 and ĂI

a.s.−−→ 0.
Proof: Note that

Q(p+1) (θ) = R (θ) + o (1) , where,

R (θ) =
1

N

N∑
t=1

|ϵ (t)|2

− 2

N

N∑
t=1

{
ϵI (t)

(
AI cos

(
βt2
)
+AR sin

(
βt2
))

+ ϵR (t)(
AR cos

(
βt2
)
−AR sin

(
βt2
))}

+A2
R +A2

I .

Since R (θ) and Q(p+1) (θ) are equivalent as N → ∞, there-
fore, estimators of R (θ) and Q(p+1) (θ) would be equivalent.
Thus, we have:

ĂR =
1

N

N∑
t=1

ϵR (t) cos
(
β̆t2
)
+ ϵI (t) sin

(
β̆t2
)
+ o (1) .

ĂI =
1

N

N∑
t=1

ϵI (t) cos
(
β̆t2
)
− ϵR (t) sin

(
β̆t2
)
+ o (1) .

Using lemma 4 of [28], we obtain the desired result.

Proof of Theorem 11: The error sum of squares Q1 (θ) is
expressed as:

Q1 (θ) =

N∑
t=1

∣∣∣y1 (t)−Aeiβt
2
∣∣∣2 . (48)

Expanding Q
′

1(θ̆1) using Taylor series expansion, we get:

(θ̆1 − θ0
1)D

−1 = −Q
′

1(θ
0
1)D[DQ

′′

1 (θ̄1)D]−1. (49)

Using Lindeberg Feller CLT and lemma 2 of [28] and conjec-
ture 2 of [28], it can be shown that:

Q
′

1(θ
0
1)D

d−→ N3

(
0, σ2Σ1

)
; where, (50)

Σ1 =

 2 0 − 2
3A

0
I1

0 2 2
3A

0
R1

− 2
3A

0
I1

2
3A

0
R1

2
5

∣∣A0
1

∣∣2
 . (51)

Using θ̆1
a.s.−−→ θ0

1 as N → ∞,

lim
N→∞

DQ
′′

1 (θ̄1)D = lim
N→∞

DQ
′′

1 (θ
0
1)D.

Using lemmas 2 and 4 of [28], it can be shown that:

lim
N→∞

DQ
′′

1 (θ
0
1)D = Σ1. (52)

Using (49), (50) and (52), we get the asymptotic distribution of
the estimators of the first component. Asymptotic distribution
of θ̆k for k = 2 can be obtained along the similar lines using
lemma 5. Thus, this result can be proved for all k = 3, . . . , p
by using the similar arguments.

C. Proofs of the theoretical properties of the Sequential ALSEs

Lemma 7: Consider the following set Sc ={
β :
∣∣β − β0

1

∣∣ > c
}

. If for any c > 0,

lim sup sup
Sc

1

N

[
I1 (β)− I1

(
β0
1

)]
< 0 a.s., (53)

then β̃1
a.s.−−→ β0

1 as N → ∞.
Proof: This proof can be obtained by using the similar

arguments as in the lemma 2.

Lemma 8: Suppose β̃1 is the ALSE of β0
1 . If assumptions 1,

6 and 7 are satisfied, then N2
(
β̃1 − β0

1

)
a.s.−−→ 0 as N → ∞.

Proof: This lemma can be proved using the similar
arguments as in the lemma 3.

Proof of Theorem 12: We first derive strong consistency of
β̃1. For simplicity, assume that p = 2.
The set Sc =

{
β :
∣∣β − β0

1

∣∣ > c
}

can be split
into two parts as follows: Sc ⊂ S1

c ∪ S2
c ;

where S1
c =

{
β :
∣∣β − β0

1

∣∣ > c;β = β0
2

}
and

S2
c =

{
β :
∣∣β − β0

1

∣∣ > c;β ̸= β0
2

}
. Using lemmas 2 and

4 of [28], it can be shown that for some c > 0;

lim sup sup
S1
c

1

N

[
I1 (β)− I1

(
β0
1

)]
< 0 a.s. as N → ∞.

lim sup sup
S2
c

1

N

[
I1 (β)− I1

(
β0
1

)]
< 0 a.s. as N → ∞.

Hence, using lemma 7, β̃1
a.s.−−→ β0

1 as N → ∞.
Strong consistency of the estimators ÃR1 and ÃI1 can be
proved using the similar arguments used as in theorem 3.

Proof of Theorem 13: Using lemma 8 and theorem 12,

ÃR1 = A0
R1+o (1) , ÃI1 = A0

I1+o (1) and β̃1 = β0
1+o

(
N−2

)
.

Thus, Ã1e
iβ̃1t

2

= A0
1e

iβ0
1t

2

+ o (1) . (54)

Now, using (54) and following the similar arguments as in
theorem 12, we obtain the desired result.

Proof of Theorem 15: Note that ÃR(p+1) and ÃI(p+1) are the
ALSEs of the A0

R(p+1) and A0
I(p+1), respectively,

ÃR(p+1) =
1

N

N∑
t=1

(
yR(p+1) cos

(
β̃p+1t

2
)
+ yI(p+1) sin

(
β̃p+1t

2
))

,

ÃI(p+1) =
1

N

N∑
t=1

(
yI(p+1) cos

(
β̃p+1t

2
)
− yR(p+1) sin

(
β̃p+1t

2
))

,
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where, yp+1 is the data obtained by taking out the effect of first
p chirp components from the original data y1 (t), and yR(p+1)

and yI(p+1) are the real and imaginary parts of the data yp+1,
respectively. It implies that:

yR(p+1) = yR1 (t)−
p∑

k=1

(
ÃRk cos

(
β̃kt

2
)
− ÃIk sin

(
β̃kt

2
))

,

(55)

yI(p+1) = yI1 (t)−
p∑

k=1

(
ÃRk sin

(
β̃kt

2
)
+ ÃIk cos

(
β̃kt

2
))

.

(56)
Using theorem 14, (55) and (56) can be expressed as:
yR(p+1) = ϵR (t) + o (1) and yI(p+1) = ϵI (t) + o (1). Using
lemma 4 of [28], we obtain: ÃR(p+1)

a.s.−−→ 0, ÃI(p+1)
a.s.−−→ 0

as N → ∞. Hence, the result follows.

Proof of Theorem 16: We first derive that the asymptotic
distribution of (θ̃1 − θ0

1)D
−1 is identical as that of the

(θ̆1 − θ0
1)D

−1. We have

1

N
Q1 (θ) = C1 −

1

N
J1 (θ) + o (1) .

Here, C1 = 1
N

∑N
t=1 |y1 (t)|

2 and

1

N
J1 (θ) =

2

N

N∑
t=1

[
yR1 (t)

{
AR cos

(
βt2
)
−AI sin

(
βt2
)}

+yI1 (t)
{
AR sin

(
βt2
)
+AI cos

(
βt2
)}]

−A2
R −A2

I .

Now proceeding on the similar lines as in theorem 4, we
can show that the asymptotic distributions of θ̃1 and θ̆1 are
identical. Asymptotic distribution of θ̃k for k = 2 can be
obtained along the similar lines using lemma 8. Hence this
result can be proved for all k = 3, . . . , p by using the similar
arguments.
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