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Abstract

In literature, analysis of competing risk data based on different accelerated life testing

(ALT) modelings has been considered by many authors. However, as per our knowledge,

analysis of the Tampered Random Variable (TRV) modeling in presence of competing risk

data is not studied yet in the literature. In this paper, we considered the TRV modeling for a

simple step-stress life-testing (SSLT) where failures are observed due to more than one cause of

failure. The lifetime of the experimental units at each stress level follows Weibull distributions

with the same shape parameter and different scale parameters. In modeling of step-stress data

by using TRV modeling we introduced different tempering co-efficient for different causes of

failures. The maximum likelihood estimates of the model parameters and the tempering co-

efficients are obtained by using SSLT data. The associated asymptotic confidence intervals
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for all the unknown parameters are obtained using Type-II censoring scheme. Further, we

consider the Bayesian inference of the unknown model parameters based on fairly general

prior distributions. An extensive simulation study is performed to examine the method of

inference developed here. Then, we illustrate the proposed methodology with a real data set.

We also provide an optimality criterion to determine the optimal stress change time. Finally,

the sensitivity analysis is performed.

Keywords: Baseline lifetime, Tampered Random Variable Modeling, Tampering coefficients,

Competing Risk, Maximum Likelihood estimation, Bayesian Analysis

1 Introduction

Due to the continuous development and technological improvement of the manufacturing industry,

most of the industrial products, are highly reliable with complex structure, are commonly appear-

ing in our daily life. This difficulty is overcome by accelerated life testing (ALT), wherein the

experimental products are subjected to higher stress levels than the normal operating condition in

order to cause rapid failures. The factor that affect the lifetime of the products are called stress

factor. For example, temperature, voltage, humidity could be the stress factors for an electronic

equipment such as electric bulb, fan, laptop, toaster etc. Due to this increased stress-factor in

ALT experiment, one can obtained valuable information about the product reliability within short

experimental time.

The ALT experiment can be performed either a constant high stress level from the beginning

of the test or different stress factor can be put in different time interval. A special class of the

ALT which allows the experimenter to gradually increase the stress levels, during the experiment,

at some pre-fixed time points known as step-stress life testing (SSLT). In such a life-testing ex-

periment, a simple SSLT is a special case of a SSLT when it involves only two stress levels s1, s2

and one pre-fixed stress changing time point, say τ. Obviously we can generalized this idea from
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simple SSLT to a multiple SSLT experiment by considering more than two stress levels and stress

changing time points accordingly. The lifetime distribution under the initial normal stress level is

termed as the baseline lifetime distribution.

To relate the different lifetime distributions under the different stress levels, there are three dif-

ferent types of modeling assumptions. One of these is the Cumulative Exposure (CE) modeling

in which unknown constraints are introduced so that the two distributions at any two successive

stress levels coincide at the corresponding change time point to ensure continuity. See, for exam-

ple, Sedyakin (1966), Nelson (1980). Another approach, known as Tampered Failure Rate (TFR)

modeling, scales up the failure rates at the successive stress levels. See Bhattacharyya and Soejoeti

(1989) and Madi (1993) among others. The third approach, known as Tampered Random Vari-

able (TRV) modeling, scales down the remaining lifetime at the successive stress levels. See Goel

(1971), DeGroot and Goel (1979) for details. Sultana and Dewanji (2021) shown the relationship

between the TRV model with the other two models, namely, CE and TFR, under the multiple step-

stress framework. Also, the authors mentioned that TRV modeling equivalent with CEM and TFR

if and only if the baseline lifetime is exponential and the marginal distributions of each stress levels

follows scale parametric family, respectively. Therefore, one can note that these three models are

coincides when the baseline distribution is exponential. The main advantage of the TRV modeling

approach is that it can be readily generalized for multiple step-stress over the other two modelings.

Further, it is also useful to model discrete and multivariate life time which are not straightforward

for other two modelings. There are many works in the literature based on competing risk scenario

using CEM and TFR modeling. However, as per our knowledge, there are no work based on TRV

modeling in presence of competing risk data. In this paper, we consider the TRV modeling when

the data are coming in competing risk pattern and we are taken Weibull lifetime distribution for the

baseline lifetime.

In this paper, we consider a simple SSLT model for complete sample when only two different

stress levels, say, s1, s2 and only two causes of failures say, Cause-I and Cause-II are present. Here,
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it is assume that when the pre fixed time point τ occurred then the stress level changes from s1 to

s2.

In this problem, the failure time distribution for T1 and T2 at the stress level s1 and for cause−j

is assumed to be a Weibull distribution with the common shape parameter α and the different scale

parameters θj for j = 1, 2, respectively. Then the tampered random variable (TRV) model for T1

and T2 can be written as

T̃1 =


T1, if 0 < t ≤ τ

τ + β(T2 − τ), if t > τ ,
(1)

and

T̃2 =


T2, if 0 < t ≤ τ

τ + β(T2 − τ), if t > τ ,
(2)

where τ is the stress changing time, and 0 < β < 1 is the acceleration factor.

The rest of the paper is organized as follows. In Section 2, the model is described along

with the corresponding likelihood for Type-II censored data and we have shown the existence and

uniqueness of the MLEs in graphical representation. Section 3 describes the associated asymptotic

confidence intervals for all the unknown parameters are obtained using simple SSLT TRV mod-

eling. The Bayesian inference, of the unknown model parameters based on fairly general prior

distributions, is also considered in Section 4. Section 5, we provide some likelihood-ratio tests to

evaluate the equivalence of the shape parameters α1, α2 and the importance of acceleration factor β

among two different Weibull competing risks model under Type-II censoring scheme. while Sec-

tion 6, presents some simulation studies to investigate the finite sample properties of the MLEs.

We illustrate the proposed methods through the analysis of a real life data sets in Section 7. In

section 8, we obtain an optimal stress changing time point τ by using different optimality criteria,

while Section 9 ends with some concluding remarks.
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2 Model Description and Likelihood Function

Let n identical units are placed on a life test under initial stress level s1. Then the successive failure

times and the corresponding risk factor are recorded. When the time τ , prefixed, occurred the stress

level is changed from s1 to s2 and the life test continues until a pre specified r(≤ n) number of

failures are observed. When r is taken to be n then a complete data set of failure observations

would result for this simple SSLT (i.e., no censoring). Suppose each unit fails by one of two fatal

risk factors and the time-to-failure by each competing risk has an independent Weibull distribution

with same shape parameter α, which follows the TRV model. Let θj be the location parameter by

the risk factor j for j = 1, 2. Then the cumulative distribution function (CDF) of the lifetime Tj

due to the risk j for j = 1, 2 is given by

Fj(t) = Fj(t;α, θj) =


1− e−θjt

α
, if 0 < t ≤ τ

1− e−θj(τ+
t−τ
β

)α , if t > τ ,
(3)

and the corresponding density function (PDF) of Tj is given by

fj(t) = fj(t;α, θj, θ2j) =


α θj t

α−1 e−θjt
α
, if 0 < t ≤ τ

αθj
β
(τ + t−τ

β
)α−1e−θj (τ+

t−τ
β

)α , if t > τ ,
(4)

for j = 1, 2. Since we observe T = min{T1, T2}, only the smaller of T1 and T2, which denote the

overall failure time of a test unit. Then its CDF and PDF are radily obtained as

F (t) = F (t;α, θ) = 1− (1− F1(t))(1− F2(t)) =


1− e−(θ1+θ2)tα , if 0 < t ≤ τ

1− e−(θ1+θ2)(τ+ t−τ
β )

α

, if t > τ ,
(5)
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and

f(t) = f(t;α, θ) =


α (θ1 + θ2) t

α−1 e−(θ1+θ2)tα , if 0 < t ≤ τ

α(θ1+θ2)
β

(
τ + t−τ

β

)α−1

e−(θ1+θ2) (τ+ t−τ
β )

α

, if t > τ ,
(6)

respectively, where θ = (θ1, θ2). Furthermore, let C denote the indicator for the cause of failure.

Then under our assumptions, the joint PDF of (T,C) is given by

fT,C(t, j) = fj(t)(1− Fk(t)) =


α θj t

α−1 e−(θ1+θ2)tα , if 0 < t ≤ τ

αθj
β

(
τ + t−τ

β

)α−1

e−(θ1+θ2) (τ+ t−τ
β )

α

, if t > τ ,
(7)

for j, k = 1, 2, j ̸= k.

Let us now define

N1j =the number of units that fail before τ due to the risk factor j,

N2j =the number of units that fail after τ due to the risk factor j,

for j = 1, 2. If we let N̂1 denote the total number of failures before τ and N̂2 the total number of

failures after τ , then according to the testing scheme we have N̂1 = N11 +N12, N̂2 = N21 +N22

with N̂1 + N̂2 = r ≤ n, with the life testing scheme described above, the following failure times

will be then observed

{0 < t1:n < t2:n < · · · < tn̂1:n < τ ≤ tn̂1+1:n < · · · < tr:n},

where n̂1 denotes the observed value of N̂1. For notational simplicity, let us denote N = (N1,N2).

For Ni = (Ni1, Ni2) for i = 1, 2, let n denote the observed integer vector of N.

Since each failure times is also accompanied by the corresponding cause of failure, let c =

(c1, c2, · · · cr) be the observed sequence of causes of failure corresponding to the observed failure
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time t = (t1:n, t2:n, · · · , tr:n). We also denote the relative risk on a test to the risk factor j by

πj = Pr[C = j] =
θj

θ1 + θ2
, j = 1, 2.

Then under the assumption of the TRV model, we formulate the likelihood of η = (θ1, θ2, α, β)

based on this Type-II censored data as

L(η) = L(η|(t, c)) =
n!

(n− r)!

(
n̂1∏
i=1

fT,C(ti:n, ci)

)(
r∏

i=n̂1+1

fT,C(ti:n, ci)

)
[1− F (tr:n)]

n−r

=
n!

(n− r)!
αrθn11+n21

1 θn12+n22
2 β−(r−n̂1)

n̂1∏
i=1

tα−1
i e−(θ1+θ2)tαi ×

r∏
i=n̂1+1

(
τ +

ti − τ

β

)α−1

e−(θ1+θ2)(τ+ ti−τ

β )
α

× e−(θ1+θ2)(n−r)(τ+ tr:n−τ
β )

α

The log-likelihood function can be written as

l(η) = r logα + (n11 + n21) log θ1 + (n12 + n22) log θ2 − (r − n̂1) log β

+(α− 1)

[
n̂1∑
i=1

log ti +
r∑

i=n̂1+1

log

(
τ +

ti − τ

β

)]
− (θ1 + θ2)

n̂1∑
i=1

tαi

−(θ1 + θ2)

[
r∑

i=n̂1+1

(
τ +

ti − τ

β

)α

+ (n− r)

(
τ +

tr:n − τ

β

)α
]

(8)

The MLEs of the unknown parameters can be obtained by maximizing (8) with respect to the

unknown parameters. For known α and β, the MLEs of θ1 and θ2 are given by

θ̂1 =
n11 + n21

D1(α, β)
, θ̂2 =

n12 + n22

D1(α, β)
,
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Here, r = n̂1 + n̂2 = n11 + n12 + n21 + n22 and

D1(α, β) =

n̂1∑
i=1

tαi +
r∑

i=n̂1+1

(
τ +

ti − τ

β

)α

+ (n− r)

(
τ +

tr:n − τ

β

)α

.

Note that MLEs exist only for nij > 0 i, j = 1, 2. In case of unknown α and β, the explicit form

of MLEs of α and β do not exist. Let us consider the profile log-likelihood of α and β without the

additive constant

l1(α, β) = r logα− r logD1(α, β)− (r − n̂1) log β

+ (α− 1)

[
n̂1∑
i=1

log ti +
r∑

i=n̂1+1

log

(
τ +

ti − τ

β

)] (9)

The MLEs of α and β, denoted by α̂ and β̂ can be obtained with simultaneously solving two non-

linear equations (see Appendix) which can be obtained by differentiating the profile log-likelihood

given in (9) with respect to α and β and equating them to zero. The behavior of the log-likelihood

function (9) is noteworthy to illustrate in terms of a detailed overview to have an idea of its unique-

ness and existence. For this purpose, in Figures 1 and 2 the appropriate behavior pattern is illus-

trated by surface and contour plots. A simulated data is used by considering n = 50, m = 45 and

two different sets of parameter values as (θ1, θ2, α, β, τ) = (1.25, 1.25, 2.25, 2.00, 0.50, 0.60) as

Set 1 and (θ1, θ2, α, β, τ) = (0.50, 0.75, 0.50, 0.25, 1.00) as Set 2. It is seen that the log-likelihood

function follows a quasi-tunnel shape. This confirms that the MLEs are unique.
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Figure (1) Surface plots for the profile log-likelihood function of α and β based on the simulated
data (n = 50, r = 45) under Set 1 (left) and Set 2 (right).
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Figure (2) Contour plots for the profile log-likelihood function of α and β based on the simulated
data (n = 50, r = 45) under Set 1 (left) and Set 2 (right).

3 Asymptotic Confidence Interval

In this section we construct the asymptotic confidence intervals (ACI) of the unknown parameter

by using the observed Fisher information matrix and then using asymptotic normality results of the
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MLEs. Suppose the parameter vector η = (θ1, θ2, α, β)
T . The observed Fisher information matrix

is given by

F = (fij) =

(
− ∂2l

∂ηi∂ηj

)
(10)

The elements of the Fisher information matrix are given in the Appendix. The asymptotic distri-

bution of η̂ = (θ̂1, θ̂2, α̂, β̂)
T is given by η̂ − η ∼ N4(0, F

−1). Therefore, 100(1 − δ)% ACI of

ηi is given by ηi ± Z1− p
2

√
vii where vii is the (i, i)th element of the matrix F−1 which is given in

Appendix.

In some cases, the approximate confidence intervals do not always guarantee to fall inside the unit

interval (0, 1) for η and sometimes it can provide a higher upper or a negative lower bound. In

these cases, σ2
ln η̂ = ση̂/η̂

2 and ln η̂−ln η√
η̂−2ση̂

∼ N(0, 1) can be obtained by Taylor series expansion and

the delta method. Thus, the 100(1 − γ)% asymptotic confidence interval of η can be obtained as

follows (
exp

[
ln η̂ − Z γ

2
η̂−1ση̂

]
, exp

[
ln η̂ + Z γ

2
η̂−1ση̂

])
(11)

where Zγ denotes the 100γth percentile of the standard normal distribution N(0, 1).

4 Bayesian Inference

In this section, we handle the Bayesian inference method for the estimations of the unknown pa-

rameters η = (θ1, θ2, α, β). We first assume independent gamma priors for θ1, θ2, α and uniform

prior as a flat prior for β. That is, θ1, θ2 and α have GA(a1, b1), GA(a2, b2) and GA(a3, b3) pri-

ors with non-negative hyperparameters a1, b1, a2, b2, a3, b3 > 0 and β follows uniform prior as

π(β) = 1, 0 < β < 1. Thus, assumed joint prior density of independent parameters can be given
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as

π(η) = π(θ1)π(θ2)π(α)π(β)

∝ θa1−1
1 e−b1θ1θa2−1

2 e−b2θ2αa3−1e−b3α, θ1 > 0, θ2 > 0, α > 0, 0 < β < 1

(12)

The joint posterior density function of parameters can be obtained by using the observed censored

samples and the prior distributions of the parameters as

L(t, c, η) ∝ L(η|t, c)π(θ1)π(θ2)π(α)π(β)

× αr+a3−1θn11+n21+a1−1
1 θn12+n22+a2−1

2 β−(r−n̂1)e−αb3

× e(α−1)
[∑n̂1

i=1 log(ti)+
∑r

i=n̂1+1 log
(
τ+

ti−τ

β

)]
e−θ1

(
b1+D1(α,β)

)
e−θ2

(
b2+D1(α,β)

) (13)

Thus, the posterior distribution of the parameters θ1, θ2, α and β can be obtained by simplifying

the Equation (13) as follows

π(θ1|α, β, t, c) ∝ GA(n11 + n21 + a1, D1(α, β) + b1)

π(θ2|α, β, t, c) ∝ GA(n12 + n22 + a2, D1(α, β) + b2)

and

π(α|θ1, θ2, β, t, c) ∝ αr+a3−1e−α
[
b3−

∑n̂1
i=1 log(ti)−

∑r
i=n̂1+1 log

(
τ+

ti−τ

β

)]
e−(θ1+θ2)D1(α,β)

π(β|θ1, θ2, α, t, c) ∝ β−(r−n̂1)e(α−1)
∑r

i=n̂1+1 log
(
τ+

ti−τ

β

)
× e−(θ1+θ2)

[∑r
i=n̂1+1(τ+

ti−τ

β )
α
+(n−r)(τ+ tr:n−τ

β )
α
]

It is clearly seen that the samples for θi, i = 1, 2 can be generated using the posterior gamma

distributions. Since, D1(α, β) ≥ 0 and the hyperparameters are non-negative values, the posterior

distributions have proper gamma densities. On the other hand, the density in π(α|θ1, θ2, β, t, c)

and π(β|θ1, θ2, α, t, c) can not be reduced analytically to well-known distributions and therefore it
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is not possible to sample directly by standard methods. It is observed that the density plots of the

conditional posterior densities of α and β are like to Gaussian distribution (see Figure 3). In this

case, we propose Metropolis-Hasting (M-H) sampling in Gibbs algorithm with normal proposal

distribution as suggested by Tierney Tierney (1994).

The algorithm for Gibbs sampling with the M-H method can be described as follows:

Step 1: Start by using the initial values of (θ(0)1 , θ
(0)
2 , α(0), β(0))

Step 2: Set t = 1

Step 3: Generate α(t) from GA
(
n11 + n21 + a1, D1(α

(t−1), β(t−1)) + b1
)
.

Step 4: Generate λ(t) from GA
(
n12 + n22 + a2, D1(α

(t−1), β(t−1)) + b2).

Step 5: Generate α(t) from π(α|η) by using the M-H algorithm with normal proposal N(α(t−1), σ2
α̂).

• Let v = α(t−1) and generate w from the proposal as w = N(α(t−1), σα̂).

• Let p(v, w) = min

{
1,

π(w|θ(t)1 ,θ
(t)
2 ,β(t−1))N(v,σβ̂)

π(v|θ(t)1 ,θ
(t)
2 ,β(t−1))N(w,σ2

α̂)

}
• Generate U from U(0, 1), then accept proposal if U ≤ p(v, w) and set α(t) = w or

otherwise α(t) = v

Step 6: Compute β(t) from π(β|η) by using the M-H algorithm similarly to Step 5 at θ(t)1 , θ
(t)
2 , α(t).

Step 7: Set t = t+ 1.

Step 8: Repeat Step 3 to Step 7, for N times.

Then, the approximate posterior mean of η under the squared error (η̂BMC) can be derived as

η̂BMC =
1

N −B

N∑
t=B+1

η(t) (14)
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where B is the burn-in period. Then, the 100(1 − γ)% HPD credible interval can be constructed

by using the method proposed by Chen and Shao Chen and Shao (1999) as

(
η̂BMC[ γ

2
N ], η̂

B
MC[(1− γ

2
)N ]

)

where [γ
2
N ] and [(1 − γ

2
)N ] are the smallest integers less than or equal to γ

2
N and (1 − γ

2
)N ,

respectively.
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β

Figure (3) Density plots for the posterior distributions of α and β.

5 Some Testing Problems

In this section, we provide some likelihood-ratio tests to evaluate the equivalence of the shape pa-

rameters α1, α2 and the importance of acceleration factor β among two different tampered random

variables from the Weibull competing risks model under Type-II censoring scheme. It is clearly
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seen from Eqs. (1-2), the data is not exposed to an acceleration in the case of β = 1. Therefore,

experimenters may need to test if the data has an acceleration factor. In this way, the following

hypothesis testings are proposed as

Test I H0 : α1 = α2 = α versus H1 : α1 ̸= α2

Test II H0 : β1 = 1 versus H1 : β ̸= 1

Under large sample size n, the likelihood-ratio statistics for Test I

−2{ℓ(θ́1, θ́2, ά, β́)− ℓ(θ̂1, θ̂2, α̂1, α̂2, β̂)} ∼ χ2
1

where ℓ(θ1, θ2, α, β) is the log-likelihood function at (8) when parameters are common. Thus,

the asymptotic distribution of −2{ℓ(θ́1, θ́2, ά, β́) − ℓ(θ̂1, θ̂2, α̂1, α̂2, β̂)} ∼ χ2
1 can be used to con-

struct the likelihood ratio test for Test I, and reject H0 under this case if −2{ℓ(θ́1, θ́2, ά, β́) −

ℓ(θ̂1, θ̂2, α̂1, α̂2, β̂)} ∼ χ2
1. > ξ∗ where ξ∗ is such that P (χ2

1 > ξ∗) is equal to the size of the test.

Similarly, the following likelihood-ratio statistics

−2{ℓ(θ́1, θ́2, ά, β́)− ℓ(θ̂1, θ̂2, α̂, β̂ = 1)} ∼ χ2
1

can be used to construct the likelihood ratio test for Test II. The rejection of the null hypothesis

indicates that the corresponding data is not exposed to any acceleration factor.

6 Simulations

In this section, we provide different simulation schemes for the purpose of illustrative examples

of the theoretical findings. Initially, we generate accelerated Weibull samples by using the inverse

transformation method. For this purpose, we use the following quantile function obtained from
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Equation 3

F−1
j (u;α, θj) =


[
− 1

θj
ln(1− u)

]1/α
, if 0 < t ≤ τj

β

{[
− 1

θj
ln(1− u)

]1/α − τj

}
+ τj, if t > τj ,

(15)

where U denotes random sample from the uniform distribution and τj = 1 − e−θjτ
α . Thus, we

generate random samples with sample sizes 25, 35 and 50 by using Equation 15. Further, in the

Type-II censoring framework, we used two different pre-specified number of failures in each sam-

ple sizes. Therefore, we choose r = 18 and r = 22 for n = 25, r = 28 and r = 32 for n = 35

and r = 40 and r = 45 for n = 50, respectively. We consider two different sets of the actual

parameter values. In the first scheme, we take (θ1, θ2, α, β) = (1.25, 2.25, 2.00, 0.50) and con-

sidered two different stress change points as τ = 0.50 and τ = 0.60. Then, we consider a more

accelerated sample by taking smaller acceleration factor as (θ1, θ2, α, β) = (0.50, 0.75, 0.50, 0.25)

with τ = 0.75 and τ = 1.00. In both schemes, we determine stress change points by considering

the ranges of the generated samples. These ranges always change depend on the different selec-

tion of the actual parameter values. We used R Team et al. (2021) software in the computational

processes. In MLE computations, we used ”L-BFGS-B” method in ”optim” function to optimize

the profile log-likelihood function given in Equation ?? within restricted 0 < β < 1 area. We

determine the significance level as 0.05 for approximate confidence intervals. Then, we repeated

simulations 2000 times. In Bayesian procedure, we used informative hyper-parameter values by

considering the mean of the gamma priors as
(
ai
bi

)
for i = 1, 2, 3. Thus, we determined (ai, bi) as

(1, 25, 1.00), (2, 25, 1.00) and (2, 00, 1.00) for the first scheme and (0, 50, 1.00), (0, 75, 1.00) and

(0, 50, 1.00) for the second scheme. It is seen that, means of the gamma priors provide actual val-

ues of the parameters using these hyper-parameters. Then, we run MCMC algorithm 3500 times in

each iteration of 2000 replication. We discard the first 500 values in burn-in period. Since Markov

chains naturally generate autocorrelated samples, we prefer to use thinning procedure and we take
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every third variate as uncorrelated samples from the remaining sample after the burn-in process.

Thus, we obtain 1000 uncorrelated Markov chains and we repeat this process 2000 times.

We present bias values and mean squared errors (MSE) of the point estimates and average lengths

(AL) with corresponding coverage probabilities (CP) of the approximate confidence intervals. All

results of these simulation schemes are presented in Tables 1, 2, 3 and 4. In the general view, we

observe consistent results in all cases. It is observed that the biases, MSEs and ALs are getting

smaller in parallel to the increasing sample sizes. The CPs are mostly obtained very close to their

actual value 0.95. In the overall case, the informative Bayes estimation method provides better

results than MLE. The difference between the two estimators are decreasing when the sample size

increases. This outcome show the superiority of Bayes estimation in small samples. Especially,

confidence intervals based on the HPD method are obtained quite smaller than the ACI and also it

provides as good CPs as delta method. When we change the pre-fixed number of failures or stress

change time, we can obtain similar performances in all cases. These consistent performances prove

the efficiency and productivity of the theoretical findings.

7 Numerical Example

In this section, we used a real data set which was originally analyzed by Hoel (1972) and used by

various authors such as Kundu et al. (2003), Pareek et al. (2009), Sarhan et al. (2010), Cramer and

Schmiedt (2011). In this data study, Hoel Hoel (1972) tested a male mice exposed to radiation dose

of 300 roentgens at age of 5-6 weeks. We handle this lifetime data under two causes of failure;

reticulum cell sarcom as a first cause (1) and other causes as a second cause (0) of failure. This

data used by Kundu et al. Kundu et al. (2003) under the assumption that the lifetime distributions

of the individual causes are independent and exponentially distributed random variables. Further,

Pareek et al. (2009) studied same data for Weibull progressively censored Weibull competing risks

data. Thus, we handle this data and we also scaled data by dividing 1000 for computational sim-
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Table (1) Bias and MSEs of the estimations with the ALs and CPs of the corresponding approx-
imate confidence intervals for θ1 = 1.25, θ2 = 2.25, α = 2.00, β = 0.50 and τ = 0.50.

n r η̂ Bias MSE AL CP

MLE Bayes MLE Bayes ACI HPD ACI HPD

25 18 θ̂1 0.19608 0.03050 0.98310 0.18380 4.53402 2.15596 0.96650 0.96850

θ̂2 0.34136 0.06401 2.51521 0.36986 7.05864 3.29280 0.97200 0.98050

α̂ 0.13363 0.04754 0.32109 0.10545 2.11303 1.55490 0.95000 0.97700

β̂ 0.02362 0.05644 0.07324 0.02467 1.67212 0.71105 0.94150 0.95900

22 θ̂1 0.23636 0.01149 1.09038 0.20158 4.20923 2.10904 0.96450 0.96600

θ̂2 0.41212 0.01875 2.24528 0.41193 6.61109 3.27826 0.96600 0.98100

α̂ 0.10205 0.08374 0.26262 0.10052 2.02843 1.50845 0.95350 0.96950

β̂ 0.02033 0.03405 0.05763 0.01875 1.24763 0.66602 0.97600 0.97050

35 28 θ̂1 0.18401 0.01034 0.56131 0.18020 3.21350 1.94833 0.95500 0.96250

θ̂2 0.34965 0.02781 1.57761 0.40243 5.13346 3.04707 0.96000 0.97950

α̂ 0.10128 0.04137 0.19075 0.08117 1.70171 1.34347 0.95050 0.97950

β̂ 0.00781 0.03067 0.04782 0.01755 1.13013 0.65519 0.97000 0.97250

32 θ̂1 0.18850 0.00133 0.63895 0.17893 3.14558 1.89904 0.95450 0.96550

θ̂2 0.33022 0.00356 1.49208 0.37314 5.00356 2.98937 0.95800 0.97750

α̂ 0.08418 0.06202 0.19107 0.08469 1.67593 1.32930 0.94400 0.96700

β̂ 0.01983 0.02662 0.04332 0.01634 0.95979 0.61589 0.97500 0.97350

50 40 θ̂1 0.14260 0.01857 0.37370 0.15384 2.45927 1.72403 0.95100 0.95850

θ̂2 0.26887 0.04143 1.06489 0.37628 3.92040 2.71789 0.94850 0.97200

α̂ 0.07798 0.02810 0.13782 0.06981 1.39470 1.16897 0.93800 0.96900

β̂ 0.01832 0.01567 0.04075 0.01685 0.91544 0.60704 0.95400 0.96350

45 θ̂1 0.12677 0.00840 0.33628 0.13802 2.36475 1.68328 0.95950 0.96450

θ̂2 0.22741 0.01273 0.92321 0.33510 3.79959 2.67467 0.95150 0.97050

α̂ 0.06260 0.04178 0.12285 0.06410 1.38020 1.16461 0.95450 0.97050

β̂ 0.02146 0.01011 0.03134 0.01410 0.78685 0.57668 0.96300 0.97150
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Table (2) Bias and MSEs of the estimations with the ALs and CPs of the corresponding approx-
imate confidence intervals for θ1 = 1.25, θ2 = 2.25, α = 2.00, β = 0.50 and τ = 0.60.

n r η̂ Bias MSE AL CP

MLE Bayes MLE Bayes ACI HPD ACI HPD

25 18 θ̂1 0.20624 0.19555 0.25317 0.15691 2.44243 1.75131 0.96500 0.94150

θ̂2 0.35727 0.34431 0.58800 0.32767 3.63109 2.63153 0.96100 0.96200

α̂ 0.01012 0.04849 0.20022 0.11663 1.83331 1.54043 0.95950 0.96900

β̂ 0.12639 0.09873 0.08717 0.03475 1.83390 0.73658 0.86900 0.93397

22 θ̂1 0.13308 0.00679 0.48471 0.19237 3.03493 1.96930 0.95900 0.96500

θ̂2 0.25366 0.02474 1.14271 0.38329 4.61246 2.98881 0.96950 0.97850

α̂ 0.11539 0.01808 0.21489 0.10113 1.78381 1.45664 0.95200 0.97550

β̂ 0.01340 0.04724 0.06654 0.02296 1.52356 0.70218 0.94700 0.95898

35 28 θ̂1 0.01155 0.05135 0.22741 0.14000 2.21180 1.68546 0.97450 0.96700

θ̂2 0.01966 0.09101 0.47594 0.26086 3.32985 2.54950 0.97450 0.97350

α̂ 0.03112 0.03915 0.13735 0.08912 1.46170 1.26539 0.95000 0.95800

β̂ 0.04403 0.05324 0.06553 0.02481 1.53095 0.70661 0.92900 0.95500

32 θ̂1 0.11502 0.02097 0.35190 0.17351 2.35772 1.73889 0.95400 0.96700

θ̂2 0.20171 0.03686 0.77461 0.34416 3.59167 2.64650 0.96150 0.97350

α̂ 0.06048 0.03765 0.13948 0.08258 1.44326 1.24162 0.95150 0.96400

β̂ 0.00043 0.02995 0.04804 0.01924 1.10535 0.65491 0.95850 0.96900

50 40 θ̂1 0.01389 0.02011 0.15892 0.11050 1.81185 1.49186 0.96900 0.96198

θ̂2 0.02130 0.03830 0.33716 0.21870 2.73484 2.25900 0.97150 0.96798

α̂ 0.02861 0.02503 0.08596 0.06130 1.20044 1.07786 0.96050 0.96598

β̂ 0.02560 0.03794 0.05703 0.02247 1.34999 0.68239 0.93147 0.95894

45 θ̂1 0.08429 0.02083 0.22440 0.13570 1.86892 1.51151 0.95450 0.95400

θ̂2 0.14581 0.03387 0.51189 0.28785 2.86021 2.31766 0.94600 0.95950

α̂ 0.05772 0.01385 0.09846 0.06550 1.20324 1.08135 0.94500 0.96200

β̂ 0.01130 0.01234 0.03795 0.01661 0.93050 0.62097 0.95800 0.96700
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Table (3) Bias and MSEs of the estimations with the ALs and CPs of the corresponding approx-
imate confidence intervals for θ1 = 0.50, θ2 = 0.75, α = 0.50, β = 0.25 and τ = 0.75.

n r η̂ Bias MSE AL CP

MLE Bayes MLE Bayes ACI HPD ACI HPD

25 18 θ̂1 0.04186 0.04056 0.02723 0.02365 0.77350 0.66231 0.97700 0.94600

θ̂2 0.07640 0.07336 0.03637 0.03174 0.93893 0.82716 0.97850 0.96100

α̂ 0.02305 0.00118 0.01547 0.01262 0.48247 0.45454 0.95350 0.95950

β̂ 0.00142 0.04487 0.04605 0.02420 1.45131 0.68798 0.93150 0.95298

22 θ̂1 0.02590 0.02205 0.03757 0.03138 0.82363 0.70883 0.95900 0.95350

θ̂2 0.03614 0.03062 0.05948 0.04879 1.02499 0.90200 0.95050 0.95900

α̂ 0.03886 0.01622 0.01597 0.01232 0.46212 0.43108 0.93200 0.95550

β̂ 0.05357 0.06260 0.05304 0.02621 1.25758 0.66364 0.96150 0.96400

35 28 θ̂1 0.00898 0.00413 0.02358 0.02082 0.68012 0.60576 0.96650 0.96050

θ̂2 0.01431 0.00757 0.03628 0.03199 0.84583 0.76897 0.96950 0.96200

α̂ 0.02297 0.00486 0.01022 0.00859 0.38485 0.36640 0.94550 0.95600

β̂ 0.02667 0.05201 0.03776 0.02308 1.05636 0.64007 0.95100 0.95550

32 θ̂1 0.01862 0.01332 0.02892 0.02498 0.66509 0.59600 0.94150 0.94100

θ̂2 0.03956 0.03149 0.04671 0.03984 0.84440 0.76810 0.94700 0.95050

α̂ 0.02587 0.00847 0.01000 0.00816 0.37379 0.35331 0.94550 0.95650

β̂ 0.05066 0.05390 0.04214 0.02378 0.92393 0.60346 0.94550 0.95450

50 40 θ̂1 0.00992 0.00430 0.01749 0.01604 0.55804 0.51378 0.96150 0.95650

θ̂2 0.00780 0.00053 0.02873 0.02629 0.69373 0.64702 0.95850 0.95750

α̂ 0.01891 0.00445 0.00681 0.00596 0.31832 0.30717 0.94400 0.95250

β̂ 0.02953 0.04856 0.02959 0.02059 0.81283 0.58849 0.95300 0.95800

45 θ̂1 0.01487 0.00824 0.01805 0.01605 0.54531 0.50300 0.95750 0.96050

θ̂2 0.02947 0.01913 0.03214 0.02811 0.69226 0.64620 0.93850 0.94500

α̂ 0.02071 0.00585 0.00695 0.00591 0.31070 0.29857 0.94000 0.94850

β̂ 0.03585 0.04214 0.02583 0.01802 0.69779 0.54856 0.95500 0.96200
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Table (4) Bias and MSEs of the estimations with the ALs and CPs of the corresponding approx-
imate confidence intervals for θ1 = 0.50, θ2 = 0.75, α = 0.50, β = 0.25 and τ = 1.00.

n r η̂ Bias MSE AL CP

MLE Bayes MLE Bayes ACI HPD ACI HPD

25 18 θ̂1 0.08674 0.08117 0.02512 0.02226 0.68354 0.59391 0.97150 0.93250

θ̂2 0.13162 0.12324 0.03916 0.03446 0.82890 0.74348 0.96900 0.93850

α̂ 0.00655 0.01511 0.01197 0.01055 0.45679 0.43464 0.96600 0.95200

β̂ 0.03066 0.03283 0.04028 0.02261 1.43047 0.68984 0.91050 0.93947

22 θ̂1 0.00582 0.00411 0.02815 0.02421 0.77275 0.67275 0.97100 0.95800

θ̂2 0.03238 0.02873 0.04845 0.04102 0.96659 0.86314 0.95900 0.96700

α̂ 0.03316 0.01230 0.01401 0.01129 0.43842 0.41411 0.94500 0.95750

β̂ 0.04562 0.06594 0.05137 0.02632 1.34931 0.68313 0.95950 0.96750

35 28 θ̂1 0.01775 0.01874 0.01961 0.01795 0.62483 0.56416 0.97250 0.95398

θ̂2 0.02797 0.02984 0.02750 0.02495 0.76802 0.70629 0.97500 0.96398

α̂ 0.01604 0.00011 0.00884 0.00776 0.36797 0.35267 0.95200 0.95148

β̂ 0.00951 0.04678 0.03937 0.02339 1.16060 0.65138 0.94297 0.95598

32 θ̂1 0.01597 0.01183 0.02507 0.02216 0.63792 0.57653 0.95050 0.94450

θ̂2 0.02428 0.01836 0.03978 0.03500 0.79420 0.72949 0.95000 0.94850

α̂ 0.02560 0.00925 0.00888 0.00742 0.36050 0.34330 0.94600 0.95500

β̂ 0.04656 0.05818 0.03869 0.02332 0.97161 0.62429 0.96550 0.96750

50 40 θ̂1 0.00116 0.00403 0.01413 0.01329 0.52871 0.49007 0.97000 0.96600

θ̂2 0.01126 0.01527 0.02139 0.02021 0.64867 0.61000 0.97000 0.95550

α̂ 0.01244 0.00049 0.00639 0.00584 0.30161 0.29245 0.94000 0.94200

β̂ 0.01469 0.04990 0.03217 0.02182 0.94693 0.62649 0.94250 0.95400

45 θ̂1 0.00979 0.00470 0.01690 0.01542 0.52326 0.48578 0.95300 0.95000

θ̂2 0.02361 0.01562 0.02900 0.02618 0.65732 0.61889 0.93950 0.95000

α̂ 0.01713 0.00352 0.00612 0.00537 0.29675 0.28673 0.94500 0.95250

β̂ 0.03038 0.04348 0.02602 0.01893 0.72400 0.56314 0.95400 0.95750
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plicity. We consider to pre-determined number of failures item as r = 65 and r = 70 from n = 77

complete data. Also, two different stress change times are handled as τ = 0.50 and τ = 0.65. For

illustration, we present the competing risk data under τ = 0.65 and r = 70 as in the following

ti < τ

(0.040; 0), (0.042; 0), (0.051; 0), (0.062; 0), (0.163; 0), (0.179; 0), (0.206; 0),

(0.222; 0), (0.228; 0), (0.249; 0), (0.252; 0), (0.282; 0), (0.317; 1), (0.318; 1),

(0.324; 0), (0.333; 0), (0.341; 0), (0.366; 0), (0.385; 0), (0.399; 1), (0.407; 0),

(0.420; 0), (0.431; 0), (0.441; 0), (0.461; 0), (0.462; 0), (0.482; 0), (0.495; 1),

(0.517; 0), (0.517; 0), (0.522; 0), (0.524; 0), (0.525; 1), (0.536; 1), (0.549; 1),

(0.552; 1), (0.554; 1), (0.557; 1), (0.558; 1), (0.564; 0), (0.567, 0), (0.571, 1),

(0.586; 1), (0.586; 0), (0.594; 1), (0.596; 1), (0.605; 1), (0.612; 1), (0.619; 0),

(0.620; 0), (0.621; 1), (0.628; 1), (0.631; 1), (0.636; 1), (0.643; 1), (0.647; 1),

(0.647; 0), (0.648; 1), (0.649; 1)

ti ≥ τ
(0.651; 0), (0.65; 0), (0.661; 1), (0.66; 1), (0.666; 1), (0.67; 1), (0.686; 0),

(0.69; 1), (0.697; 1), (0.700; 1), (0.70; 1)

where the first values in the parenthesis denote the lifetime ti and the second values denote the

indicator function Ci. Ci = 1 denotes the failure by risk I and and Ci = 0, otherwise. In this case,

we obtain N11 = 25, N12 = 34, N21 = 8 and N22 = 3 .

We use informative hyperparameters by using the MLE estimates of the parameters and determined

hyperparameters as ai = η̂i and bi = 1 for i = 1, 2, 3. We run MCMC 100 000 times and we take

every 10th variate in thinning procedure. As initial values of the Markov chain, we prefer MLEs

since they provide good estimates. Then, we obtain a Markov chain with 10 000 uncorrelated sam-

ples. We obtain the MLE and the Bayesian point estimates with their corresponding approximate

confidence intervals ACIs and HPDs. The results are reported in Tables 5, 6.
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Table (5) Point estimates and %95 intervals of numerical example for r = 65.

τ η̂ MLE Bayes ACI Length HPD Length

0.50 θ̂1 0.64491 0.62790 (0.34949; 1.19005) 0.84056 (0.32895; 1.07686) 0.74791

θ̂2 0.80058 0.77869 (0.44323; 1.44604) 1.00280 (0.42984; 1.29838) 0.86854

α̂ 1.74985 1.68475 (1.27988; 2.39241) 1.11253 (1.20997; 2.23639) 1.02642

β̂ 0.29631 0.28795 (0.16410; 0.53504) 0.37094 (0.14908; 0.48793) 0.33885

0.65 θ̂1 1.57772 1.55834 (0.97384; 2.55607) 1.58223 (0.95630; 2.37286) 1.41656

θ̂2 1.95855 1.92727 (1.24258; 3.08706) 1.84448 (1.21732; 2.88999) 1.67266

α̂ 2.45196 2.40835 (1.94237; 3.09524) 1.15287 (1.89854; 2.96590) 1.06737

β̂ 0.25268 0.29006 (0.10984; 0.58127) 0.47143 (0.11516; 0.65210) 0.53693

Table (6) Point estimates and %95 intervals of numerical example for r = 70.

τ η̂ MLE Bayes ACI Length HPD Length

0.50 θ̂1 0.69421 0.67154 (0.38044; 1.26676) 0.88633 (0.36031; 1.15218) 0.79187

θ̂2 0.77835 0.75370 (0.43108; 1.40540) 0.97432 (0.40955; 1.27436) 0.86481

α̂ 1.78753 1.71949 (1.31833; 2.42371) 1.10538 (1.24067; 2.27166) 1.03099

β̂ 0.29389 0.28322 (0.16497; 0.52356) 0.35859 (0.14789; 0.47339) 0.32550

0.65 θ̂1 1.66785 1.63724 (1.04244; 2.66847) 1.62603 (1.02110; 2.45259) 1.43149

θ̂2 1.87001 1.83744 (1.18479; 2.95155) 1.76676 (1.16794; 2.75793) 1.58999

α̂ 2.45292 2.40077 (1.94337; 3.09609) 1.15272 (1.88941; 2.95814) 1.06873

β̂ 0.33457 0.35407 (0.17671; 0.63348) 0.45677 (0.17583; 0.66787) 0.49204

We observe that the acceleration factor is remarkably small (≈ 0.30) for this data. Therefore,

data acceleration speed is expected to be strong. This means early stress change time causes larger

observation values on stress level s2. Since the mean of the Weibull distribution is proportional

to θ1/α, we obtain smaller estimates in the case of early stress change time. In both cases, we
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obtain smaller estimation values in the case of τ = 0.50. In parallel to retardation on stress change

time we observe smaller mean and correspondingly higher parameter estimations. We obtain very

close estimations in both methods. On the other hand, similar to the simulation studies, Bayesian

HPD intervals have smaller lengths than ACIs. However, ACIs are obtained with smaller lengths

for the acceleration factor estimates in this example. The reason of that can be explained by the

superiority of the MLEs in large samples. Generally, we obtain consistent and efficient results in

this numerical example.

We also checked the convergence of the Markov Chains. For this purpose, we first draw trace plots

that show the values of the parameters against the iteration number at each iteration. The trace

plots for the parameters which are given in Figure 4 show that Markov Chains for all parameters

fluctuate around their centers with similar variations. Further, we see from the Figures 5, the den-

sity plots seem in symmetric and unimodal shapes. The unimodal peaks in these plots determine

the mode of the posterior distributions of the parameters and they are the values with the most sup-

port from the data and the chosen priors. Additionally, we use the running mean (ergodic average)

plots as another diagnostic tool. An ergodic average plot draws the mean of sampled values up to

iteration t, and the precision of an ergodic average depends on the autocorrelations of the chain.

We see from the Fig. 6 they stabilize with increasing iteration number which means that the chains

have achieved stationarity. All plots to check the convergence in a Markov Chain can be drawn

using library mcmcplots Curtis et al. (2018) in RTeam et al. (2021) software.

Moreover, we test the equivalence of the shape parameters of tho competing risk variables α1

and α2 by using the hypothesis testing proposed in Section 5. Since the value of the likelihood

ratio statistics and the associated p-value are 1.8461 and 0.1742 for hypothesis α1 = α2 = α with

%5 level of significance, the results imply that the null hypothesis cannot be rejected. Therefore,

it is recommended that the shape parameters of two Weibull samples are equal for this numerical

example data. On the other hand, we test the hypothesis that the data is exposed to any acceleration
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factor (β ̸= 1). The likelihood ratio statistics and the associated p-value are 415.9661 and ≈ 0 and

this result implies that the null hypothesis is rejected. Consequently, an acceleration factor can be

claimed for this numerical example. The inference values of β are obtained as ≈ 0.30 in Tables

5-6 as a higher acceleration level and this observation support our test results.
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Figure (4) Trace plots of the posterior distributions of the parameters.
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Figure (5) Density plots of the posterior distributions of the parameters.
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Figure (6) Running mean plots of the posterior distributions of the parameters.

8 Optimal Stress Change Time

In this section, we provide an optimal plan based on the asymptotic variances of the maximum

likelihood estimators of the parameters. The asymptotic variances of the parameters can be ob-

tained by the diagonals of the inverse of Fisher information matrix. In this section we used sum of

the coefficient of variations (SVC) as optimal function instead of the sum of the variances of the

parameters, as given and used by Samanta et al. (2018, 2019). Samanta et al. (2018) proposed this

method to determine an optimal plan by minimizing the expected value of the SVC. Because, the

sum of the variances may be dominated by the variance of any particular parameter in the case of

the parameter values being in a different scale. That’s why, we use the expected value of the SVC,

by maximizing E(Φ(τ)), where

Φ(τ) =

√
F−1
11

θ̂1
+

√
F−1
22

θ̂2
+

√
F−1
33

α̂
+

√
F−1
44

β̂1

However, the closed forms of the posterior variances of the parameters cannot be obtained ex-

actly. Therefore, Samanta et al. (2018) suggest to use the following Gibbs sampling technique for
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computation.

Step 1: For given τ , n, r and parameter values, generate the samples T1, T2 and T = min{T1, T2}.

Step 2: Compute the objective function Φ(τ).

Step 3: Repeat Step 1 to Step 2, for N times and get Φ1(τ),Φ2(τ), · · · ,ΦN(τ).

Step 4: Calculate the median of the objective functions and denote them by Φm(τ).

Step 5: Repeat Step 1 to Step 4 for all possible values of τ .

Step 6: Determine optimal τ for which Φm(τ) be the minimum.

Optimal stress change time τ values, denoted by τ ∗ are computed for given n, r and ηi for

i = 1, · · · , 4 and presented in Table 7 and Figures 7,8.

It is observed from Table 7 that optimal stress change time τ ∗ are obtained between 0.550 and

Table (7) Optimal stress change time τ for different sample sizes and parameter values.

(n, r)

η = (1.25, 2.25, 2.00, 0.50) η = (0.50, 0.75, 0.50, 0.25)

τ ∗ Φ(τ ∗) τ ∗ Φ(τ ∗)
(25,18) 0.600 1.93676 0.650 1.81532
(25,22) 0.650 1.67365 0.875 1.63499
(35,28) 0.600 1.52492 0.700 1.45528
(35,32) 0.650 1.36714 1.075 1.36021
(50,40) 0.550 1.27960 0.725 1.21499
(50,45) 0.625 1.15906 0.975 1.14400

0.650 for the first parameter set. Since the range of the generated data set is not very large, the range

of the τ ∗ is not very different in the first case. On the other hand, the second parameter set causes a

larger range in the generated sample. Therefore, the range of the optimal stress change time larger

in this case and obtained between 0.650 and 1.075. We see that the stress change times we used

in simulations are quite close to the optimal stress change times. Consequently, the consistent and

well-performed simulation results are based on correctly determining the stress change time.
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Figure (7) Plots of the SVC against different values of τ for θ1 = 1.25, θ2 = 2.25, α = 2.00,
β = 0.50.
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Figure (8) Plots of the SVC against different values of τ for θ1 = 0.50, θ2 = 0.75, α = 0.50,
β = 0.25.
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8.1 Sensitivity Analysis

In optimal plan, incorrect choices of the acceleration factor and the model parameters α, θ1, and

θ2 bring about poor estimates for the sum of the coefficient of variations. Therefore, we need to

test the sensitivity of the expected value of the SVC given in 8. For this reason, we can construct

a sensitivity analysis by following the main idea as considering the difference between incorrect

and correct estimates of the parameters on SVC. In this section, we propose a sensitivity analysis

following the framework proposed by Tseng et al. (2009) and Srivastava and Mittal (2010). It

is expected that actual parameter values may depart from the true values in most cases. This

sensitivity analysis let us to study the effects of incorrect pre-estimates of θ1, θ2, α and β in terms

of the relative sum of the variation coefficient (RSVC) as

RSV C =

∣∣∣∣∣Φ(τ ∗)− Φ(τ ⋄)

Φ(τ ∗)

∣∣∣∣∣× 100

where Φ(τ ∗) is the SVC of the plans obtained by the correct actual values and τ ⋄ is the SVC for

the scheme obtained by incorrectly specified values. We observe that the increase in the RSVC

is small if the incorrect parameter values are not too far from the true values, as shown in Tables

8 and 9. When the values of the θ1, θ2, α and β are not far removed from their true values, the

difference in the RSVC is not significantly large. Consequently, the optimal stress change point

choices are not sensitive to misspecification of the model parameters as long as they are not far

deviated from their true values. This sensitivity shows us the optimal plan we proposed in Section

8 is reliable for our model.

9 Concluding Remark

In the literature as one can see competing risk data based on simple SSLT modeling has been used

widely using CE and TFR modeling. There has not been any inferential work for simple SSLT
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Table (8) Sensivity analysis under incorrect pre-estimates of the parameters in the case of
(n, r) = (50, 40) and η = (1.25, 2.25, 2.00, 0.50) where τ ∗ = 0.550 and Φ(τ ∗) = 1.27960.

Deviation θ⋄1 θ⋄2 α⋄ β⋄ τ ⋄ Φ(τ ⋄) RSVC
(−1)% 1.2375 2.2275 1.9800 0.4950 0.5750 1.2721 0.0059
(+1)% 1.2625 2.2725 2.0200 0.5050 0.5750 1.2728 0.0053
(−2)% 1.2250 2.2050 1.9600 0.4900 0.5500 1.2686 0.0086
(+2)% 1.2750 2.2950 2.0400 0.5100 0.5500 1.2838 0.0033
(−3)% 1.2125 2.1825 1.9400 0.4850 0.5750 1.2700 0.0075
(+3)% 1.2875 2.3175 2.0600 0.5150 0.5750 1.2794 0.0001
(−4)% 1.2000 2.1600 1.9200 0.4800 0.5750 1.2681 0.0090
(+4)% 1.3000 2.3400 2.0800 0.5200 0.5500 1.2808 0.0009
(−5)% 1.1875 2.1375 1.9000 0.4750 0.5750 1.2649 0.0115
(+5)% 1.3125 2.3625 2.1000 0.5250 0.5750 1.2841 0.0035

Table (9) Sensivity analysis under incorrect pre-estimates of the parameters in the case of
(n, r) = (50, 40) and η = (0.50, 0.75, 0.50, 0.25) where τ ∗ = 0.725 and Φ(τ ∗) = 1.21499.

Deviation θ⋄1 θ⋄2 α⋄ β⋄ τ ⋄ Φ(τ ⋄) RSVC
(−1)% 0.4950 0.7425 0.4950 0.2475 0.6250 1.2159 0.0498
(+1)% 0.5050 0.7575 0.5050 0.2525 0.6500 1.2155 0.0501
(−2)% 0.4900 0.7350 0.4900 0.2450 0.6500 1.2161 0.0497
(+2)% 0.5100 0.7650 0.5100 0.2550 0.7000 1.2134 0.0518
(−3)% 0.4850 0.7275 0.4850 0.2425 0.6500 1.2155 0.0501
(+3)% 0.5150 0.7725 0.5150 0.2575 0.6250 1.2128 0.0522
(−4)% 0.4800 0.7200 0.4800 0.2400 0.7500 1.2185 0.0478
(+4)% 0.5200 0.7800 0.5200 0.2600 0.6500 1.2125 0.0525
(−5)% 0.4750 0.7125 0.4750 0.2375 0.7250 1.2162 0.0495
(+5)% 0.5250 0.7875 0.5250 0.2625 0.6250 1.2139 0.0514
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experiments under the TRV modeling approach based on competing risk data to the best of our

knowledge. The present paper fills that void by using TRV modeling on competing risk SSLT

data. In our work, we consider competing risk set-up in SSLT using the TRV modeling and the pa-

rameter estimation based on Weibull distribution with same shape and different scale parameters.

In this work, we develop maximum likelihood method to estimate the model parameters for the

simple SSLT TRV modeling based on Type-II censored data. The asymptotic confidence intervals

are obtained based on the maximum likelihood estimations. We also obtained Bayesian estima-

tions by using conjugate Gamma priors with the corresponding highest posterior density credible

intervals. Even though both methods provide satisfactory performances the Bayesian estimates

have superiority over the maximum likelihood estimates. We exemplified simulation results with

an example data set. Then, we propose a optimal stress change time plan following the idea of

Samanta et al. (2018) and we observed that the stress change times we used in simulations are very

close to the optimal ones. In final part, we provide a sensitivity analysis to study the effects of

incorrect pre-estimates. Consequently, we observed the fact that the optimal stress change point

choices are not sensitive to misspecification of the model parameters as long as they are not far de-

viated from their true values. We can generalized this idea for multiple step-stress TRV modeling

as proposed by Sultana and Dewanji (2021).

Appendix

The MLEs of α and β can be obtained by solving the following equations, respectively.

r

α
+

n̂1∑
i=1

log ti +
r∑

i=n̂1+1

log

(
τ +

ti − τ

β

)
− r

D
′(α)
1 (α, β)

D1(α, β)
= 0

n̂1 − r − (α− 1)
r∑

i=n̂1+1

(ti − τ)

ti + τ(β − 1)
+

rαD
′(β)
1 (α, β)

βD1(α, β)
= 0
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where

D
′(α)
1 (α, β) =

r∑
i=n̂1+1

(ti − τ)

(
τ +

ti − τ

β

)α−1

+ (n− r)(tr:n − τ)

(
τ +

tr:n − τ

β

)α−1

The elements of the observed Fisher information matrix is obtained as follows

f11 =
n11 + n21

θ21
, f22 =

n12 + n22

θ22
, f12 = f21 = 0, f13 = f31 = f23 = f32 = D

′(α)
1 (α, β)

f14 = f41 = f24 = f42 = − α

β2
D3(α, β), f33 =

r

α2
+ (θ1 + θ2)D

′′(α)
1 (α, β)

f34 = f43 =
1

β

r∑
i=n̂1+1

ti − τ

βτ + ti − τ
− θ1 + θ2

β2

[
D3(α, β) + αD

′(α)
3 (α, β)

]

f44 = −(r − n̂1)

β2
− (α− 1)

r∑
i=n̂1+1

(ti − τ)(2βτ + ti − τ)

[β2τ + β(ti − τ)]2

+
α(θ1 + θ2)

β3

[
2D3(α, β) +

(α− 1)D
′(β)
3 (α, β)

β

]
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where

D3(α, β) =
r∑

i=n̂1+1

(ti − τ)

(
τ +

ti − τ

β

)α−1

+ (n− r)(tr:n − τ)

(
τ +

tr:n − τ

β

)α−1

D
′(α)
1 (α, β) =

n̂1∑
i=1

tαi ln ti +
r∑

i=n̂1+1

(
τ +

ti − τ

β

)α

ln

(
τ +

ti − τ

β

)
+ (n− r)

(
τ +

tr:n − τ

β

)α

ln

(
τ +

tr:n − τ

β

)
D

′′(α)
1 (α, β) =

n̂1∑
i=1

tαi ln
2 ti +

r∑
i=n̂1+1

(
τ +

ti − τ

β

)α

ln2

(
τ +

ti − τ

β

)
+ (n− r)

(
τ +

tr:n − τ

β

)α

ln2

(
τ +

tr:n − τ

β

)
D

′(α)
3 (α, β) =

r∑
i=n̂1+1

(ti − τ)

(
τ +

ti − τ

β

)α−1

ln

(
τ +

ti − τ

β

)

+ (n− r)(tr:n − τ)

(
τ +

tr:n − τ

β

)α−1

ln

(
τ +

tr:n − τ

β

)
D

′(β)
3 (α, β) =

r∑
i=n̂1+1

(ti − τ)2
(
τ +

ti − τ

β

)α−2

+ (n− r)(tr:n − τ)2
(
τ +

tr:n − τ

β

)α−2
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