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Abstract

In this paper we have proposed a novel robust method of estimation of the unknown
parameters of a fundamental frequency and its harmonics model. Although the least
squares estimators (LSEs) or the periodogram type estimators are the most efficient
estimators, it is well known that they are not robust. In presence of outliers the
LSEs are known to be not efficient. In presence of outliers, robust estimators like
least absolute deviation estimators (LADEs) or Huber’s M-estimators (HMEs) may be
used. But implementation of the LADEs or HMEs are quite challenging, particularly
if the number of component is large. Finding initial guesses in the higher dimensions is
always a non-trivial issue. Moreover, theoretical properties of the robust estimators can
be established under stronger assumptions than what are needed for the LSEs. In this
paper we have proposed novel weighted least squares estimators (WLSEs) which are
more robust compared to the LSEs or periodogram estimators in presence of outloers.
The proposed WLSEs can be implemented very conveniently in practice. It involves
in solving only one non-linear equation. We have established the theoretical properties
of the proposed WLSEs. Extensive simulations suggest that in presence of outliers,
the WLSEs behave better than the LSEs, periodogram estimators, LADEs and HMEs.
The performance of the WLSEs depend on the weight function, and we have discussed
how to choose the weight function. We have analyzed one synthetic data set to show
how the proposed method can be used in practice.
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1 Introduction

In this paper we consider the estimation of the unknown parameters of the following funda-

mental frequency and its harmonics model:

y(n) =

p∑

k=1

{A0
k cos(nkλ

0) + B0
k sin(nkλ

0)}+X(n); n = 1, . . . , N. (1)

Here A02

k + B02

k > 0, for k = 1, . . . , p, are unknown amplitudes and λ0 is the fundamental

frequency. The number of component p is assumed to be known. The error components

X(n)’s are assumed to be independent and identically distributed random variables with

zero mean and finite variance. The problem is to estimate the unknown parameters; namely

λ0 and also A0
k and B0

k, for k = 1, . . . , p.

This particular model is a very important model in the statistical signal processing and

time series analysis. This has been used quite successfully in analyzing musical signals.

Researchers in this field are particularly interested in determining what particular charac-

teristics of the sound produced by musical instruments permit humans to distinguish one

instrument from the other. For many orchestral instruments, such as clarinet, physical mod-

eling suggests that within short segments, the frequencies are harmonically related as in (1),

see Fletcher and Rossing [1]. Kundu and Nandi [2, 3] observed that male vowel sound also

can be modelled very effectively using (1).

The model was originally introduced by Walker [4]. Since then several attempts have been

made in developing different efficient estimation procedures of the fundamental frequency,

the amplitudes and also the number of components. See for example Nielsen et al. [5], Jensen

et al. [6], Cheveigńe and Kawahara [7], Li et al. [8], Kundu and Nandi [2, 3, 9, 10, 11], Qiu

et al. [12], Fu et al. [13], Chen et al. [14], Rengaswamy et al. [15]. The most efficient

estimators are the least squares estimators (LSEs), which can be obtained by minimizing
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the residual sums of squares, i.e.

R(A,B, λ) =
N∑

n=1

(
y(n)−

p∑

k=1

{Ak cos(nkλ) + Bk sin(nkλ)}
)2

. (2)

Here, A = (A1, . . . , Ap)
⊤ and B = (B1, . . . , Bp)

⊤. The periodogram estimator of λ can be

obtained by maximizing the periodogram function defined as follows:

I(λ) =
1

N

p∑

j=1

∣∣∣∣∣
N∑

n=1

y(n)einjλ

∣∣∣∣∣

2

. (3)

The maximization is usually performed over the Fourier frequencies. It has been shown by

Nandi and Kundu [3] that in case of LSEs, the asymptotic variances of the linear parameter

estimators have the convergence rate N−1 and the frequency parameter estimator has the

convergence rate N−3. Moreover, the asymptotic variances reach the corresponding Cramer-

Rao lower bound when the errors are independent and identically distributed normal random

variables.

Although the LSEs are the most efficient estimators, they are quite susceptible to outliers.

Even in the presence of few outliers, the performances of the LSEs deteriorate drastically.

They are known to be not robust estimators. In this respect the most natural robust esti-

mators will be the least absolute deviation estimators (LADEs), which can be obtained by

minimizing

Q(A,B, λ) =
N∑

n=1

∣∣∣∣∣y(n)−
p∑

k=1

{Ak cos(nkλ) +Bk sin(nkλ)}
∣∣∣∣∣ , (4)

see for example Kim et al. [16]. Alternatively, Huber’s M-estimators (HMEs), Huber [17],

also can be used as efficient robust estimators, and they can be obtained by minimizing

H(A,B, λ) =
N∑

n=1

ρ

(
y(n)−

p∑

k=1

{Ak cos(nkλ) + Bk sin(nkλ)}
)
. (5)

Different forms of ρ(·) functions have been suggested in the literature. Some of the standard

ρ(·) functions for some c > 0, are as follows:

ρ(x) =





1
2
c2 − c(x+ c) if x < −c,

1
2
x2 if |x| ≤ c

1
2
c2 + c(x+ c) if x > c,

(6)
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or

ρ(x) =

{
1
2c
x2 if |x| < c,

|x| − 1
2
c2 if |x| ≥ c.

(7)

Here c is the tuning parameter. In both the above cases computation of the robust estimators

are quite challenging. It involves multidimensional optimization problem. The dimension-

ality of the optimization problem increases with p. The usual optimization technique does

not work as the objective function is not differentiable. Moreover, in establishing the prop-

erties of the estimators, one needs stronger assumptions on the error random variables than

what are needed for the usual least squares estimators to be consistent and asymptotically

normally distributed, see for example Huber [17]. Moreover, the asymptotic properties of

the robust estimators of the unknown parameters of the model (1) are not available in the

literature.

The main aim of this manuscript is to overcome the above issues. In this paper we have

introduced a novel weighted least squares method which can be used quite effectively as an

alternative to the well known robust method of estimation. The corresponding weighted

least squares estimators (WLSEs) of the unknown parameters of the model (1) can be ob-

tained by solving only one non-linear equation for any p. Since, the objective function is

a differentiable function, standard optimization technique like Newton-Raphson or Gauss-

Newton algorithm can be used to minimize the objective function. Further, the asymptotic

properties of the WLSEs can be established under the same set of assumptions that are

needed for the LSEs to be consistent and asymptotically normally distributed. Note that

the consistency and the asymptotic normality properties are very strong properties of any

estimator. Consistency property indicates that as the sample size icreases the estimators

converge to the true parameter value. The asymptotic normality property can be used to

compute the variance of the estimators for large sample sizes and also to contruct confidence

intervals of the unknown parameters. It is observed that the WLSEs of the unknown pa-

rameters have the same rate of convergence as the LSEs. Moreover, LSEs can be obtained
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as a special case of the WLSEs. We have performed an extensive simulation experiments

to see the performance of the proposed WLSEs. It is observed that in presence of outliers

with the proper choice of the weight functions, the WLSEs perform better than the LSEs,

Periodogram estimators, LADEs and HMEs. Another important question is how to choose

the proper weight function? It is an important issue, and we have discussed how to choose

the proper weight function for a given data set from a class of weight functions.

The main contributions of this paper are the following: (1) We have proposed a novel

weighted least squares method to provide the robust estimators of the unknown parameters,

in presence of outliers. (2) We have developed the theoretical properties of the proposed

estimators under the same set of assumptions that are needed to establish the consistency

and asymptotic normality properties of the least squares estimators. (3) We have some

practical suggestion to choose the weight function. (4) It is observed that with the proper

choice of weight function the proposed estimators behave better than the LSEs, Periodogram

estimators, LADEs and HMEs if there are outliers in the observations.

Rest of the paper is organized as follows. In Section 2 we have described the WLSEs and

their implementation. The asymptotic properties of the WLSEs are established in Section 3

when we have a polynomial weight function. In Section 4 the results have been extended for

a general class of weight functions. In Section 5 we have provided the simulation results to

show how the proposed method works in practice. Choice of weight function is discussed in

Section 6. In Section 7 we have presented the analysis of a data set, and finally we conclude

the paper in Section 8.
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2 Weighted Least Squares Estimators

In this section first we define the WLSEs when the weight function is a m-degree polynomial,

and later we will generalize it to any arbitrary continuous function. Suppose w(t) is a m-

degree polynomial defined on [0, 1], i.e.

w(t) = a0 + a1t+ . . .+ amt
m, (8)

here the weight functions a0, . . . , am are such that

min
0≤t≤1

w(t) > γ > 0. (9)

Suppose K is such that max0≤t≤1 w(t) ≤ K. Let Θ = (A1, . . . , Ap, B1, . . . , Bp, λ)
⊤ as the

parameter vector, and Θ
0 = (A0

1, . . . , A
0
p, B

0
1 , . . . , B

0
p , λ

0)⊤ as the true parameter. We also

denote β = (A1, . . . , Ap, B1, . . . , Bp)
⊤ and β0 as the corresponding true parameter vector.

Further, let us use

µn(Θ) =

p∑

k=1

{Ak cos(nkλ) + Bk sin(nkλ)},

for n = 1, . . . , N . Let us consider the following weighted residual sums of squares

Q(Θ) =
N∑

n=1

w
( n

N

)
(y(n)− µn(Θ))2. (10)

The WLSEs of Θ0 can be obtained as

Θ̂ = argminΘQ(Θ). (11)

It may be seen that the function Q(Θ) is a smooth differentiable function of the unknown

parameters, hence the minimization can be obtained by solving Q′(Θ) = 0, where

Q′(Θ) =

[
∂Q(Θ)

∂A1

, . . . ,
∂Q(Θ)

∂Ap

,
∂Q(Θ)

∂B1

, . . . ,
∂Q(Θ)

∂Bp

,
∂Q(Θ)

∂λ

]⊤
.

For fixed λ, the WLSEs of A1, . . . , Ap and B1, . . . , Bp can be obtained by solving the following

matrix equation:

Z(λ) = X(λ)β, (12)
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here Z(λ) is a 2p × 1 vector, X(λ) is a 2p × 2p matrix, β is a 2p × 1 vector, and they can

be partitioned as follows:

Z(λ) =

[
Z1(λ)
Z2(λ)

]
, X(λ) =

[
X11(λ) X12(λ)
X21(λ) X22(λ)

]
, β =

[
β1

β2

]
.

In this case Z1(λ) and Z2(λ) are both p× 1 vectors and they are as follows.

Z1(λ) =

[
1

N

N∑

n=1

w
( n

N

)
y(n) cos(nλ), . . . ,

1

N

N∑

n=1

w
( n

N

)
y(n) cos(npλ)

]⊤

Z2(λ) =

[
1

N

N∑

n=1

w
( n

N

)
y(n) sin(nλ), . . . ,

1

N

N∑

n=1

w
( n

N

)
y(n) sin(npλ)

]⊤
.

X11(λ), X12(λ), X21(λ) and X22(λ) are all p×p matrices. The (i, j)-th elements of X11(λ),

X12(λ), X21(λ) and X22(λ) are

1

N

N∑

n=1

w
( n

N

)
cos(niλ) cos(njλ),

1

N

N∑

n=1

w
( n

N

)
cos(niλ) sin(njλ),

1

N

N∑

n=1

w
( n

N

)
sin(niλ) cos(njλ),

1

N

N∑

n=1

w
( n

N

)
sin(niλ) sin(njλ),

respectively. Further, β1 and β2 are both p× 1 vectors, and

β1 = (A1, . . . , Ap)
⊤ β2 = (B1, . . . , Bp)

⊤.

For fixed λ, the WLSEs of β, say β̂(λ) can be obtained as β̂(λ) = X−1(λ)Z(λ) and the

WLSE of λ can be obtained by minimizing Q(β̂(λ), λ) with respect to λ. Hence, it is clear

that the WLSEs of the unknown parameters can be obtained by solving an one dimensional

optimization problem.

Although, the WLSEs can be obtained by solving only one non-linear equation, it also

involves computing the inverse of a 2p × 2p symmetric matrix. If p is large, it can be

a computationally challenging problem. Using the following facts as N → ∞, for i, j =
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1, . . . , p,

lim
N→∞

1

N

N∑

n=1

w
( n

N

)
cos2(niλ) =

1

2
; (13)

lim
N→∞

1

Nk+1

N∑

n=1

nkw
( n

N

)
cos2(niλ) =

1

2(k + 1)
; k = 1, 2, . . . , (14)

lim
N→∞

1

N

N∑

n=1

w
( n

N

)
cos(niλ) cos(njλ) = 0, i 6= j, (15)

lim
N→∞

1

N

N∑

n=1

w
( n

N

)
sin2(niλ) =

1

2
, (16)

lim
N→∞

1

Nk+1

N∑

n=1

nkw
( n

N

)
sin2(niλ) =

1

2(k + 1)
, k = 1, 2, . . . , (17)

lim
N→∞

1

N

N∑

n=1

w
( n

N

)
sin(niλ) sin(njλ) = 0; i 6= j, (18)

lim
N→∞

1

N

N∑

n=1

w
( n

N

)
sin(niλ) cos(njλ) = 0, (19)

see Mangulis [18], we approximate Âk(λ) and B̂(λ), for large N as

Âk(λ) =
2ak∫ 1

0
w(t)dt

and B̂k(λ) =
2bk∫ 1

0
w(t)dt

; k = 1, . . . , p. (20)

Here

ak =
1

N

N∑

n=1

w
( n

N

)
y(n) cos(nkλ) and bk =

1

N

N∑

n=1

w
( n

N

)
y(n) sin(nkλ).

Based on Âk(λ) and B̂k(λ), the WLSE of λ can be obtained by minimizing

R(λ) =
N∑

n=1

w
( n

N

)(
y(n)−

p∑

k=1

{Âk(λ) cos(nkλ) + B̂k(λ) sin(nkλ)}
)2

, (21)

with respect to λ. Since R(λ) is a differentiable function of λ. The minimization of R(λ)

can be obtained quite conveniently. Note that

R′(λ) = 2
N∑

n=1

w
( n

N

)(
y(n)−

p∑

k=1

{Âk(λ) cos(nkλ) + B̂k(λ) sin(nkλ)}
)
×,

(
p∑

k=1

{Â′
k(λ) cos(nkλ) + B̂′

k(λ) sin(nkλ)− Aknk sin(nkλ) + Bknk cos(nkλ)}
)
,
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here

Â′
k(λ) = − 2

N
∫ 1

0
w(t)dt

N∑

n=1

w
( n

N

)
nky(n) sin(nkλ)

B̂′
k(λ) =

2

N
∫ 1

0
w(t)dt

N∑

n=1

w
( n

N

)
nky(n) cos(nkλ).

Hence, λ̂, the WLSE of λ, can be obtained as the solution of R′(λ) = 0, and once λ̂ is

obtained, the WLSEs of Ak and Bk can be obtained as Âk = Âk(λ̂) and B̂k = B̂k(λ̂),

respectively.

3 Theoretical Properties

In this section we provide the theoretical properties of the WLSEs of the unknown parameters

of the model (1), as proposed in the previous section.

Theorem 1: If X(n)’s are independent and identically distributed random variables with

mean zero and finite variance, and the weight function w(t) has the form (8), then Θ̂, the

WLSE of Θ0, is a strongly consistent estimator, i.e. Θ̂ converges to Θ
0 almost surely.

Proof: See in the Appendix A.

We need the following notations for further development. For k = 0, 1, . . .,

uk =

∫ 1

0

tkw(t)dt and vk =

∫ 1

0

tkw2(t)dt.

The 2p+ 1 diagonal matrix

D = diag{N1/2, . . . , N1/2, N3/2}.

Theorem 2: Under the same assumptions as in Theorem 1,

(
(Â1 − A0

1), (B̂1 −B0
1), . . . , (Âp − A0

p), (B̂p −B0
p), (λ̂− λ0

)
d−→ N2p+1(0, 2σ

2
Γ

−1
ΣΓ

−1).
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Here

Σ =




v0 0 0 . . . 0 0 B0
1v1

0 v0 0 . . . 0 0 −A0
1v1

...
...

...
...

...
...

...
0 0 0 . . . v0 0 B0

pv1
0 0 0 . . . 0 v0 −A0

pv1
B0

1v1 −A0
1v1 B1

2v1 . . . B0
pv1 −A0

pv1 cv0



,

Γ =




u0 0 0 . . . 0 0 B0
1u1

0 u0 0 . . . 0 0 −A0
1u1

...
...

...
...

...
...

...
0 0 0 . . . u0 0 B0

pu1

0 0 0 . . . 0 u0 −A0
pu1

B0
1u1 −A0

1u1 B1
2u1 . . . B0

pu1 −A0
pu1 cu2




and c =

p∑

j=1

(A02

j + B02

j ). The notation
d−→ means convergence in distribution, N2p+1(0,A)

denotes a (2p + 1)-variate normal distribution with the mean vector 0, and the dispersion

matrix A.

Proof: See in the Appendix A.

Note that when w(t) = 1, for 0 ≤ t ≤ 1, then the WLSEs become the LSEs, and in this

case uk = vk =
1

k + 1
, for k = 0, 1, . . .. Hence, Σ = Γ.

4 General Weight Function

So far we have assumed that the weight function w(t) is of the form (8) and it satisfies (9).

In this section we will show that the results are true for a general continuous function also,

when it satisfies a similar condition like (9). In this section also we will be using the same

notation as before, and it should not create any confusion. The following assumptions are

made on the general weight function w(t).

Assumption 1: Suppose w(t) is a non-negative continuous function defined on [0, 1], and

it satisfies min0≤t≤1 w(t) > γ > 0 and max0≤t≤1 w(t) ≤ K < ∞.
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Theorem 3: If X(n)’s are independent and identically distributed random variables with

mean zero and finite variance, and the weight function w(t) satisfies Assumption 1, then Θ̂,

the WLSE of Θ0, is a strongly consistent estimator.

Proof: See Appendix B.

Theorem 4: Under the same assumptions as in Theorem 3,

(
(Â1 − A0

1), (B̂1 −B0
1), . . . , (Âp − A0

p), (B̂p −B0
p), (λ̂− λ0

)
d−→ N2p+1(0, 2σ

2
Γ

−1
ΣΓ

−1).

Here Γ and Σ are same as defined in Theorem 2.

Proof: See in the Appendix B.

5 Simulation Results

In this section we present some simulation results to show how the proposed method compares

with the existing methods. The main aim of this section is to see how the proposed WLSEs

behave compared with the LSEs, Periodogram estimators, LADEs and HMEs in terms of

biases and mean squared errors in presence of outliers. We have considered the following

model:

Model: p = 2, A0
1 = B0

1 = 3 and A0
2 = B0

2 = 1, λ0 = 0.75 π = 2.356194

We have assumed that e(n)’s are independent and identically distributed normal random

variables with mean 0 and variance σ2 = 1. It is assumed that 10%, 20%, 40% and 50%

outliers are present in the sample and in those cases e(n)’s are independent and identically

distributed normal random variables with mean zero and variance σ2
out = 25. Moreover, it is

assumed that the outliers are present in the middle of the data set. We have considered the

LSEs, Periodogram estimators, LADEs, HMEs and two different WLSEs. The main reason

to choose the LSEs and the Periodogram estimators is that they are the most popular
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estimators which are being used in practice. Moreover, the LSEs are the most efficient

estimators also when the errors are Gaussian. The reason to choose the LADEs and HMEs

is that they are the two most popular robust estimators which are available in the literature.

The weight functions of the two WLSEs are as follows for 0 ≤ t ≤ 1;

w1(t) =
1

12
+ 11

(
t− 1

2

)2

and w2(t) =





2− 4t if 0 ≤ t ≤ 1
4

1 if 1
4
≤ t ≤ 3

4

4t− 2 if 3
4
≤ t ≤ 1.

Here w1(t) is a polynomial of degree two and w2(t) is a continuous function in [0, 1], and it

satisfies Assumption 1. Since the outliers are known to be present in the middle of the data

set, the above two weight functions have been chosen so that they put less weights to the

residual sums of squares in the middle portion of the data set. We have varied the sample

sizes from 100 to 1000.

We have generated samples from the above model with the given error structure. We have

calculated the LADEs, HMEs, LSEs, Periodogram estimators and two different WLSEs. In

each case we have used the maximum of the periodogram function at the Fourier frequncies

as the initial guess of the frequency parameter. In case of LADEs and HMEs we need to

provide the initial guesses of the Ak’s and Bk’s also. Based on the Fourier frequency where

the maximum of the periodogram function occurs, the corresponding LSEs of Ak’s and Bk’s

have been used as the initial guesses to compute the LADEs and HMEs. In this case the

computation of LADEs and HMEs involve solving a five dimensional optimization problem,

and we have used the Nelder-Mead algorithm for that purpose. The computation of the

LSEs, Periodogram estimators and WLSEs involve solving only one dimensional optimization

problem.

We have obtained the average estimates of the two amplitudes, the fundamental frequency

and the associated mean squared errors (MSEs) based on 1000 replications. Since in all

the cases the average estimates are very close to the corresponding true values (biases are
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negligible), we have not reported those. We have only reported the MSEs in the form

-10log(MSE) in each case. The results are presented in Figures 1,2 and 3.

[ Figures 1,2 and 3 should be placed after this]

Some of the points are quite clear from these simulation experiments. First of all for

the all the cases the MSEs decrease as the sample size increases, and as the proportion of

outliers decrease. The performances of the WLSE-1 in terms of the lower MSEs are the best

among these six estimators for all the parameters and the performances of the Periodogram

estimators are the worst. The performances of the LADEs and HMEs are very similar

in all the cases. Another point which has been observed but not reported here that the

performances of LADEs and HMEs depend very much on the choice of the initial guesses.

It is a quite challenging problem. Hence, the implementation of the LADEs and HMEs in

practice are quite difficult. Where as the performances of the LSEs, Periodogram estimators

or the WLSEs do not depend much on the choice of the initial guess of the frequency

parameter. Hence, the implementation of the LSEs, Periodogram estimators and WLSEs is

quite simple in practice.

6 Choice of the Weight Function

In the simulation experiments we have seen that if we know where the outliers are present,

we can choose the weight function accordingly and the performances of the WLSEs are quite

satisfactory. With the proper choice of the weight function, the WLSEs behave better than

the LSEs, Periodogram estimators and other robust estimators like LADEs and HMEs also.

But, it has also been observed that the performances of the WLSEs depend very much about

the weight function itself. If the weight function is not proper, the corresponding WLSEs

perform quite poorly compared to the LSEs also. Hence, the natural question is how to
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choose the proper weight function in practice. We propose the following method which can

be used in practice quite conveniently, when nothing is known about the location of the

outliers.

The method is based on choosing a proper data dependent weight function from a class

of weight functions. One does not have to choose the weight function before. The method

works as the following. First we choose a class of weight functions may be 5 or 6, which has

different forms, i.e. one may put less weight at the beginning, one put less weight at the end,

one may put less weight in the middle etc. Further, in case of time varying outliers a mixture

of different types of weight functions may be chosen. It may be remembered that the LSEs

also can be obtained as WLSEs when the weight function w(t) = 1, for all 0 ≤ t ≤ 1. We will

keep this weight function also as a member of this class. Now compute the WLSEs based

on all the weight functions of this specific class, and choose that particular weight function

which has the smallest weighted residual sums of squares. The details will be explained with

the analysis of a synthetic data set in the next section.

7 Synthetic Data Analysis

In this section we have performed the analysis of a synthetic data set to show how the

proposed methods work in practice and how to choose a proper weight function when outliers

are present in the data set, but the exact locations are not known. We have considered the

following model:

p = 4, A0
1 = B0

1 = 4, A0
2 = B0

2 = 3, A0
3 = B0

3 = 2, A0
4 = B0

4 = 1, λ0 = 0.75π, N = 100.

It is assumed that X(n)’s are independent and identically distributed random variables and

it has the following structure;

X(n) = 0.8N(0, 1) + 0.2N(0, 25),

14



i.e. there are 20% outliers present in the data, but the locations are not known. The original

and the observed signals are presented in Figure 4. The periodogram function of the data is

presented in Figure 5.

[Figures 4 and 5 should be placed after this]

Since, the locations of the outliers are not known we have used the following six weight

functions which put different weights at different parts as they have different shapes.

w1(t) = 0.3 + 4.8(t− 0.25)2, w2(t) = 1.0, w3(t) =
1

12
+ 11(t− 0.5)2

w4(t) =





19
15
(2− 4t) if 0 ≤ t ≤ 0.25
0.1 if 0.25 ≤ t ≤ 0.75

19
15
(4t− 2) if 0.75 ≤ t ≤ 1.00

w5(t) =
4

3
− 4(t− 0.5)2, w6(t) =

12

19
+

48

19
(t− 0.75)2.

We have plotted the weight functions in Figure 6. It is very clear they take various shapes,

and putting different weights across the time.

[Figure 6 should be placed after this.]

Estimates of the amplitudes and the frequency and the associated weighted residual sums

of squares (WRSS) based on different weight functions are presented in Table 1.

[Table 1 should be placed after this.]

Based on the WRSS, we suggest to use the weight function (v) for this data set. We

have plotted the predicted signal based on the estimated parameters obtained using weight

function (v) in Figure 7. They match quite well with the original signal.
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[Figure 7 should be placed after this]

Finally, it may be mentioned that in this case it is very difficult to implement the LADEs

and HMEs, as both of them involved solving a nine dimensional optimization problem, and

they require very efficient initial guesses at the beginning to start any iterative process.

Where as in this case it is quite simple to implement the proposed WLSEs to analyze the

data when outliers are present.

8 Conclusions

In this paper we have proposed a novel robust method to estimate the unknown parameters

of a fundamental frequency and its harmonics model in presence of outliers. The proposed

method is very easy to implement in practice, as it involves solving only one dimensional

optimization problem. The performances of the proposed estimators depend very much on

the choice of the weight function. If the location of the outliers are known, then it is easy

to choose the weight function, but if it is unknown, we have proposed a method to choose a

proper weight function. Simulation results and the data analysis indicate that the proposed

method works quite well in practice, and its implementation is also quite simple.
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Appendix A

To prove Theorem 1, we need the following lemmas.

Lemma 1: Let {X(n)} be a sequence of independent and identically distributed random

variables with mean 0 and finite variance, then for k = 0, 1, . . .,

lim
N→∞

sup
θ

∣∣∣∣∣
1

Nk+1

N∑

n=1

X(n)nk cos(nθ)

∣∣∣∣∣ = 0 a.s.

The same result holds when cos(tθ) is replaced by sin(tθ).

Proof: For k = 0, the result is available in Kundu and Mitra [19]. For general k, the result

follows from the fact
n

N
≤ 1, for 1 ≤ n ≤ N .

Lemma 2: Let {X(n)} be a sequence of independent and identically distributed random

variables with mean 0 and finite variance, and the weight function w(t) has the form (8),

then

lim
N→∞

sup
θ

∣∣∣∣∣
1

N

N∑

n=1

X(n)w
( n

N

)
cos(nθ)

∣∣∣∣∣ = 0 a.s.

The same result holds when cos(tθ) is replaced by sin(tθ).

Proof: Using Lemma 1, Lemma 2 can be easily obtained.

Lemma 3: Let Θ be the same as before, and let us define the set

Sδ,M = {Θ : |λ− λ0| > δ or |A0
k − Ak| > δ or |B0

k − Bk| > δ, for any k = 1, . . . , p

and |Ak| ≤ M, |Bk| ≤ M , for all k = 1, . . . , p}.

If for any δ > 0 and for some M < ∞,

lim inf
N→∞

inf
Θ∈Sδ,M

1

N
{Q(Θ)−Q(Θ0)} > 0, (22)
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where Q(Θ) is same as defined in (10), then Θ̂ is a strongly consistent estimator of Θ0.

Proof: It mainly follows by contradiction, along the same line as the proof of Lemma 1 of

Wu [20]. Hence, the details are avoided.

Lemma 4: For any given δ > 0 and for some M < ∞,

lim inf
N→∞

inf
Θ∈Sδ,M

1

N
{Q(Θ)−Q(Θ0)} > 0.

Proof: Consider

1

N
Q(Θ) =

1

N

N∑

n=1

w
( n

N

)
(y(n)− µn(Θ))2

=
1

N

N∑

n=1

w
( n

N

)
(µn(Θ

0)− µn(Θ) +X(n))2

=
1

N

N∑

n=1

w
( n

N

)
(µn(Θ

0)− µn(Θ))2 +
1

N

N∑

n=1

w
( n

N

)
X2(n) +

2

N

N∑

n=1

w
( n

N

)
(µn(Θ

0)− µn(Θ))X(n)

Hence, using Lemma 2, and the condition of the weight function w(t), we obtain

lim inf
N→∞

inf
Θ∈Sδ,M

1

N
{Q(Θ)−Q(Θ0)} ≥ lim inf

N→∞
inf

Θ∈Sδ,M

γ

N

N∑

n=1

(µn(Θ
0)− µn(Θ))2.

Consider the following sets for k = 1, . . . , p:

Γ1k = {Θ : |Aj| ≤ M, |Bj| ≤ M, |Ak − A0
k| > δ}

Γ2k = {Θ : |Aj| ≤ M, |Bj| ≤ M, |Bk − B0
k| > δ}

Γ0 = {Θ : |Aj| ≤ M, |Bj| ≤ M, |λ− λ0| > δ},

and Γ1 = ∪p
k=1Γ1k, Γ2 = ∪p

k=1Γ2k. Since

{Θ : Θ ∈ Sδ,M} ⊂ Γ1 ∪ Γ2 ∪ Γ0,
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lim inf
N→∞

inf
Θ∈Sδ,M

γ

N

N∑

n=1

(µn(Θ
0)− µn(Θ))2 ≥ lim inf

N→∞
inf

Θ∈Γ1∪Γ2∪Γ0

γ

N

N∑

n=1

(µn(Θ
0)− µn(Θ))2.

Observe that

lim inf
N→∞

inf
Θ∈Γ1k

γ

N

N∑

n=1

(µn(Θ
0)−µn(Θ))2 = lim inf

N→∞

γ|Ak − A0
k|2

N

N∑

n=1

cos2(λ0n) =
γ|Ak − A0

k|2
2

> 0.

Similarly, it can be shown for other sets also, hence the result follows.

Proof of Theorem 1: Using Lemma 3 and Lemma 4, it immediately follows.

Proof of Theorem 2: To prove this result, let us consider the following 2p + 1 vector

Q′(Θ), where

Q′(Θ) =

(
∂Q(Θ)

∂A1

,
∂Q(Θ)

∂B1

, . . . ,
∂Q(Θ)

∂Ap

,
∂Q(Θ)

∂Bp

,
∂Q(Θ)

∂λ

)
,

Q′′(Θ) is a (2p + 1) × (2p + 1) matrix contains the double derivative of Q(Θ). Now using

the Taylor series expansion

Q′(Θ̂)−Q′(Θ0) = (Θ̂−Θ
0)Q′′(Θ), (23)

here Θ is a point on the line joining Θ̂ and Θ
0. Since Q′(Θ̂) = 0, hence (23) can be written

as

−Q′(Θ0)D−1[D−1Q′′(Θ)D−1]−1 = (Θ̂−Θ0)D.

Now using Central limit theorem and (13) to (19), it follows that

Q′(Θ0)D−1 d−→ N2p+1(0, 2σ
2
Σ),

and using (13) to (19), it can be shown that

lim
N→∞

D−1Q′′(Θ)D−1 = lim
N→∞

D−1Q′′(Θ0)D−1 = Γ,

hence, the result follows.
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Appendix B

To prove Theorem 3, we need the following Lemma.

Lemma 5: Let {X(n)} be a sequence of independent and identically distributed random

variables with mean 0 and finite variance, and the weight function w(t) satisfies Assumption

1, then

lim
N→∞

sup
θ

∣∣∣∣∣
1

N

N∑

n=1

X(n)w
( n

N

)
cos(nθ)

∣∣∣∣∣ = 0 a.s.

The same result holds when cos(tθ) is replaced by sin(tθ).

Proof: Let Z(n) = X(n)I[|X(n)|≤√
n], where I[|X(n)|≤√

n] = 1, if |X(n)| ≤ √
n, and 0, other-

wise. Thus

∞∑

n=1

P (X(n) 6= Z(n)) =
∞∑

n=1

P (|X(n)| >
√
n)

=
∞∑

n=1

(
1− F (

√
n
)

(here F (·) is the distribution function of |X(n)|)

≤ 1 +

∫ ∞

0

(1− F (
√
x)dx

= 1 + 2

∫ ∞

0

y(1− F (y))dy

= 1 + 2

∫ ∞

0

∫ ∞

y

dF (z) dy

= 1 + 2

∫ ∞

0

∫ z

0

ydy dF (z)

= 1 +

∫ ∞

0

z2dF (z) < ∞.

Hence, {X(n)} and {Z(n)} are equivalent sequences. Thus it is enough to show that

lim
N→∞

sup
θ

∣∣∣∣∣
1

N

N∑

n=1

Z(n)w
( n

N

)
cos(nθ)

∣∣∣∣∣ = 0 a.s.

Let U(n) = Z(n) − E(Z(n)). Note that if G(·) denotes the distribution function of X(1),
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then

sup
θ

∣∣∣∣∣
1

N

N∑

n=1

E[Z(n)w
( n

N

)
cos(nθ)]

∣∣∣∣∣ ≤
1

N

N∑

n=1

|E[Z(n)]| = 1

N

N∑

n=1

∣∣∣∣
∫

|x|≤√
n

xdG(x)

∣∣∣∣ −→ 0.

Hence, the result is proved if we can show that

lim
N→∞

sup
θ

∣∣∣∣∣
1

N

N∑

n=1

U(n)w
( n

N

)
cos(nθ)

∣∣∣∣∣ = 0 a.s.

For any fixed θ and ǫ > 0, and for 0 < h <
1

4
√
N
, we have

P

{∣∣∣∣∣
1

N

N∑

n=1

U(n)w
( n

N

)
cos(nθ)

∣∣∣∣∣ ≥ ǫ

}
≤ e−hNǫE exp

{
h

∣∣∣∣∣
N∑

n=1

U(n)w
( n

N

)
cos(nθ)

∣∣∣∣∣

}

≤ e−hNǫ

N∏

n=1

E exp
∣∣∣hU(n)w

( n

N

)
cos(nθ)

∣∣∣ .

Note that hU(n)w
( n

N

)
cos(nθ) ≤ 1

4
, for all n = 1, . . . , N , and on using the fact that

e|x| ≤ 2ex and ex ≤ (1 + x+ x2), then for |x| ≤ 1

4

e−hNǫ

N∏

n=1

E exp
∣∣∣hU(n)w

( n

N

)
cos(nθ)

∣∣∣ ≤ 2e−hNǫ

N∏

n=1

E exp
(
hU(n)w

( n

N

)
cos(nθ)

)

≤ 2e−hNǫ

N∏

n=1

(1 + h2σ2) ≤ 2exp
(
−hNǫ+Nh2σ2

)
.

Choose h =
1

4
√
N
, then for large N ,

P

{∣∣∣∣∣
1

N

N∑

n=1

U(n)w
( n

N

)
cos(nθ)

∣∣∣∣∣ ≥ ǫ

}
≤ 2 exp

(
−
√
Nǫ

4
+

σ2

16

)
≤ Cexp

(
−
√
Nǫ

4

)
.

For some constant C > 0. Let k = N2, and choose θ1, . . . θk, such that for each θ ∈ [0, π],

there exists a θj, such that |θj − θ| ≤ π

N2
. Hence

∣∣∣∣∣
1

N

N∑

n=1

U(n)w
( n

N

)
(cos(nθ)− cos(nθj)

∣∣∣∣∣ ≤
1

N

N∑

n=1

√
nn

π

N2
≤ π√

N
−→ 0.
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Therefore, for large N , we have

P

{
sup
θ

∣∣∣∣∣
1

N

N∑

n=1

U(n)w
( n

N

)
cos(nθ)

∣∣∣∣∣ ≥ 2ǫ

}
≤

{
max
j≤N2

∣∣∣∣∣
1

N

N∑

n=1

U(n)w
( n

N

)
cos(nθj)

∣∣∣∣∣ ≥ ǫ

}
≤

≤ 2CN2exp

(
−
√
Nǫ

4

)
.

Since,
∞∑

N=1

N2exp

(
−
√
Nǫ

4

)
< ∞, hence, by Borel-Cantelli lemma

sup
θ

∣∣∣∣∣
N∑

n=1

U(n)w
( n

N

)
cos(nθ)

∣∣∣∣∣ −→ 0, a.s.

Similarly, it can be shown when the cos(nθ) is replaced by sin(nθ).

Lemma 6: For any given δ > 0 and for some M < ∞, if the weight function w(t) satisfies

Assumption 1, then

lim inf
N→∞

inf
Θ∈Sδ,M

1

N
{Q(Θ)−Q(Θ0)} > 0.

Proof: Note that based on Lemma 5, and following the proof of Lemma 4, it can be

obtained.

Proof of Theorem 3: Since we have a similar version of Lemma 3, where the weight

function w(t) satisfies Assumption 1, and using Lemma 5, Theorem 3 follows.

We need the following Lemma to prove Theorem 4.

Lemma 7: Suppose 0 < θ < π and w(t) satisfies Assumption 1, then

lim
Nk+1→∞

1

N

N∑

n=1

nkw
( n

N

)
sin2(θt) = lim

Nk+1→∞

1

N

N∑

n=1

nkw
( n

N

)
cos2(θt)

=
1

2

∫ 1

0

tkw(t)dt, for k = 0, 1, . . . .

Proof of Lemma 7: We will show the result for k = 0, for general k, it follows along the

same line.

lim
N→∞

1

N

N∑

n=1

w
( n

N

)
cos2(θt) =

1

2

∫ 1

0

w(t)dt.
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For ǫ > 0, there exists a polynomial pǫ(t), such that |w(t)−pǫ(t)| ≤ ǫ, for all t ∈ [0, 1]. Hence

∫ 1

0

w(t)dt− ǫ ≤
∫ 1

0

pǫ(t)dt ≤
∫ 1

0

w(t)dt+ ǫ. (24)

Further,

1

N

N∑

n=1

pǫ

( n

N

)
cos2(nθ)− ǫ

N

N∑

n=1

cos2(nθ) ≤ 1

N

N∑

n=1

w
( n

N

)
cos2(nθ) ≤

1

N

N∑

n=1

pǫ

( n

N

)
cos2(nθ) +

ǫ

N

N∑

n=1

cos2(nθ). (25)

Suppose

pǫ(t) = a0 + a1t+ . . .+ akt
k ⇒

∫ 1

0

pǫ(t)dt = a0 +
a1

2
+ . . .+

ak

k + 1
.

Now using (14),

1

N

N∑

n=1

pǫ

( n

N

)
cos2(tθ) =

1

N

N∑

n=1

{
a0 +

a1n

N
+ . . .+

akn
k

Nk

}
cos2(nθ)

−→ 1

2

[
a0 +

a1

2
+ . . .+

ak

k + 1

]
=

1

2

∫ 1

0

pǫ(t)dt.

Taking N → ∞ in (25), we obtain

1

2

∫ 1

0

pǫ(t)dt−
ǫ

2
≤ lim

N→∞

1

N

N∑

n=1

w
( n

N

)
cos2(nθ) ≤ 1

2

∫ 1

0

pǫ(t)dt+
ǫ

2
,

and using (24), it follows

1

2

∫ 1

0

w(t)dt− 3ǫ

2
≤ lim

N→∞

1

N

N∑

n=1

w
( n

N

)
cos2(nθ) ≤ 1

2

∫ 1

0

w(t)dt+
3ǫ

2
.

Since ǫ is arbitrary, the result follows.

Theorem 4: Following the same line as the proof of Theorem 2, it can be proved.
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Weight Â2
1 + B̂2

1 Â2
2 + B̂2

2 Â2
3 + B̂2

3 Â2
4 + B̂2

4 λ̂ WRSS
(i) 28.6888 22.0877 9.7080 0.7357 2.3588 1352.844
(ii) 28.9277 19.0103 6.7963 2.6742 2.3594 1235.015
(iii) 31.3035 18.9592 4.8104 0.5013 2.3616 1202.227
(iv) 23.4238 6.5302 0.3317 0.3750 2.4366 2136.165
(v) 28.3764 18.8499 7.5327 4.2211 2.3571 1186.725
(vi) 29.9024 17.5617 4.9168 2.4056 2.3611 1218.111

Table 1: WLSEs, normalized residual sums of squares and squared error distance of the
fitted and the originals based on different weight functions
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Figure 1: -10log(MSE) of the first amplitude estimators in presence of outliers: (a) 10%
outliers, (b) 20% outliers, (c) 40% outliers, (d) 50% outliers.
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Figure 2: -10log(MSE) of the second amplitude estimators in presence of outliers: (a) 10%
outliers, (b) 20% outliers, (c) 40% outliers, (d) 50% outliers.
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Figure 3: -10log(MSE) of the frequency estimators in presence of outliers: (a) 10% outliers,
(b) 20% outliers, (c) 40% outliers, (d) 50% outliers.
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Figure 4: (a) Original Signal and (b) Observed Signal.
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Figure 5: Periodogram function of the observed signal.
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Figure 6: Different weight functions.
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Figure 7: Predicted Signal based on the weight function (v).
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