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ABSTRACT
The generalized exponential distribution proposed by Gupta and Kundu (1999) is an important lifetime distribution in survival analysis.  In this paper, we consider the maximum likelihood estimation procedure of the parameters of the generalized exponential distribution when the data are left censored.  We obtain the maximum likelihood estimators of the unknown parameters and also obtain the Fisher Information matrix.  Simulation studies are carried out to observe the performance of the estimators in small sample.
KEYWORDS: Fisher Information, generalized exponential distribution, left censoring, maximum likelihood estimator. 
1. INTRODUCTION
The generalized exponential (GE) distribution (Gupta and Kundu; 1999) has the cumulative distribution function (CDF)
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with the corresponding probability density function (PDF)  given by
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Here 
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 and 
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 are the shape and scale parameters respectively.  GE distribution with the shape parameter 
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 and the scale parameter 
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 will be denoted by 
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.    It is known that the shape of the PDF of the two-parameter GE distribution is very similar to the corresponding shapes of gamma or Weibull distributions.   It has been observed in Gupta and Kundu (1999) that the two-parameter 
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 can be used quite effectively in analyzing many lifetime data, particularly in place of two-parameter Gamma or two-parameter Weibull distributions.  The two-parameter 
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 can have increasing and decreasing failure rate depending on the shape parameter.  The readers are referred to Raqab (2002), Raqab and Ahsanullah (2001), Zheng (2003) and the references cited there for some recent developments on GE distribution.
Although several papers have already appeared on the estimation of the parameters of GE distribution for complete sample case, see for example the review article of Gupta and Kundu (2006b), but not much attention has been paid in case of censored sample.  The main aim of this is to consider the statistical analysis of the unknown parameters when the data are left censored from a GE distribution.  We obtain the maximum likelihood estimators (MLEs) of the unknown parameters of the GE distribution for left censored data.  It is observed that the MLEs can not be obtained in explicit form and the MLE of the scale parameter can be obtained by solving a non-linear equation.  We propose a simple iterative scheme to solve the non-linear equation.  Once the MLE of the scale parameter is obtained, the MLE of the shape parameter can be obtained in explicit form.  We have also obtained the explicit expression of the Fisher information matrix and it has been used to construct the asymptotic confidence intervals of the unknown parameters.  Extensive simulation study has been carried to observe the behavior of the proposed methods for different sample sizes and for different parameter values and it is observed that the performances of the proposed methods are quite satisfactory. 
There is a widespread application and use of left-censoring or left-censored data in survival analysis and reliability theory. For example, in medical studies patients are subject to regular examinations. Discovery of a condition only tells us that the onset of sickness fell in the period since the previous examination and nothing about the exact date of the attack. Thus the time elapsed since onset has been left censored. Similarly, we have to handle left-censored data when estimating functions of exact policy duration without knowing the exact date of policy entry; or when estimating functions of exact age without knowing the exact date of birth. A study on the “Patterns of Health Insurance Coverage among Rural and Urban Children” (Coburn, McBride and Ziller, 2001) faces this problem due to the incidence of a higher proportion of rural children whose spells were "left censored" in the sample (i.e., those children who entered the sample uninsured), and who remained uninsured throughout the sample. Yet another study (Danzon, Nicholson and Pereira, 2004) which used data on over 900 firms for the period 1988-2000 to estimate the effect on phase-specific (phases 1, 2 and 3) biotech and pharmaceutical R&D success rates of a firm’s overall experience, its experience in the relevant therapeutic category, the diversification of its experience across categories, the industry’s experience in the category, and alliances with large and small firms, saw that the data suffered from left censoring.  This occurred, for example, when a phase 2 trial was initiated for a particular indication where there was no information on the phase 1 trial. Application can also be traced in econometric model, for example, for the joint determination of wages and turnover. Here, after the derivation of the corresponding likelihood function, an appropriate dataset is used for estimation. For a model that is designed for a comprehensive matched employer-employee panel dataset with fairly detailed information on wages, tenure, experience and a range of other covariates, it may be seen that the raw dataset may contain both completed and uncompleted job spells. A job duration might be incomplete because the beginning of the job spells is not observed, which is an incidence of left censoring (Bagger, 2005). For some further examples, one may refer to Balakrishnan (1989), Balakrishnan and Varadan (1991), Lee et al. (1980), etc. 
The rest of the paper is organized as follows.  In Section 2 we derive the maximum likelihood estimators of 
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 in the presence of left censoring.  In Section 3, we provide the complete enumeration of the Fisher Information matrix and discuss certain issues on the limiting Fisher information matrix.  Simulation results and discussions are provided in Section 4.

2. MAXIMUM LIKELIHOOD ESTIMATION

In this section, maximum likelihood estimators of the 
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 are derived in presence of left censored observations.  Let 
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 order statistics from a random sample of size 
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 distribution.  Then the joint probability density function of 
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Then the log likelihood function denoted by 
[image: image19.wmf](

)

(1)()

,...,;,

rn

Lxx

al

+

 (or simply,
[image: image20.wmf](

)

,

L

al

) is


[image: image21.wmf](

)

(

)

(

)

(

)

(

)

(1)

()

()

11

,ln!ln!lnlnln1

(1)ln1.(2.2)

r

i

x

nn

x

i

irir

Lnrnrnrre

ex

l

l

alala

al

+

-

-

=+=+

=-+-+-+-

+---

åå


The normal equations for deriving the maximum likelihood estimators become
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From (2.3), we obtain the maximum likelihood estimator of 
[image: image23.wmf]a

as a function of 
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, say 
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Putting 
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in (2.2) we obtain the profile log-likelihood on 
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 as 
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i.e. 
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where, 
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 in (2.6) is a constant independent of 
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  Thus, the maximum likelihood estimator of 
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, say 
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, can be obtained by maximizing (2.6) with respect to 
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  The maximizing 
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 can be obtained  (Gupta and Kundu; 1999b) from the fixed point solution of 
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               (2.8)
We apply iterative procedure to find the solution of (2.7).  Once we obtain 
[image: image41.wmf]ˆ

,

MLE

l

 the maximum likelihood estimator of 
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[image: image43.wmf]ˆ

a

 can be obtained from (2.5) as 
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3. APPROXIMATE AND LIMITING FISHER INFORMATION MATRICES
3.1 APPROXIMATE FISHER INFORMATION MATRIX

In this sub-section, we first obtain the approximate Fisher information matrix of the unknown parameters of GE distribution when the data are left censored, which can be used to construct asymptotic confidence intervals.  The Fisher information matrix 
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                        (3.1)
Note that the elements of the Fisher Information matrix can be written as;
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and 
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Thus to compute (3.2) and (3.3) we are required to obtain explicit expressions of expectations of the forms
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.  Note that the density of the ith order statistic from a random sample of size n following the 
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Then,
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(3.4) and (3.5) are obtained using the fact that 
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3.2 LIMITING FISHER INFORMATION MATRIX
In this sub-section we explore the asymptotic efficiency and hence attempt to obtain the limiting information matrix when 
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 converges to, say, 
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 which lies in 
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. For the left censored observations at the time point 
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, it has been observed by Gupta, Gupta and Sankaran (2004) that the limiting Fisher information matrix can be written as 
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 the reversed hazard function.  Moreover, it is also known, see Zheng and Gastwirth (2000), that for location and scale family, the Fisher information matrix for Type-I and Type-II (both for left and right censored data) are asymptotically equivalent.  It is also mentioned by Zheng and Gastwirth (2000) that for general case (not for location and scale family) the results for Type-II censored data (both for left and right) of the asymptotic Fisher information matrices are not very easy to obtain.  Unfortunately, the GE family does not belong to the location and scale family and we could not obtain the explicit expression for the limiting Fisher information matrix in this case.  Numerically, we have studied the limiting behavior of the Fisher information matrix by taking 
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 (assuming it is very large) and compare them with the different small samples and different ‘p’ values.  The numerical results are reported in Section 4. 
4.  NUMERICAL RESULTS AND DISCUSSIONS

In this section we report extensive simulation results for different sample sizes, for different parameter values and for different censored proportions.  We mainly observe the performance of the proposed MLEs and the confidence intervals based on the asymptotic distribution of the MLEs.  The performance of  MLEs are based on their means squared errors (MSEs) and the performance of the confidence intervals are based on the coverage percentages (CPs).  
We begin with the generation of the 
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.  Using the uniform random number generator, the generation of the GE random deviate is immediate. We consider different sample sizes ranging from small to large.  Since 
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 is the scale parameter and the MLE is scale invariant, without loss of generality, we take 
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 in all our computations and consider different values of 
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.  We report the average relative estimates and the average relative MSEs over 1000 replications for different cases.

We compute the maximum likelihood estimates when both the parameters are unknown.  
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 can be obtained from the fixed point solution of (2.7) and 
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 can be obtained from (2.5).  We consider the following sample sizes 
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, whereas 
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 for different sample sizes are taken as 
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 For left censoring, we leave out the first 10% and 20% of the data in each of the above cases of different combinations of 
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 and 
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  Throughout, we consider 
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 and for each combination of 
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 generate a sample of size 
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 from 
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 in the case of left censoring of the given data of given order.  We report the average values of 
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and also the corresponding average MSEs.  All reported results are based on 1000 replications.  Furthermore, using the asymptotic covariance matrix we obtain the average lower and the upper confidence limits of the estimates of both the shape and the scale parameters and also report the estimated coverage probability, computed as the proportion of the number of times, out of 1000 replications, the estimated confidence interval contains the true parameter value.   The results corresponding to the shape parameter 
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,  for various sample sizes are reported in Tables 1-4 and the results for the scale parameter 
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 are presented in Table 5-8.
Table 1. Average relative estimates, average relative MSEs, confidence limit and coverage probability of 
[image: image103.wmf]a

 when 
[image: image104.wmf]l

 is unknown 
[image: image105.wmf](15)

n

=


	
[image: image106.wmf]a


	No. of observations

in left censoring
	Average relative

estimate
	MSE
	Average

LCL
	Average

UCL
	Coverage

probability

	0.25
	3
	1.2133
	0.2896
	0.1025
	0.5041
	0.9650

	
	2
	1.2090
	0.2816
	0.1128
	0.4917
	0.9630

	0.50
	3
	1.2833
	0.5381
	0.1563
	1.1270
	0.9750

	
	2
	1.2591
	0.4321
	0.1863
	1.0728
	0.9750

	1.00
	3
	1.3991
	0.9235
	0.1245
	2.6736
	0.9700

	
	2
	1.3503
	1.0461
	0.2184
	2.4822
	0.9750

	2.00
	3
	1.8132
	2.2276
	0.0000
	8.5207
	0.9580

	
	2
	1.4857
	1.4957
	0.0000
	6.0154
	0.9680

	2.50
	3
	1.7451
	3.7330
	0.0000
	9.8770
	0.9620

	
	2
	1.4940
	3.0090
	0.0000
	7.8995
	0.9470


Table 2. Average relative estimates, average relative MSEs, confidence limit and coverage probability of 
[image: image107.wmf]a

 when 
[image: image108.wmf]l

 is unknown 
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	No. of observations

in left censoring
	Average relative

estimate
	MSE
	Average

LCL
	Average

UCL
	Coverage

Probability

	0.25
	4
	1.1341
	0.1430
	0.1233
	0.4437
	0.9740

	
	2
	1.1239
	0.1279
	0.1342
	0.4277
	0.9570

	0.50
	4
	1.2109
	0.2763
	0.2181
	0.9928
	0.9740

	
	2
	1.1533
	0.2165
	0.2436
	0.9096
	0.9680

	1.00
	4
	1.3051
	0.4810
	0.3125
	2.2977
	0.9760

	
	2
	1.2113
	0.3270
	0.3995
	2.0230
	0.9620

	2.00
	4
	1.4219
	1.3320
	0.1536
	5.5341
	0.9660

	
	2
	1.3037
	0.5870
	0.5063
	4.7085
	0.9700

	2.50
	4
	1.4463
	1.8454
	0.0000
	7.2910
	0.9520

	
	2
	1.3013
	0.5963
	0.4804
	6.0260
	0.9740


Table 3. Average relative estimates, average relative MSEs, confidence limit and coverage probability of 
[image: image111.wmf]a

 when 
[image: image112.wmf]l

 is unknown 
[image: image113.wmf](50)
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	No. of observations

in left censoring
	Average relative

estimate
	MSE
	Average

LCL
	Average

UCL
	Coverage

Probability

	0.25
	10
	1.0518
	0.0425
	0.1703
	0.3556
	0.9560

	
	5
	1.0393
	0.0334
	0.1750
	0.3446
	0.9580

	0.50
	10
	1.0640
	0.0536
	0.3245
	0.7395
	0.9500

	
	5
	1.0566
	0.0422
	0.1710
	0.3573
	0.9510

	1.00
	10
	1.0892
	0.0884
	0.5967
	1.5817
	0.9690

	
	5
	1.0933
	0.0727
	0.6480
	1.5385
	0.9490

	2.00
	10
	1.1090
	0.1262
	1.0229
	3.4132
	0.9570

	
	5
	1.0857
	0.0941
	1.1374
	3.2053
	0.9710

	2.50
	10
	1.1185
	0.1466
	1.1974
	4.3951
	0.9660

	
	5
	1.1063
	0.1127
	1.3680
	4.1633
	0.9550


Table 4. Average relative estimates, average relative MSEs, confidence limit and coverage probability of 
[image: image115.wmf]a

 when 
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 is unknown 
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	No. of observations

in left censoring
	Average relative

Estimate
	MSE
	Average

LCL
	Average

UCL
	Coverage

Probability

	0.25
	20
	1.0361
	0.0190
	0.1947
	0.3233
	0.9570

	
	10
	1.0239
	0.0156
	0.1970
	0.3149
	0.9550

	0.50
	20
	1.0342
	0.0234
	0.3756
	0.6586
	0.9570

	
	10
	1.0327
	0.0189
	0.3869
	0.6457
	0.9550

	1.00
	20
	1.0375
	0.0315
	0.7111
	1.3640
	0.9570

	
	10
	1.0383
	0.0260
	0.7436
	1.3330
	0.9510

	2.00
	20
	1.0558
	0.0508
	1.3230
	2.9002
	0.9540

	
	10
	1.0501
	0.0392
	1.4028
	2.7975
	0.9570

	2.50
	20
	1.0680
	0.0510
	1.6120
	3.7282
	0.9640

	
	10
	1.0382
	0.0354
	1.6898
	3.5012
	0.9650


Table 5. Average relative estimates, average relative MSEs, confidence limit and coverage probability of 
[image: image119.wmf]l

 when 
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 is unknown 
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	No. of observations

in left censoring
	Average relative

estimate
	MSE
	Average

LCL
	Average

UCL
	Coverage

probability

	0.25
	3
	1.4862
	1.5186
	0.0000
	2.9978
	0.9690

	
	2
	1.5140
	1.6061
	0.0000
	3.0353
	0.9590

	0.50
	3
	1.3227
	0.5718
	0.2549
	2.3904
	0.9570

	
	2
	1.2930
	0.6331
	0.2701
	2.3159
	0.9500

	1.00
	3
	1.2291
	0.3111
	0.3942
	2.0640
	0.9470

	
	2
	1.2423
	0.3049
	0.4202
	2.0644
	0.9590

	2.00
	3
	1.1790
	0.2069
	0.4675
	1.8904
	0.9500

	
	2
	1.1770
	0.1887
	0.4945
	1.8595
	0.9530

	2.50
	3
	1.2119
	0.2086
	0.5050
	1.9188
	0.9510

	
	2
	1.1378
	0.1701
	0.4939
	1.7817
	0.9460


Table 6. Average relative estimates, average relative MSEs, confidence limit and coverage probability of 
[image: image123.wmf]l

 when 
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 is unknown 
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	No. of observations

in left censoring
	Average relative

estimate
	MSE
	Average

LCL
	Average

UCL
	Coverage

Probability

	0.25
	4
	1.3296
	0.7683
	0.1322
	2.5271
	0.9590

	
	2
	1.3473
	0.8900
	0.1519
	2.5427
	0.9560

	0.50
	4
	1.2394
	0.3360
	0.3636
	2.1152
	0.9570

	
	2
	1.1871
	0.2686
	0.3614
	2.0129
	0.9500

	1.00
	4
	1.2025
	0.2183
	0.4902
	1.9148
	0.9530

	
	2
	1.1393
	0.1479
	0.4845
	1.7940
	0.9570

	2.00
	4
	1.1515
	0.1399
	0.5453
	1.7577
	0.9400

	
	2
	1.1420
	0.1254
	0.5728
	1.7112
	0.9440

	2.50
	4
	1.1333
	0.1348
	0.5537
	1.7129
	0.9410

	
	2
	1.1093
	0.0985
	0.5727
	1.6458
	0.9470


Table 7. Average relative estimates, average relative MSEs, confidence limit and coverage probability of 
[image: image127.wmf]l

 when 
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 is unknown 
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	No. of observations

in left censoring
	Average relative

estimate
	MSE
	Average

LCL
	Average

UCL
	Coverage

Probability

	0.25
	10
	1.1088
	0.1418
	0.4609
	1.7567
	0.9570

	
	5
	1.1129
	0.1587
	0.4699
	1.7559
	0.9550

	0.50
	10
	1.0747
	0.0729
	0.5775
	1.5720
	0.9530

	
	5
	1.1039
	0.1380
	0.4596
	1.7482
	0.9620

	1.00
	10
	1.0613
	0.0538
	0.6507
	1.4719
	0.9470

	
	5
	1.0787
	0.0553
	0.6802
	1.4772
	0.9500

	2.00
	10
	1.0438
	0.0374
	0.6877
	1.3999
	0.9440

	
	5
	1.0438
	0.0346
	0.7070
	1.3805
	0.9460

	2.50
	10
	1.0483
	0.0368
	0.7021
	1.3946
	0.9510

	
	5
	1.0466
	0.0311
	0.7214
	1.3718
	0.9480


Table 8. Average relative estimates, average relative MSEs, confidence limit and coverage probability of 
[image: image131.wmf]l

 when 
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 is unknown 
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	No. of observations

in left censoring
	Average relative

Estimate
	MSE
	Average

LCL
	Average

UCL
	Coverage

Probability

	0.25
	20
	1.0622
	0.0585
	0.6207
	1.5036
	0.9560

	
	10
	1.0618
	0.0563
	0.6253
	1.4982
	0.9510

	0.50
	20
	1.0325
	0.0319
	0.6921
	1.3729
	0.9510

	
	10
	1.0417
	0.0315
	0.7076
	1.3758
	0.9540

	1.00
	20
	1.0294
	0.0224
	0.7451
	1.3136
	0.9530

	
	10
	1.0301
	0.0225
	0.7579
	1.3023
	0.9460

	2.00
	20
	1.0305
	0.0190
	0.7807
	1.2804
	0.9430

	
	10
	1.0273
	0.0170
	0.7921
	1.2625
	0.9430

	2.50
	20
	1.0304
	0.0153
	0.7887
	1.2720
	0.9620

	
	10
	1.0188
	0.0133
	0.7935
	1.2441
	0.9550


From the simulations results, we observe that for a fixed level of left censoring, as sample size increases the biases and the average relative MSE of the estimates decrease quite rapidly.  For example,  for 10% left censored data and when 
[image: image135.wmf]15
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, the average relative MSE of the estimate of the shape parameter 
[image: image136.wmf]2,
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 is 1.4957 which reduces to 0.5870 for 
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n
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 0.0941 for 
[image: image138.wmf]50
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 and 0.0392 for 
[image: image139.wmf]100.
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 A similar trend is observed for other levels of chosen shape parameter values and censoring levels (20%).  This is indicative of the fact that the estimators are consistent and approaches the true parameter values as the sample size increases.  Furthermore, for a fixed level of left censoring, as sample size increases the length of the confidence intervals also decrease significantly keeping the coverage probability around 0.95 to 0.98.  For example, for a 10% censoring level and 
[image: image140.wmf]15

n
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,  the average length of the confidence interval for 
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 is 0.3789, this reduces to 0.2935 for 
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 0.1696 for 
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 and 0.1179 for 
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, all with a coverage probability of 0.96.  Note that in Tables 1, 2 and 5 for some 
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, LCL’s are zero.  Actually, they were negative, since 
[image: image146.wmf]0
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, we forcefully truncated them at 
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.  We also observe that for a fixed sample size, the performance of the estimators deteriorate as the number of left censored observations increase, which is a natural consequence of censoring.  The degree of deterioration however is not significantly felt for moderate to high sample sizes (sample sizes 50 and 100).  It is further observed that for a fixed sample size and a fixed level of censoring, the average relative MSE of the estimates and the length of the respective confidence intervals increase as the value of the shape parameter 
[image: image148.wmf]a

 increases.   This indicates that estimation of the shape parameter under left censoring becomes difficult when the value of the shape parameter of the underlying GE distribution is large.  It may indicate that the Fisher information contained in the left censored data may be a decreasing function of 
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.  
Now we study the limiting behaviour of the Fisher information matrix as 
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. Since it is not possible to compute it analytically, we take very large 
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 it is constant if 
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.  The results are presented in the following table. 

Table 9: Elements of the approximate and asymptotic Fisher information matrices

	n(r)
	α = 0.25
	α = 0.50
	α = 1.00
	α = 2.00
	α = 2.50

	15(3)

20(4)

50(10)

100(20)

5000(1000)
	(0.2630, 0.5933)

(0.2641, 0.5948)

(0.2668, 0.5974)

(0.2679, 0.5983)

 (0.2687, 0.5994)
	(0.4417, 0.6312)

(0.4432, 0.6318)

(0.4455, 0.6328)

(0.4464, 0.6333)

 (0.4467, 0.6339)
	(0.6310, 0.9982)

(0.6322, 0.9985)

(0.6336, 0.9989)

(0.6334, 0.9991)

 (0.6340, 0.9991)
	(0.7828, 1.9628)

(0.7834, 1.9630)

(0.7843, 1.9632)

(0.7843, 1.9630)

 (0.7842, 1.9629)
	(0.8202, 2.4629)

(0.8207, 2.4631)

(0.8215, 2.4633)

(0.8215, 2.4631)

(0.8214, 2.4630)

	

	15(2)

20(2)

50(5)

100(10)

5000(500)
	(0.2836, 0.6005)

(0.2927, 0.6031)

(0.2946, 0.6039)

(0.2955, 0.6042)

 (0.2958, 0.6047)
	(0.4552, 0.6340)

(0.4609, 0.6350)

(0.4622, 0.6352)

(0.4626, 0.6355)

 (0.4625, 0.6358)
	(0.6386, 0.9993)

(0.6418, 0.9997)

(0.6426, 0.9999)

(0.6426, 0.9999)

 (0.6423, 1.0000)
	(0.7866, 1.9632)

(0.7885, 1.9635)

(0.7889, 1.9636)

(0.7888, 1.9634)

 (0.7886, 1.9633)
	(0.8234, 2.4633)

(0.8248, 2.4636)

(0.8252, 2.4636)

(0.8251, 2.4634)

(0.8249, 2.4633)


From the tabulated results it is clear that even for small sample sizes, viz., 
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, respectively. It justifies the use of approximate Fisher information matrix to draw inference of the unknown parameters of the generalized exponential distribution, when the data are left censored. 
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