
On the comparison of the Fisher

information of the log-normal and

generalized Rayleigh distributions

Fawziah S. Alshunnar1, Mohammad Z. Raqab1 and Debasis Kundu2

Abstract

Surles and Padgett (2001) recently considered two-parameter Burr Type X distri-
bution by introducing a scale parameter and called it the generalized Rayleigh dis-
tribution. It is observed that the generalized Rayleigh and log-normal distributions
have many common properties and both distributions can be used quite effectively to
analyze skewed data set. In this paper we mainly compare the Fisher information ma-
trices of the two distributions for complete and censored observations. Although, both
distributions may provide similar data fit and quite similar in nature in many aspects,
the corresponding Fisher information matrices can be quite different. We compute the
total information measures of the two distributions for different parameter ranges and
also compare the loss of information due to censoring. Real data analysis has been
performed for illustrative purpose.
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1 Introduction

Recently, Surles and Padgett [21] considered the two parameter Burr Type X distribution

by introducing a scale parameter and correctly named it as the generalized Rayleigh (GR)

distribution. The two-parameter GR distribution for α > 0 and λ > 0 has the cumulative

distribution function (CDF) and probability density function (PDF)

FGR(x;α, λ) =
(
1− e−(λx)

2
)α

; for x > 0, (1)

and

fGR(x;α, λ) = 2αλ2xe−(λx)
2
(
1− e−(λx)

2
)α−1

; for x > 0, (2)

respectively. Here α and λ are the shape and scale parameters respectively. From now on

the generalized Rayleigh distribution with the shape parameter α and scale parameter λ will

be denoted by GR(α, λ). Several aspects of the GR distribution have been studied by Surles

and Padgett [21], Raqab and Kundu [19] and Kundu and Raqab [15]. For some general

references on Burr Type X distribution, the readers are referred to Sartawi and Abu-Salih

[20], Jaheen [9, 10], Ahmad et al. [2], Raqab [18] and the references cited there. It is observed

that the GR distribution is always right skewed and they can be used quite effectively to

analyze any skewed data. Shapes of the different PDFs of the GR distribution can be found

in Raqab and Kundu [19].

Among several other right skewed distributions, two parameter log-normal distribution

also is used quite effectively to analyze lifetime skewed data. In this paper it is assumed that

the two-parameter log-normal distribution for β > 0, σ > 0 has the PDF

fLN(x; β, σ) =
1√
2πxσ

e−
(ln x−ln β)2

2σ2 ; x > 0. (3)

Here σ and β are the shape and scale parameters respectively. The corresponding CDF can
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be expressed as

FLN(x;σ, β) = Φ

(
lnx− ln β

σ

)
=

1

2
+

1

2
Erf

(
lnx− ln β√

2σ

)
, (4)

where Φ(·) is the cumulative distribution function of a standard normal distribution and

Erf(x) =
2√
π

∫ x

0
e−t

2

dt. (5)

From now on a log-normal distribution with the PDF (3) will be denoted by LN(σ, β). A

log-normal distribution has always a unimodal PDF. The shapes of the different log-normal

PDFs can be obtained in Johnson et al. [11].

The Fisher information matrix of a distribution function, plays a significant role in any

statistical inference. Therefore, computation of the Fisher information matrix is quite im-

portant both from the theoretical and applications point of view. It can be used to compute

the asymptotic variance of any function of the estimators and in turn it can be used to

construct confidence intervals also. Recently it is observed by Kundu and Raqab [14] that

for certain ranges of the shape and scale parameters the PDFs of the log-normal and the

generalized Rayleigh distributions can be very close. For example, see Figures 1 and 2 of

Kundu and Raqab [14], where it is observed that the the PDFs and CDFs of GR(15, 1) and

LN(0.1822, 1.7620) are almost indistinguishable.

Computation of the Fisher information matrix for both complete and censored sample, is

very important in the statistical literature. In this paper we compute and compare the Fisher

information matrices of both distributions for (i) complete sample and (ii) censored sample

(fixed time). We compare the total information measures and also the loss of information due

to truncation. It is interesting to observe that although the PDFs of the log-normal and GE

distributions can be quite close but the total information measures or the loss of information

measures due to truncation can be quite different, which is quite counter intuitive.

The rest of the paper is organized as follows. We provide the necessary preliminaries in
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Section 2. The results for complete sample and censored sample are provided in Sections 3

and 4. We analyze one data set in Section 5 and finally conclude the paper in Section 6.

2 Preliminaries

Let X > 0 be a continuous random variable with the CDF, survival function and PDF as

F (x;θ), F̄ (x;θ) and f(x;θ) respectively. Here θ is a vector parameter and for brevity it

is assumed that θ = (θ1, θ2), although all the results in this section are valid for any finite

dimensional vector. The hazard function and reversed hazard function of X will be denoted

by

h(x;θ) =
f(x;θ)

F̄ (x;θ)
= − d

dx
ln F̄ (x;θ) and r(x;θ) =

f(x;θ)

F (x;θ)
=

d

dx
lnF (x;θ) (6)

respectively. Under the standard regularity conditions (see Lehmann [16]), the Fisher infor-

mation matrix for the parameter vector θ is

I(θ) = E







∂
∂θ1

ln f(X : θ)

∂
∂θ2

ln f(X : θ)



[
∂

∂θ1
ln f(X : θ)

∂

∂θ2
ln f(X : θ)

]
 . (7)

Interestingly it may be observed that I(θ) can be expressed as

I(θ) = E







∂
∂θ1

lnh(X : θ)

∂
∂θ2

lnh(X : θ)



[
∂

∂θ1
lnh(X : θ)

∂

∂θ2
lnh(X : θ)

]
 (8)

or

I(θ) = E







∂
∂θ1

ln r(X : θ)

∂
∂θ2

ln r(X : θ)



[
∂

∂θ1
ln r(X : θ)

∂

∂θ2
ln r(X : θ)

]
 . (9)

respectively. The derivations of (8) and (9) are quite simple and they can be obtained using

the definition of the hazard function and reversed hazard function in terms of the density

function, see for example Efron and Johnstone [5] and Gupta et al. [8]. It may be mentioned

that sometimes it may be convenient to use (8) or (9) than (7).
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Now consider the case when the observation X is both left and right censored at fixed

time points T1 and T2 respectively, i.e. one observes Y , where

Y =





X if T1 < X < T2

T1 if X < T1

T2 if X > T2.

In this case the Fisher information of one observation Y for the parameter vector θ is

IC(θ;T1, T2) =



a11 a12

a21 a22


+

1

F̄ (T2;θ)




∂
∂θ1
F̄ (T2;θ)

∂
∂θ2
F̄ (T2;θ)



[
∂

∂θ1
F̄ (T2;θ)

∂

∂θ2
F̄ (T2;θ)

]

+
1

F (T1;θ)




∂
∂θ1
F (T1;θ)

∂
∂θ2
F (T1;θ)



[
∂

∂θ1
F (T1;θ)

∂

∂θ2
F (T1;θ)

]

= IM(θ;T1, T2) + IR(θ;T2) + IL(θ;T1) (say) (10)

where

aij =
∫ T2

T1

(
∂

∂θi
ln f(x;θ)

)(
∂

∂θj
ln f(x;θ)

)
f(x;θ)dx,

for i, j = 1,2. Note that (10) can be obtained easily using the definition of the Fisher

information of a random sample.

Therefore, the Fisher information for complete sample or for fixed right censored (at time

T2) sample or for fixed left censored (at time T1) sample can be obtained as

IM(θ; 0,∞), IM(θ; 0, T2) + IR(θ;T2) and IM(θ;T1,∞) + IL(θ;T1)

respectively, by observing the fact IR(θ;∞) = 0 and IL(θ; 0) = 0.

3 Fisher Information Matrices: Complete Sample

Let us denote the Fisher information matrix of the GR distribution as
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IG(α, λ) =



f11G f12G

f21G f22G


 . (11)

Then

f11G =
1

α2
,

f12G = f21G =
2

αλ

∫ 1

0


1 +

ln y
1
α

α


 η(y)dy,

f22G =
4

λ2

∫ 1

0
η2(y)dy,

where

η(y) = 1 + ln(1− y
1
α )− (α− 1)(1− y

1
α ) ln(1− y

1
α )

y
1
α

. (12)

It may be mentioned that f12G and f22G can be expressed in terms of Beta and digamma

functions and they are presented in the Appendix.

If we denote the Fisher information matrix of the log-normal distribution as

IL(σ, β) =



f11L f12L

f21L f22L


 , (13)

then

f11L =
2

σ2
, f12L = f21L = 0, f22L =

1

β2σ2
.

Some of the interesting features are observed by comparing the Fisher information ma-

trices of the two distributions. In both cases if the shape (scale) parameter is known, the

Fisher information of the scale (shape) parameter is inversely proportional to itself. More-

over, the maximum likelihood estimators (MLEs) of the shape and scale parameters are

asymptotically independent for the log-normal distribution, but for GR distribution they

are dependent.
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Now we would like to compare the total information measures contained in the corre-

sponding Fisher information matrices. Since θ is a vector parameter the comparison is not

a trivial issue. Several methods can be adopted to compute the total information measure

contained in a given Fisher information matrix. One of the measures can be the trace of

the Fisher information matrix. It is similar to the E-optimality of the design of experiment

problem. Note that the trace of Fisher information matrix is the sum of the Fisher infor-

mation measures of the shape parameter (assuming scale parameter to be known) and the

scale parameter (assuming shape parameter to be known). Another measure (inverse) can

be the sum of the asymptotic variances of the MLEs of the shape and scale parameters, i.e.

the trace of the inverse of the Fisher information matrix.

To compare the total information measures of the two distribution functions, it is quite

natural to compare them at their closest values. The closeness (distance) between the two

distribution functions can be defined in several ways. We have used the Kolmogorov-Smirnov

distance as the distance measure between the two distribution functions. Kundu and Raqab

[14] recently reported different values of α̃, λ̃ for given σ so that GR(α̃, λ̃) is closest to

LN(σ,1) in terms of the Kolmogorov-Smirnov distance. We compare the trace and variance

of the corresponding Fisher information matrices and the results are reported in Table 1.

From Table 1 it is quite interesting to observe that even if the two distributions functions are

quite close to each other, but the corresponding Fisher informations can be quite different.

One point should be mentioned here that although, the trace and the total variance have

been used in the literature to represent the total information content in a random sample X

regarding the parameter vector θ but the trace or the total variance are not scale invariant.

For example, if we make a scale change then not only the corresponding values but the trend

also might change, (see for example Gupta and Kundu [7]), which may not be desirable .

Similarly, if we re-parametrize, then also the total information measure with respect to one
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Table 1: The traces and variances of the Fisher information matrices of GR(α̃, λ̃) and
LN(σ,1).

σ2 α̃ λ̃ Trace Trace Total Var Total Var
(GR) (LN) (GR) (LN)

0.10 3.285 1.255 6.904 30.419 30.043 0.150
0.15 2.065 1.068 6.746 20.031 10.030 0.225
0.20 1.518 0.933 7.037 15.014 4.916 0.300
0.25 1.207 0.828 7.571 12.000 2.938 0.375
0.30 1.003 0.742 8.281 10.026 1.961 0.449
0.35 0.861 0.671 9.126 8.618 1.417 0.522

set of parameters might be different than the other set. Moreover, although α, λ and σ, β are

the shape and scale parameters of the GR and log-normal distributions respectively, but the

parameters may not characterize the same features of the corresponding distributions. It is

more reasonable to identify the same feature of both distributions. Instead of the individual

shape and scale parameters, some function of the parameters may be more appropriate in

this respect. For example the corresponding percentile points represent a common feature.

Therefore, comparing the asymptotic variance of the corresponding percentile estimators is

more meaningful, see for example Gupta and Kundu [7]. They are scale invariant and they

maintain the trend also. It may be mentioned that similar measure has been considered

to find the Fisher information content in a censoring scheme and hence to find the optimal

censoring scheme, see for example Zhang and Meeker [23], Ng et al. [17], Kundu [12, 13] or

Banerjee and Kundu [3].

The p-th (0 < p < 1) percentile points of the GR(α, λ) and LN(σ, β) distributions are

pGE(α, λ) =
1

λ

[
− ln(1− p

1
α )
] 1

2 and pLN(σ, β) = βeσΦ
−1(p),

respectively. The asymptotic variances of the p-th percentile estimators of the GR and
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log-normal distributions are

VGR(p) =

[
∂pGR
∂α

,
∂pGR
∂λ

] 

f11G f12G

f21G f22G




−1 


∂pGR
∂α

∂pGR
∂λ




and

VLN(p) =

[
∂pLN
σβ

,
∂pLN
σβ

] 

f11L f12L

f21L f22L




−1 


∂pLN
∂σ

∂pLN
∂β




respectively. Now to compare the information measures of the two distributions the asymp-

totic variances of the median or 99% percentile estimators may be considered. Using the

idea of Gupta and Kundu [7] we propose to compare

AVGR,W =
∫ 1

0
VGR(p)dW (p) and AVLN,W =

∫ 1

0
VLN(p)dW (p) (14)

here W (·) ≥ 0 is a weight function such that

∫ 1

0
dW (p) = 1.

Note the above criterion is a more general criterion than the criterion proposed by Gupta

and Kundu [7]. The choice of W (·) depends on the problem at hand. For example if we are

interested to compare the variances of the median estimators, then W (·) can be chosen as

a point mass at 0.5. If we are interested about the average asymptotic variance of all the

percentile point estimators, then the choice of W (p) = 1, for all 0 < p < 1. Similarly, if

we are interested about the central portion of the distribution or toward the tail, W (·) can

be chosen accordingly. We have computed AVGR,W and AVLN,W for different W (·) and the

results are reported in Table 2.

4 Fisher Information Matrix: Censored Sample

In this section first we provide the Fisher information matrix for the GR distribution and

then for the log-normal distribution. Let us denote IM(θ;T1, T2), IR(θ;T2) and IL(θ;T1) for
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Table 2: The asymptotic variances of the 5-th percentile estimators, median estimators, 95-
th percentile estimators, the average asymptotic variances over all percentile estimators are
reported for LN(σ, 1) and GR(α̃, λ̃)

σ2 → 0.10 0.15 0.20 0.25 0.30 0.35

VGR(0.05) 0.026 0.054 0.082 0.106 0.122 0.131
VLN(0.05) 0.083 0.099 0.108 0.113 0.116 0.117

VGR(0.5) 0.017 0.043 0.078 0.123 0.179 0.246
VLN(0.5) 0.099 0.150 0.199 0.250 0.299 0.348

VGR(0.95) 0.064 0.160 0.302 0.496 0.751 1.070
VLN(0.95) 0.667 1.264 2.055 3.061 4.278 5.734

∫ 1
0 VGR(p)dp 0.028 0.067 0.121 0.190 0.276 0.379∫ 1
0 VLN(p)dp 0.207 0.362 0.562 0.818 1.130 1.513

the GR distribution by

IMG(θ;T1, T2) =



a11G a12G

a21G a22G


 , IRG(θ;T2) =



b11G b12G

b21G b22G


 , ILG(θ;T1) =



c11G c12G

c21G c22G




respectively. Note that for p1 =
(
1− e−(λT1)2

)α
and p2 =

(
1− e−(λT2)2

)α
, we have

a11G =
1

α2

∫ p2

p1
(1 + ln y)2dy =

1

α2

[
p2(1 + (ln p2)

2)− p1(1 + (ln p1)
2)
]

a22G =
4

λ2

∫ p2

p1
η2(y)dy

a12G = a21G =
2

αλ

∫ p2

p1


1 +

ln y
1
α

α


 η(y)dy,

b11G =
p22(ln p2)

2

α2(1− p2)

b22G =
4α2

λ2(1− p2)
p

2α−2
α

2

(
1− p

1/α
2

)2 (
− ln(1− p

1/α
2 )

)2

b12G = b21G =
2

λ(1− p2)
p

2α−1
α

2 (ln p2)
(
1− p

1/α
2

) (
− ln(1− p

1/α
2 )

)

c11G =
1

α2
p1(ln p1)

2
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c22G =
4α2

λ2
p

2α−2
α

1

(
1− p

1/α
1

)2 (
− ln(1− p

1/α
1 )

)2

c12G = c21G =
2

λ
p
α−1
α

1 (ln p1)
(
1− p

1/α
1

) (
− ln(1− p

1/α
1 )

)
.

Similarly, let us denote the IM(θ;T1, T2), IR(θ;T2) and IL(θ;T1) matrices for the log-normal

distribution by

IML(θ;T1, T2) =



a11L a12L

a21L a22L


 , IRL(θ;T2) =



b11L b12L

b21L b22L


 , ILL(θ;T1) =



c11L c12L

c21L c22L




respectively.

If FLN(T1;σ, β) = Φ

(
lnT1 − ln β

σ

)
= p1 and FLN(T2;σ, β) = Φ

(
lnT2 − ln β

σ

)
= p2,

then

a11L =
1

σ2

∫ Φ−1(p2)

Φ−1(p1)
(1− y2)2φ(y)dy,

a22L =
1

β2σ2

∫ Φ−1(p2)

Φ−1(p1)
y2φ(y)dy,

a12L = a21L =
1

βσ2

∫ Φ−1(p2)

Φ−1(p1)
(y2 − 1)yφ(y)dy,

b11L =
1

(1− p2)σ2

[
φ
(
Φ−1(p2)

)]2 (
Φ−1(p2)

)2

b22L =
1

β2(1− p2)σ2

[
φ
(
Φ−1(p2)

)]2

b12L = b21L =
1

β(1− p2)σ2

[
φ
(
Φ−1(p2)

)]2 (
Φ−1(p2)

)

c11L =
1

p1σ2

[
φ
(
Φ−1(p1)

)]2 (
Φ−1(p1)

)2

c22L =
1

β2p1σ2

[
φ
(
Φ−1(p1)

)]2

c12L = c21L =
1

βp1σ2

[
φ
(
Φ−1(p1)

)]2 (
Φ−1(p1)

)
.

It may be observed that as p1 ↓ 0 and p2 ↑ 1, then

a11G → f11G, a12G → f12G, a22G → f22G, a11L → f11L, a12L → f12L, a22L → f22L.

Some of the interesting points can be observed by comparing the two Fisher information

matrices. First of all in both cases, it is observed that for fixed scale parameter, the Fisher
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information of the shape parameter is inversely proportional to its square and both of them

are independent of the corresponding scale parameters. In both the cases the Fisher infor-

mation of the scale parameters are also inversely proportional to its square, but they depend

on the corresponding shape parameters also.

Now we would like to see which portion of the distribution contain the maximum infor-

mation of the corresponding shape and scale parameters. For the log-normal distribution

from the shapes of (1− y2)2φ(y) and y2φ(y), it can be easily seen that the maximum infor-

mation of the parameters are to wards the ends. Therefore, if p1 = 1− p2, then both the left

and right censored data containing the same Fisher information about the shape and scale

parameters for the log-normal distribution.

For GR distribution, from the behavior of (1+ln y)2, it is clear that the Fisher information

regarding the shape parameter is more on the left tail of the data than on the right tail. For

the scale parameter, from the behavior of η2(y), it can be seen that the Fisher information

of the scale parameter depends on the values of the shape parameter α. It is also observed

that more Fisher information is to wards the right tail than left tail for all values of the

shape parameter.

For illustrative purposes, we have presented the total Fisher information of the log-normal

and GR distributions for three different censoring schemes, namely Scheme 1: p1 = 0.0, p2

= 0.7, Scheme 2: p1 = 0.15, p2 = 0.85, Scheme 3: p1 = 0.30, p2 = 1.0. Note that Scheme

1, Scheme 2 and Scheme 3 represent left censored, interval censored and right censored

respectively. The results are reported in Table 3.

Now we would like to discuss the loss of information due to truncation in one parameter,

when the other parameter is known. In all these discussions, it is assumed that p1 and p2

are fixed. First let us consider the GR distribution. If the scale parameter is known, the loss
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Table 3: The traces and variances of the Fisher information matrices of GR(α̃, λ̃) and
LN(σ,1) for three different censoring schemes.

σ2 α̃ λ̃ Scheme Trace Trace Total Var Total Var
(GR) (LN) (GR) (LN)

1 5.838 17.616 40.595 0.343
0.10 3.285 1.255 2 6.382 6.231 50.829 0.702

3 6.663 17.616 63.871 0.343
1 5.433 11.745 13.424 0.516

0.15 2.065 1.068 2 6.093 4.154 16.296 1.052
3 6.537 11.745 20.118 0.516
1 5.457 8.803 6.627 0.688

0.20 1.518 0.933 2 6.215 3.114 7.815 1.404
3 6.794 8.803 9.471 0.688
1 5.699 7.036 4.004 0.861

0.25 1.207 0.828 2 6.553 2.489 4.592 1.757
3 7.261 7.036 5.461 0.861
1 6.084 5.879 2.712 1.029

0.30 1.003 0.742 2 7.036 2.079 3.026 2.103
3 7.877 5.879 3.531 1.030
1 6.576 5.053 1.993 1.198

0.35 0.861 0.671 2 7.628 1.787 2.166 2.446
3 8.607 5.053 2.480 1.198
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of information of the shape parameter is

LossG(α) = 1− a11G + b11G + c11G
f11G

= 1−
[
p2 − p1 +

p2(ln p2)
2

1− p2

]
. (15)

Therefore, for fixed p1 and p2, the loss of information is independent of α. It is interesting

to observe that for Scheme 1, Scheme 2 and Scheme 3, the loss of information are 3.0%, 15%

and 70% respectively. Therefore, it is clear that the initial portion of the data contains the

maximum information of the shape parameter of the GR distribution and it is clear from

the behavior of (1 + ln y)2 also.

For known shape parameter, the loss of information of the scale parameter is

LossG(λ) = 1− a22G + b22G + c22G
f22G

= 1−
[∫ p2

p1
η2(y)dy +

α2

(1− p2)
p

2α−2
α

2

(
1− p

1/α
2

)2 (
− ln(1− p

1/α
2 )

)2

+α2p
2α−2
α

1

(
1− p

1/α
1

)2 (
− ln(1− p

1/α
1 )

)2]
/
∫ 1

0
η2(y)dy. (16)

Here the function η(·) is defined in (12). In this case even for fixed p1 and p2 (16) depends

on the shape parameter. It is clear that the loss of information of the scale parameter is

quite different than that of the shape parameter.

Now let us discuss the loss of information of the shape or scale parameter, for log-normal

distribution. The loss of information of the shape parameter is

LossL(σ) = 1− a11L + b11L + c11L
f11L

= 1− 1

2

[∫ Φ−1(p2)

Φ−1(p1)
(1− y2)2φ(y)dy +

1

(1− p2)

[
φ
(
Φ−1(p2)

)]2 (
Φ−1(p2)

)2

+
1

p1

[
φ
(
Φ−1(p1)

)]2 (
Φ−1(p1)

)2
]
, (17)

and for the scale parameter it is

LossL(β) = 1− a22L + b22L + c22L
f22L
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= 1−
[∫ Φ−1(p2)

Φ−1(p1)
y2φ(y)dy +

1

(1− p2)

[
φ
(
Φ−1(p2)

)]2
+

1

p1

[
φ
(
Φ−1(p1)

)]2
]
(18)

Both (17) and (18) depend only on p1 and p2. It can be seen that for the shape parameter,

the loss of information due to Scheme 1, Scheme 2 and Scheme 3 are 31%, 57% and 31%

respectively, whereas for the scale parameter, the corresponding loss of information are 37%,

59% and 37% respectively. Therefore, although for Scheme 2, in both the cases loss of

information are quite similar, but for Scheme 1 and Scheme 3, they can be quite different.

5 Data Analysis

In this section we analyze a real data set for illustrative purpose. The data set set was

originally obtained from Bjerkedal [4]. The data set represents the survival times of guinea

pigs injected with different doses of tubercle bacilli. It is known that guinea pigs have high

susceptibility to human tuberculosis and that is why they were used in this study. Here,

we are primarily concerned with the animals in the same cage that were under the same

regimen. The regimen number is the common logarithm of the number of bacillary units in

0.5 ml. of challenge solution; i.e., regimen 6.6 corresponds to 4.4 × 106 bacillary units per

0.5 ml. (log 4.4 × 106 = 6.6). Corresponding to regimen 6.6, there were 72 observations

listed below:

12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 59, 60,

60, 60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87, 91, 95, 96,

98, 99, 109, 110, 121, 127, 129, 131, 143, 146, 146, 175, 175, 211, 233, 258, 258, 263, 297,

341, 341, 376.

The mean, standard deviation and the coefficient of skewness are calculated as 99.82,

80.55 and 1.80, respectively. The skewness measure indicates that the data are positively
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skewed. From the observed data we try to obtain an estimate of the shape of the hazard

function. A device called scaled TTT transform and its empirical version are relevant in this

context. For a family with the survival function S(y) = 1−F (y), the scaled TTT transform,

with H−1
F (u) =

∫ F−1(u)

0
S(y)dy defined for 0 < u < 1 is φF (u) = H−1

F (u)/H−1
F (1). The

empirical version of the scaled TTT transform is given by

φn(j/n) = H−1
n (j/n)/H−1

n (1) =




j∑

i=1

x(i) + (n− j)x(j)


 /




j∑

i=1

x(i)


 ,

here j = 1, . . . , n and x(i) for i = 1, . . . , n represent the ith order statistics of a sample of size

n. Aarset [1] showed that the scaled TTT transform is convex (concave) if the hazard rate is

decreasing (increasing), and for bathtub (unimodal) hazard rates, the scaled TTT transform

is first convex (concave) and then concave (convex). We have plotted the empirical version

of the scaled TTT transform of the data set in Figure 1. From Figure 1 it is clear that
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Figure 1: The plot of the scaled TTT transform of the data set.

the scaled TTT transform is first concave and then convex, therefore it indicates that the

the hazard function is unimodal. In this case, both the log-normal and GR can be used to

analyze the data.

We standardize the data by dividing each element by the standard deviation of the data.

It does not affect the shape parameters in both cases. We obtained the MLEs of the unknown
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parameters as follows: α̂ = 0.9362, λ̂ = 0.2147, σ̂ = 0.6290, β̂ = 3.3210. The difference of

the log-likelihood function l(GR) − L(LN) = 1.2403. The Kolmogorov-Smirnov distance

between the empirical distribution function and the fitted GR (log-normal) is 0.097 (0.110)

and the corresponding p value is 0.51 (0.34). Therefore, it is clear that both distributions

provide a very good fit to the given data set. The expected Fisher information matrices for

the GR and log-normal distributions are

IGR(α̂, λ̂) =
[

1.1399 −6.1307
−6.1307 81.8826

]
, ILN(σ̂, β̂) =

[
5.0551 0.0
0.0 0.2292

]
.

Based on the above information matrices, it is clear that the Fisher information of the

shape parameter of GR is less than that of the log-normal distribution whereas for the scale

parameter it is the opposite. But if we compare the total information measure (trace or

determinant), then GR parameters have more information than the log-normal parameters.

Now let us look at the variance (inverse of the information) of the p-th percentile estimators

for both distributions for different values of p. It is clear from Figure 2 that the informa-
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Figure 2: The variances of the p-th percentile estimators for log-normal and GR distribution
for different values of p

tion content of the unknown parameters for GR distribution is more than the log-normal

distribution.
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Now let us look at the case when the data are censored. For illustrative purpose, we are

assuming that p1 = 0.1 and p2 = 0.9. Based on the censored sample the expected Fisher

information matrices for the GR and log-normal distributions are

IGR(α̂, λ̂) =
[

1.0267 −6.0836
−6.0836 73.2409

]
, ILN(σ̂, β̂) =

[
2.7786 0.0039
0.0039 0.1763

]
.

respectively. For comparison purposes we have plotted the asymptotic variances of the p-th

percentile estimators for both the complete and censored samples in Figure 3. From Figure
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Figure 3: The variances of the p-th percentile estimators for log-normal, GR distribution for
different values of p and for both complete and censored samples.

3 it is clear that the loss of information due to truncation for log-normal is much more than

GR.

The main aim of this example is to point out that unless we have a very good knowledge

about the underlying distribution, drawing inferences about the percentile points can be quite

misleading. It is observed that even if two distributions fit the data very well (none of them

can be rejected using any standard statistical tests) and the other characteristics (hazard

function) also match reasonably well but the asymptotic variances of the percentile estimators

based on two different distributions can be quite different. Therefore, in a situation like this

some prior information may be used to choose the appropriate model. If no prior information
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is available, we suggest to use the non-parametric method to draw inference of the tail

behavior of the underlying distribution, rather than any parametric method. More work is

needed in this direction.

6 Conclusions

In this paper we compute and compare the information measures of two closely related dis-

tributions, namely log-normal and generalized Rayleigh distributions. We compare their

Fisher information measures for complete and truncated samples. It is observed that al-

though the two distribution functions match very well for certain ranges of the parameter

values and they can be almost indistinguishable, the total information measures or the loss

of information of the two distributions can be very different, which is quite counter intuitive.
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Appendix

f12G = f21G = −4αλ3
∫ ∞

0
x3e−2(λx)

2
(
1− e−(λx)

2
)α−2

dx

=
2α

λ
B(2, α− 1) (ψ(2)− ψ(α+ 1))

f22G =
2

λ2

{
−1 + ψ(1)− ψ(α+ 1)− α(α− 1)

∫ 1

0

y ln y

(1− y)2−α

(
1 + 2α ln y +

2y

(1− y)

)
dy

}

if 0 < α ≤ 1

=
2

λ2

{
−1 + ψ(1)− ψ(α+ 1)− 2α

(
[ψ(2)− ψ(α+ 1)]2 + ψ′(2)− ψ′(α + 1)

)
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(ψ(2)− ψ(α+ 1)) + 2α(α− 1)
∫ 1

0

y2(ln y)2

(1− y)3−α
dy

}
if 1 ≤ α < 2,

=
2

λ2

{
−1 + ψ(1)− ψ(α+ 1)− 2α

(
[(ψ(2)− ψ(α+ 1)]2 + ψ′(2)− ψ′(α + 1)

)

+(ψ(2)− ψ(α+ 1))− 4

α− 2

(
[ψ(3)− ψ(α+ 1)]2 + ψ′(3)− ψ′(α + 1)

)}

if α > 2.

Here B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
, the Beta function, ψ(x) =

d

dx
ln Γ(x) and ψ′(x) =

d

dx
ψ(x) are the

digamma and polygamma functions respectively.
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