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Abstract. This is an introductory survey of substructural logics and of residuated

lattices which are algebraic structures for substructural logics. Our survey starts from

sequent systems for basic substructural logics and develops the proof theory of them.

Then, residuated lattices are introduced as algebraic structures for substructural logics,

and some recent developments of their algebraic study are presented. Based on these facts,

we conclude at the end that substructural logics are logics of residuated structures, and

in this way explain why sequent systems are suitable for formalizing substructural logics.
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uated lattices

1. Introduction

Substructural logics are logics lacking some or all of the structural rules when
they are formalized in sequent systems. They cover many of the well-known
nonclassical logics, e.g. Lambek calculus for categorial grammar (with no
structural rules), linear logic (with only the exchange rule), BCK-logic and
ÃLukasiewicz’s many-valued logics (lacking the contraction rule), and rele-
vant logics (lacking the weakening rule). The purpose of the study of sub-
structural logics is to introduce a uniform framework in which various kinds
of nonclassical logics that originated from different motivations can be dis-
cussed together, and to find common features among them, taking structural
rules for a clue.

This is a brief introductory survey of substructural logics and residuated
lattices. Residuated lattices are structures that have been studied by alge-
braists since the 1930s, but the study has been revived recently as a study
of mathematical structures for substructural logics. In the present paper,
we will mainly concentrate on examining basic ideas of substructural logics
in relation to residuated lattices, and will clarify what substructural logics
are and why formalizations in sequent systems are essential. The paper is
far from a comprehensive survey and will not touch on technical details in

V.F. Hendricks and J.Malinowski (eds.),
Trends in Logic: 50 Years of Studia Logica

Trends in Logic 20: 177–212, 2003.
c© 2003 Kluwer Academic Publishers. Printed in the Netherlands.



178 Hiroakira Ono

most cases. An algebraic study of substructural logics in the present paper
will be developed in depth and in details in the book [18] in preparation
by the author with P. Jipsen and T. Kowalski. For general information on
substructural logics see [10], which is the first book on this topic, and also
[38, 39].

Since basic substructural logics are formalized as sequent systems, our
survey starts from these sequent systems and their proof theory. Then we
will discuss the algebraic study of substructural logics based on residuated
lattices, which has made rapid progress in recent years. It turns out that
universal algebra offers useful and powerful tools in developing the study.
These algebraic apsects of substructural logics give us a wider and deeper
understanding of them.

For some major reference books about algebraic studies of particular
logics in the scope of the present paper, see for instance, [41] for linear logic,
[15] for fuzzy logics, [9] for many-valued logics, and [1] and [2] for relevant
logics.

My sincere thanks go to Peter Jipsen for his valuable comments on earlier
drafts of the paper. Many thanks are also due to my friends and colleagues,
in particular Tomasz Kowalski and Tadeusz Litak.

2. Substructural Logics

In this section we introduce “basic” substructural logics as sequent systems.
They are obtained from the sequent system LK for classical logic or LJ
for intuitionistic logic by restricting their structural rules. In particular the
roles of the structural rules will be examined.

2.1. Gentzen’s sequent systems and structural rules

We begin with some explanations of sequent systems LK and LJ for clas-
sical propositional logic and intuitionistic logic, respectively, which were in-
troduced by G. Gentzen [12] in the middle of the 1930s.

Here we consider the language L of LK and LJ which consists of log-
ical connectives ∧,∨,→ and ¬. A sequent of LK is an expression of the
form α1, . . . , αm ⇒ β1, . . . , βn, with m,n ≥ 0, whose intuitive meaning is
that “β1 ∨ . . . ∨ βn follows from assumptions α1, . . . , αm”. In this sequent,
α1, . . . , αm and β1, . . . , βn are called the antecedent and the succedent, re-
spcetively. In the following, Greek capital letters Σ, Λ, Γ etc. denote (finite,
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possibly empty) sequences of formulas. Initial sequents of LK are sequents
of the form α ⇒ α. The rules of inference of LK given below can be di-
vided into three categories, i.e. structural rules, cut rule and rules for logical
connectives.

Structural rules: These rules determine the meaning of commas in se-
quents. We will discuss this in detail later.

Weakening rules:

Γ, Σ ⇒ ∆
Γ, α,Σ ⇒ ∆

(w ⇒)
Γ ⇒ Λ,Θ

Γ ⇒ Λ, α, Θ
(⇒ w)

Contraction rules:

Γ, α, α,Σ ⇒ ∆
Γ, α,Σ ⇒ ∆

(c ⇒)
Γ ⇒ Λ, α, α,Θ
Γ ⇒ Λ, α,Θ

(⇒ c)

Exchange rules:

Γ, α, β,Σ ⇒ ∆
Γ, β, α,Σ ⇒ ∆

(e ⇒)
Γ ⇒ Λ, α, β,Θ
Γ ⇒ Λ, β, α,Θ

(⇒ e)
.

Cut rule: Usually the cut rule is regarded as one of the structural rules.
But, for convenience’s sake, we separate the cut rule here from the other
structural rules.

Γ ⇒ α, Θ Σ, α,Π ⇒ ∆
Σ,Γ, Π ⇒ ∆, Θ

Rules for logical connectives: Similarly to the structural rules, there
exist right and left rules for each logical connective. Taken together, they
describe the role of each connective.

Γ ⇒ α, Θ Π, β, Σ ⇒ ∆
Π, α → β, Γ, Σ ⇒ ∆, Θ

(→⇒)
Γ, α ⇒ β, Θ

Γ ⇒ α → β, Θ
(⇒→)

Γ, α, Σ ⇒ ∆
Γ, α ∧ β, Σ ⇒ ∆

(∧1 ⇒)
Γ, β,Σ ⇒ ∆

Γ, α ∧ β, Σ ⇒ ∆
(∧2 ⇒)

Γ ⇒ Λ, α,Θ Γ ⇒ Λ, β, Θ
Γ ⇒ Λ, α ∧ β, Θ

(⇒ ∧)
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Γ, α,Σ ⇒ ∆ Γ, β, Σ ⇒ ∆
Γ, α ∨ β, Σ ⇒ ∆

(∨ ⇒)

Γ ⇒ Λ, α, Θ
Γ ⇒ Λ, α ∨ β, Θ

(⇒ ∨1)
Γ ⇒ Λ, β, Θ

Γ ⇒ Λ, α ∨ β, Θ
(⇒ ∨2)

Γ ⇒ α, Θ
¬α,Γ ⇒ Θ

(¬ ⇒)
Γ, α ⇒ Θ

Γ ⇒ ¬α, Θ
(⇒ ¬)

Proofs and the provability of formulas in LK are defined in the usual
way. In standard Hilbert-style formulations, “implication” plays usually
a special role, different from other logical connectives. This comes from
the fact that modus ponens is a single rule of inferences in the standard
formulation, which is of the form “from α and α → β, infer β”. On the
other hand, in sequent systems as above, none of the logical connectives
have particular roles. We can see indeed that for a given logical connective
], rules for ] are expressed by using only ], without using other connectives.
Such a formulation becomes possible only with the help of two metalogical
symbols, arrow ⇒ and comma. Roles of comma in relation to the arrow are
described in the form of structural rules. Since rules for logical connectives
are described separately from each other, we can get important syntactic
results such as cut elimination theorems, the subformula property and so
on.

Sequents of the sequent system LJ for intuitionistic logic are expressions
of the form α1, . . . , αm ⇒ β, where m ≥ 0 and β may be empty. Initial
sequents and rules of inference of LJ are obtained from those of LK given
above, by deleting first both (⇒ c) and (⇒ e), and then assuming that both
Λ and Θ are empty and that ∆ consists of at most one formula.

2.2. Roles of the structural rules

To understand the roles of the structural rules, we will give here an example
of a proof of the distributive law in LJ, in which both contraction and
weakening rules are used in an essential way:
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α ⇒ α
α, β ⇒ α

(w ⇒)
β ⇒ β

α, β ⇒ β
(w ⇒)

α, β ⇒ α ∧ β

α, β ⇒ (α ∧ β) ∨ (α ∧ γ)

α ⇒ α
α, γ ⇒ α (w ⇒)

γ ⇒ γ
α, γ ⇒ γ (w ⇒)

α, γ ⇒ α ∧ γ

α, γ ⇒ (α ∧ β) ∨ (α ∧ γ)
α, β ∨ γ ⇒ (α ∧ β) ∨ (α ∧ γ)

α ∧ (β ∨ γ), β ∨ γ ⇒ (α ∧ β) ∨ (α ∧ γ)
α ∧ (β ∨ γ), α ∧ (β ∨ γ) ⇒ (α ∧ β) ∨ (α ∧ γ)

α ∧ (β ∨ γ) ⇒ (α ∧ β) ∨ (α ∧ γ)
(c ⇒)

A careful inspection of some parts of the above proof tells us that any
sequent of the form δ, ϕ ⇒ δ ∧ϕ can be derived by using the weakening rule
(see the upper parts), and also that any sequent of the form δ ∧ ϕ ⇒ ψ can
be derived from a sequent δ, ϕ ⇒ ψ by using the contraction rule (see the
lower four lines, replacing α by δ, β ∨ γ by ϕ and (α ∧ β) ∨ (α ∧ γ) by ψ).
Therefore, in both LK and LJ, a sequent δ, ϕ ⇒ ψ is provable if and only if
δ ∧ ϕ ⇒ ψ is provable. In fact, the if-part is obtained in the following way:

δ, ϕ ⇒ δ ∧ ϕ δ ∧ ϕ ⇒ ψ

δ, ϕ ⇒ ψ
(cut)

.

By generalizing this argument (and considering the dual argument be-
tween disjunctions and commas in the right-hand side of sequents, in case
of LK), we have the following proposition. It says that in both LK and
LJ, where we have both weakening and contraction rules, commas in the
left-hand side of a sequent mean conjunctions, and moreover in LK commas
in the right-hand side mean disjunctions.

Proposition 2.1. A sequent α1, . . . , αm ⇒ β1, . . . , βn is provable in LK if
and only if the sequent α1 ∧ . . . ∧ αm ⇒ β1 ∨ . . . ∨ βn is provable in it. This
holds also for LJ if n ≤ 1.

Then, the following questions will come naturally to mind:

• What do commas mean in a sequent system lacking either or both of
the weakening and contraction rules?

• In general, how and in which respects does the existence of structural
rules affect logical properties?

To answer these questions, we need to examine the roles of each of the left
structural rules again.
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1) Exchange rule (e ⇒):

Γ, α, β,Σ ⇒ ∆
Γ, β, α,Σ ⇒ ∆

The exchange rule (e ⇒) allows us to use assumptions, i.e. formulas in the
left-hand side, in an arbitrary order.

2) Weakening rule (w ⇒):

Γ, Σ ⇒ ∆
Γ, α,Σ ⇒ ∆

The weakening rule (w ⇒) allows us to add any redundant assumption. In
other words, when a sequent Π ⇒ Θ is proved in a system that has no weak-
ening rule, every assumption (i.e. every formula in Π) must be used at least
once in a proof of Π ⇒ Θ.

3) Contraction rule (w ⇒):

Γ, α, α, Σ ⇒ ∆
Γ, α,Σ ⇒ ∆

The contraction rule allows us to use each assumption more than once. Thus,
when a sequent is proved in a system lacking the contraction rule, each of
its assumptions is used at most once in its proof.

Therefore, in a sequent system with all of these structural rules, if a
given sequent α1, . . . , αm ⇒ β is provable, it means that β can be derived
from α1, . . . , αm by using them in arbitrary order and an arbitrary number
of times including none.

Roughly speaking, substructural logics are logics lacking some or all of
these structural rules, when they are formulated as sequent systems. The
above explanation suggests that they are logics sensitive to the number and
order of occurrences of assumptions. By this reason, they are sometimes
called resource-sensitive logics. In particular, when a sequent system un-
der consideration has the exchange rule, but neither the weakening nor the
contraction rule, every assumption must be used once and only once to de-
rive a conclusion. This is a basic idea of linear logic (without exponentials),
introduced by J.-Y. Girard, which is obtained from LK by deleting both
weakening and contraction rules. Also, in relevant logics, where weakening
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rules are not allowed, every assumption must be used at least once in deriva-
tions, and thus no redundant assumptions, i.e. no irrelevant assumptions,
are used.

2.3. Comma, fusion and implication

The above argument suggests that commas on the left-hand side of sequents
do not behave like conjunctions when some of structural rules are lacking,
while they are identified with conjunctions in LK and LJ as shown in Propo-
sition 2.1. Then, what does each comma mean in such a situation? To see
this in a more explicit way, let us introduce a new logical connective ∗ (or
⊗) which represents a comma in substructural logics. This connective ∗
is sometimes called the fusion or the multiplicative conjunction, while the
usual conjunction is called the additive conjunction, to distinguish it from
the multiplicative one.1 We assume the following rules for ∗.

Γ, α, β,Σ ⇒ ∆
Γ, α ∗ β, Σ ⇒ ∆

(∗ ⇒)
Γ ⇒ α, Λ Σ ⇒ β, Θ
Γ, Σ ⇒ α ∗ β, Λ, Θ

(⇒ ∗)

Then, as one might expect, the following holds.

Proposition 2.2. In the sequent system having only rules for ∗ and cut
rule, a sequent α1, . . . , αm ⇒ β is provable if and only if α1 ∗ . . . ∗ αm ⇒ β
is provable.

We show moreover an important relationship between fusion and impli-
cation.

Lemma 2.3. A sequent α ∗ β ⇒ γ is provable if and only if α ⇒ β → γ is
provable.

Note that to show this, it is not necessary to use any structural rule
except the cut rule. Suppose that α ∗ β ⇒ γ is provable. Then α, β ⇒ γ is
also provable by Proposition 2.2. Using (⇒→) we have that α ⇒ β → γ is
provable. Conversely, suppose that α ⇒ β → γ is provable. Then α, β ⇒ γ
is provable as the following proof shows, and hence α ∗ β ⇒ γ is provable.

1Similarly, commas in the right-hand side of sequents when they are allowed, will be
denoted by + and called multiplicative disjunction. We will consider in this subsection
only sequents with a single formula in the conclusion, and thus consider only ∗. This is
partly for the sake of simplicity, but also because we don’t know exactly how to attach
adequate and comprehensible meaning to +.
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α ⇒ β → γ

β ⇒ β γ ⇒ γ

β → γ, β ⇒ γ

α, β ⇒ γ
(cut)

Lemma 2.3 with Proposition 2.2 says that deletion or addition of struc-
tural rules has a significant effect on the “meaning” of implication. In alge-
braic terms, what is shown in the above lemma means that implication is
the residual of fusion, or ∗ and → form a residuated pair. This fact will be
the basis of our algebraic study of substructural logics in Sections 4 and 5.

2.4. Propositional constants

Sometimes it is convenient to add propositional constants when introducing
formal systems. For instance, we use propositional constants > and ⊥ to
denote the constantly true and false propositions, respectively. When we
introduce them, we need to add the following initial sequents for > and ⊥:

1. Γ ⇒ >,
2. Γ,⊥, Σ ⇒ ∆.

Here, Γ, Σ and ∆ may be empty. When a system under consideration has
weakening rules, they can be replaced by weaker initial sequents ⇒ > and
⊥⇒ , respectively. On the other hand, if a system doesn’t have them,
constants defined by these weaker initial sequents behave in a different way.
Now let us introduce additional new propositional constants, denoted by 1
and 0. We assume the following initial sequents and rules of inference for
them:

3. ⇒ 1,
4. 0 ⇒ ,

Γ,Σ ⇒ ∆
Γ, 1,Σ ⇒ ∆

(1w)
Γ ⇒ Λ, Θ

Γ ⇒ Λ, 0, Θ
(0w)

Intuitively, constants 1 and 0 denote the “empty sequence of formulas” in
the left-hand side of an arrow and in the right-hand side, respectively. Also
we can see that 1 (0) is the weakest (strongest) proposition among provable
formulas (contradictory formulas, respectively). Here, by a contradictory
formula, we mean a formula α such that α ⇒ is provable. When we have
the constant 0, we may define the negation ¬α of a formula α by α → 0, and
can dispense with rules for ¬. Note here that > (0) is logically equivalent to
¬ ⊥ (¬1, respectively). These four propositional constants are used in the
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standard formulation of linear logic and relevant logics.2 Using weakening
rules, we can show that > (⊥) is logically equivalent to 1 (0, respectively).
Conversely, if > is equal to 1, then by using the initial sequent 1, the rule
(1w) and the cut rule, we can derive the weakening rule (w ⇒).

2.5. Basic substructural logics

We introduce here sequent systems for several basic substructural logics.
They are obtained from either LK or LJ by deleting some or all of the
structural rules.

Let FL be the sequent system obtained from LJ by deleting all of the
structural rules and then adding rules for ∗. The name FL comes from full
Lambek calculus, which is an extension of the sequent system for categorial
grammar, introduced by J. Lambek [26]. Here, we need a comment regarding
the definition of implication. Since we don’t assume exchange rule in FL,
it is more natural to introduce two kinds of implication / and \, which are
called in a more suitable way, left and right residuals, respectively. More
precisely, rules for left residuals / and right residuals \ are given as follows.

Γ ⇒ α Π, β, Σ ⇒ δ

Π, β/α,Γ, Σ ⇒ δ
(/ ⇒)

Γ, α ⇒ β

Γ ⇒ β/α
(⇒ /)

Γ ⇒ α Π, β, Σ ⇒ δ

Π, Γ, α\β, Σ ⇒ δ
(\ ⇒)

α, Γ ⇒ β

Γ ⇒ α\β (⇒ /)

It is obvious that if a system has exchange rule then we can show that β/α
and α\β are equivalent. In such a case, we denote it as α → β. Correspond-
ing to Lemma 2.3, we have the following.

Lemma 2.4. In FL, the following three conditions are mutually equivalent.
For all formulas α, β and γ,
1. α ∗ β ⇒ γ is provable,
2. α ⇒ γ/β is provable,
3. β ⇒ α\γ is provable.

It is natural to introduce two kinds of negations 0/α and α\0 of a formula
α in FL, whose rules are given as follows:

2The reader should be cautious of the usage of symbols for propositional constants in
the literature, as the same symbols sometimes denote different constants in other papers.
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Γ ⇒ α
0/α, Γ ⇒ (¬1 ⇒)

Γ, α ⇒
Γ ⇒ 0/α

(⇒ ¬1)

Γ ⇒ α
Γ, α\0 ⇒ (¬2 ⇒)

α,Γ ⇒
Γ ⇒ α\0 (⇒ ¬2)

We introduce several sequent systems for substructural logics that are
extensions of FL. Let e, w and c denote the exchange rule (e ⇒), the weak-
ening rule (w ⇒) and the contraction rule (c ⇒), respectively. We denote
sequent systems obtained from FL by adding some of these left structural
rules, by attaching corresponding subscripts e, w, c to FL. For example, FLe

is FL with the exchange rule, which is equal to intuitionistic (multiplicative,
additive) linear logic, and FLew is FL with both exchange and weakening
rules. Extensions of FLew are discussed extensively in [37, 22] and [36]. See
also [16], in which FLew is called the monoidal logic. Important classes of
extensions of FLew are Hájek’s fuzzy logics and ÃLukasiewicz’s many-valued
logics as discussed in §5. The following is easily shown.

Lemma 2.5. For all formulas α and β, the sequent α∗β ⇒ α∧β is provable
in FLw, and also the sequent α ∧ β ⇒ α ∗ β is provable in FLc.

Therefore, in FLcw α ∗β and α∧β are equivalent. Since α∧β ⇒ β ∧α
is provable, α ∗ β ⇒ β ∗ α is also provable, from which it follows that the
exchange rule can be derived in FLcw. Thus, FLcw is a sequent system for
intuitionistic logic.

In the same way as above, we can introduce some of sequent systems ob-
tained from LK by restricting the structural rules. When a system lacks the
exchange rules, there are many possibilities of introducing rules for fusions
and implications, but we have no reasonable criteria of making a choice of
proper ones. Thus, we consider in the following only sequent systems with
exchange rules. Let CFLe be the sequent system obtained from LK by
deleting both weakening and contraction rules. It has both left and right
exchange rules. (The letter C of CFLe comes from “classical type”.) It
is essentially equivalent to the multiplicative, additive linear logic MALL
introduced by Girard [13]. The sequent systems CFLew and CFLec are
obtained from CFLe by adding (left and right) weakening rules and con-
traction rules, respectively.

In the following, we often identify a sequent system with the logic deter-
mined by it, i.e. the set of all formulas provable in it. Here, we say that a
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formula α is provable in a sequent system L if the sequent ⇒ α is provable
in it. Also, we call those logics determined by various sequent systems intro-
duced in this subsection, including LK and LJ, basic substructural logics.3

The system CFLew and a set theory based on it were already studied by
V. Grǐsin from the mid 1970s (see e.g. [14]). Also the system CFLec is es-
sentially the same as the system LR studied by [27], which is known as the
relevant logic R without the distributive law. It is easy to see the following.

Lemma 2.6. The system CFLe is equivalent to the system FLe with initial
sequents of the form ¬¬α ⇒ α. Precisely speaking, for each formula β, β is
provable in CFLe if and only if it is provable in FLe by using any sequent
of the form ¬¬α ⇒ α as additional initial sequents. The same relation holds
between CFLew and FLew, CFLec and FLec, and LK and LJ.

3. Proof theory of Substructual Logics

In this section, we will discuss the cut elimination theorem for substructural
logics and its logical consequences, including decidability results. It will be
clarified how weakening and contraction rules play key roles in them. Topics
touched in this section are discussed in [33] in full details (see also [32] for
more information on decision problems).

3.1. Cut elimination theorems

A proof containing no applications of the cut rule is called a cut-free proof.
The cut elimination theorem for a given sequent system L says that any
sequent which is provable in L always has a cut-free proof in L. To get a se-
quent system for which the cut elimination theorem holds is quite important,
since many important results follow as its consequences. To be precise, from
the cut elimination theorem the subformula property follows in most cases,
which says that for any sequent Γ ⇒ ∆ if it is provable then it has such a
proof that every formula appearing in it is a subformula of some formula in
Γ ⇒ ∆. Then, from the subformula property important results like decid-
ability and Craig’s interpolation theorem follow. In other words, even if we
have the cut elimination theorem for a given propositional sequent system
L, L may be undecidable because of the lack of the subformula property.

3One of earliest attempts of considering all of these basic substructural logics is made in
[30]. The nomenclature of basic substructural logics taken here is proposed in the paper,
and then is modified into the present form in [31]. The name “substructural logics” was
suggested by K. Došen at the first conference of the topics held at Tübingen in 1990 (see
[10]).
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Also it may happen that while the cut elimination theorem doesn’t hold,
the subformula property holds and therefore both decidability and Craig’s
interpolation theorem follow from it. An example of the latter is a sequent
system for modal logic S5 introduced by Ohnishi and Matsumoto. Though
the cut elimination theorem doesn’t hold for it, M. Takano proved that every
application of cut rule can be restricted in such a way that the cut formula
is a subformula of formulas in the lower sequent. Using this we can derive
the subformula property. For details, see e.g. [33].

Theorem 3.1. The cut elimination theorem holds for all sequent systems of
basic propositional logics except FLc, i.e. for FL, FLe, FLw, FLew, FLec,
LJ, CFLe, CFLew, CFLec, and LK.

The proof of the cut elimination theorem for these sequent systems goes
essentially in the same way as Gentzen’s original proof. But we make some
remarks on how the presence or the lack of structural rules has an effect on
the proof.

We start from Gentzen’s original proof of the cut elimination theorem
for LJ, which has all structural rules. The cut rule of LJ can be formulated
in the following form:

Γ ⇒ α α,Π ⇒ δ

Γ,Π ⇒ δ

To prove the cut elimination theorem, we replace all occurrences of applica-
tions of the cut rule in a given proof by the following mix rule, which is a
generalized form of the cut rule:

Γ ⇒ α Σ ⇒ δ
Γ, Σα ⇒ δ

where Σ contains at least one occurrence of the formula α, and Σα denotes
the sequence of formulas obtained from Σ by deleting all occurrences of α.
It is easy to see that any application of the cut rule can be replaced by an
application of the mix rule, and vice versa, with the help of structural rules.
Therefore, the new sequent system, obtained from LJ by replacing the cut
rule by the mix rule, is also a system for intuitionistic logic. Thus, it is
enough to prove the mix elimination theorem (for the new system), instead
of showing the cut elimination theorem for LJ. This is proved by using
double induction on the grade of the mix formulas and the rank of a given
proof.
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But, why is it necessary to replace the cut rule by the mix rule? The
reason is found in the presence of contraction rules. The basic idea of elim-
inating cut rules is either to push up each application of the cut rule by
exchanging the order of applications of rules, or to replace cut formulas by
simpler ones. This idea works well for all cases except the case shown below,
where we want to push the cut rule up so that the left contraction rule will
be applied after the cut rule:

Γ ⇒ α

α, α,Π ⇒ δ

α,Π ⇒ δ
(c ⇒)

Γ, Π ⇒ δ
(cut)

But this is impossible, since the lower application of the cut rule in the
following proof is not simpler than the one in the above.

Γ ⇒ α

Γ ⇒ α α, α,Π ⇒ δ

α, Γ, Π ⇒ δ
(cut)

Γ, Γ, Π ⇒ δ
(cut)

Γ, Π ⇒ δ
(e ⇒)(c ⇒)

To resolve this difficulty, we need to introduce the mix rule. This observation
shows that when a system lacks the contraction rule, e.g. systems like FLe

and FLew, our basic idea mentioned above works fully and hence we can
prove the cut elimination theorem directly. (As a matter of fact, in such a
system the cut rule cannot be replaced by the mix rule, because of the lack
of contraction rules.)

On the other hand, to show the cut elimination theorem for a sequent
system which has both exchange and contraction rules but doesn’t have
weakening rules, e.g. systems like FLec and CFLec, we need to take the
following generalized form of the mix rule instead of the original mix rule:

Γ ⇒ α Σ ⇒ δ

Γ, Σ̃α ⇒ δ

where Σ contains at least one occurrence of the formula α, and Σ̃α denotes
a sequence of formulas obtained from Σ by deleting an arbitrary number,
but at least one of occurrences of α. For more details of the cut elimination
theorem for these basic substructural logics, see [33]. An algebraic proof
of the cut elimination theorem for them is given in [5]. As a collorary of
Theorem 3.1, we have the following. We note that Craig’s interpolation
theorem can be shown by using Maehara’s method. See e.g. [33] for the
details.
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Theorem 3.2. Both the subformula property and Craig’s interpolation the-
orem hold for FL, FLe, FLw, FLew, FLec, LJ, CFLe, CFLew, CFLec,
and LK.

3.2. Disjunction property and variable sharing property

A logic L has the disjunction property when for all α and β if α∨β is provable
in L then either α or β is provable in it. While classical logic doesn’t have
the disjunction property, intuitionistic logic does. This is usually attributed
to constructive features of the latter. In fact the disjunction property of
intuitionistic logic is an immediate consequence of the cut elimination theo-
rem for LJ. The proof goes as follows. Suppose that the sequent ⇒ α ∨ β
is provable in LJ. Consider any cut-free proof of it. Since the sequent is not
an initial sequent, it is obtained by applying some rule I. Then it is easily
seen that I must be either (⇒ ∨1) or (⇒ ∨2). Therefore, the upper sequent
must be either ⇒ α or ⇒ β.

This argument doesn’t work for LK, since the last rule may be the right
contraction rule (⇒ c) as the following example shows:

p ⇒ p
⇒ p,¬p

⇒ p ∨ ¬p,¬p
⇒ p ∨ ¬p, p ∨ ¬p

⇒ p ∨ ¬p (⇒ c)

From this observation the following theorem can be easily derived.

Theorem 3.3. A basic substructural logic except FLc has the disjunction
property if and only if its sequent system doesn’t have the right contraction
rule.

As we mentioned before, weakening rules allow us to introduce redundant
assumptions and conclusions. For instance, using the weakening rule, we can
show that the sequent p∗¬p ⇒ q is provable in FLew though in this sequent
there is no relation between the antecedent and the succedent. In fact,
there are no propositional variables common to formulas in the left-hand
side and the right-hand side of the sequent. We say that a logic L has the
variable sharing property, if such a case never happens. More precisely, L
has the variable sharing property, if for any formula α → β containing no
propositional constants, α → β is never provable in L whenever formulas
α and β have no propositional variables in common. Then, we have the
following.



Substructural logics and residuated lattices 191

Theorem 3.4. A basic substructural logic, except FLc, has the variable shar-
ing property if and only if its standard sequent system doesn’t have the weak-
ening rules.

It is trivial that a basic substructural logic doesn’t have the variable
sharing property whenever its sequent system has the weakening rules. On
the other hand, we can show that CFLec has the variable sharing property.
Since it is the strongest among basic substructural logics without weakening
rules, it follows that any of FL, FLe, FLec and CFLe has the property
too (see [33] for the proof). Both the disjunction property and the variable
sharing property for FLc remain open.

3.3. Decision problems

Another important consequence of the cut elimination theorem is the decid-
ability. Let us take first classical propositional logic, and see how Gentzen in
[12] derived the decidability as a consequence of the cut elimination theorem
for LK. To get the decidability, we introduce a proof-search procedure for
any given sequent. This procedure tries to find a proof of a given sequent
Γ ⇒ ∆ when it is provable. Moreover, it terminates the search for proofs in
a finite number of steps and tells us that the sequent is not provable when
it fails to find a proof.

Suppose that a given sequent Γ ⇒ ∆ is provable. By the cut elimination
theorem and the subformula property, it has a cut-free proof in which every
sequent is composed only of subformulas of formulas in Γ ⇒ ∆. But if we
count proofs with redundancies, the total number of proofs will be infinite.
Here, we say that a proof contains a redundancy, if there exists a branch in
the proof such that sequents of the same form appear more than once. So,
we need to exclude proofs with redundancies.

Therefore, to show that a given sequent Γ ⇒ ∆ is provable, it suffices to
find a cut-free proof of Γ ⇒ ∆ with no redundancies (in which every sequent
is composed only of subformulas of formulas in Γ ⇒ ∆). When we fail to find
such a proof by an exhaustive search among all possible proofs, we can say
that Γ ⇒ ∆ is not provable. Here, by a possible proof we mean a proof-like
figure (containing neither applications of the cut rule nor redundancies) in
which every application of a rule is carried out in a correct way but some of
the top sequents may not be initial ones.

Then, is the total number of all possible proofs finite? Unfortunately
not, because of contraction rules. For example, suppose that α, Σ ⇒ Π is a
top sequent in a possible proof P. As this top sequent may be obtained by
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applying contraction rule, the figure obtained from P by putting the sequent
α, α,Σ ⇒ Π over α, Σ ⇒ Π will be another possible proof. As this argument
can be repeated, infinitely many possible proofs will be produced.

To settle this problem, Gentzen introduced the notion of reduced se-
quents. For k > 0, a sequent Σ ⇒ Π is k-reduced if each formula in Σ (Π)
occurs at most k times in Σ (and Π, respectively). A sequent Σ′ ⇒ Π′ is a
1-reduced contraction of a sequent Σ ⇒ Π if Σ′ ⇒ Π′ is 1-reduced, and Σ′

and Π′ are equal to Σ and Π, respectively, as sets of formulas. For instance,
α, β ⇒ γ is a 1-reduced contraction of α, β, α, α ⇒ γ, γ. With the help of
the structural rules, we can easily show that a sequent Σ ⇒ Π is provable if
and only if any one of its 1-reduced contractions is provable. Therefore, to
see whether a given sequent is provable or not, it is enough to take any one
of its 1-reduced contractions and check whether it is provable or not. Now,
by observing the form of each rule of LK and using the argument mentioned
above, we can show the following lemma by using the length of proofs.

Lemma 3.5. For a given sequent Γ ⇒ ∆, let Γ′ ⇒ ∆′ be any of its 1-reduced
contraction. If Γ ⇒ ∆ is provable in LK then Γ′ ⇒ ∆′ has a cut-free proof
with no redundancies, in which only 3-reduced sequents appear.

It is easily seen this time that for a given 1-reduced sequent Γ′ ⇒ ∆′, the
total number of its possible proofs in which every sequent is 3-reduced and
is composed only of subformulas of formulas in Γ′ ⇒ ∆′ is finite. Therefore,
we have a proof-search procedure which searches for only such a proof.

As the above outline shows, the proof of the decidability relies much
on structural rules. But, the necessity of the notion of reduced sequents
comes from the contraction rules. In other words, if a sequent system under
consideration has no contraction rules, then we can get a much simpler
decision procedure. Let us consider FLew for example. In this case it
is easily seen that in each rule except the cut rule, (each of) the upper
sequent(s) is always simpler than the lower sequent. Thus, the proof-search
procedure terminates always. This idea of proving the decidability can be
extended also to sequent systems for basic substructural predicate logics with
function symbols. Thus we have the following. (See e.g. [20] for the details.
See also [32].)4

Theorem 3.6. Any of the sequent systems for basic substructural predicate
logics without contraction rules, i.e. any of FL, FLe, FLw, FLew, CFLe

and CFLew, is decidable even when the language contains function symbols.

4H. Wang noticed this fact already in his book [43] published in 1963.
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On the other hand, the decision procedure becomes complicated for FLec

and CFLec, i.e. substructural logics with contraction rules but without
weakening rules. To show the termination of the procedure, we need some
combinatorial result like Kripke’s lemma or Higman’s theorem. The original
proof is given essentially by Kripke in [23] of 1959. (See e.g. [33] for the
details.) This complication leads us to the undecidability of their predicate
extensions (see [20]).

Theorem 3.7. Both substructural propositional logics FLec and CFLec are
decidable, while their predicate extensions are undecidable.

The relevant logic R is obtained from CFLec by adding the distributive
law (see §2.2). Urquhart proved the following quite nontrivial and important
result in [42].

Theorem 3.8. The propositional logic R is undecidable.

4. Residuated Lattices

In this section, we will introduce algebraic structures which serve us with
semantics suitable for substructural logics. A key notion here is residuation,
and the algebraic structures for substructural logics introduced here are
residuated lattices, which have been already studied by algebraists in 1930s,
e.g. Krull [24], and Ward and Dilworth [44] (see also [3]).

A residuated lattice consists of a lattice and a partially-ordered semi-
group with residuation. By imposing some additional conditions on the
lattice-part and/or the semigroup-part, we can get various interesting sub-
classes of residuated lattices, e.g. the class of MV-algebras and the class
of BL-algebras. They correspond to ÃLukasiewicz’s many-valued logics and
extensions of the basic logic BL introduced by P. Hájek, respectively. For
more information on recent results of residuated lattices, see [19] and also
[22].

4.1. Residuated structures and residuation theory

In the following, to denote algebraic operations and constants, we use the
same symbols as logical connectives and propositional constants correspond-
ing to them, when no confusions may occur. A single exception is to use ·
for a semigroup operation, while we use ∗ for fusion.
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A structure P = 〈P, ·,≤〉 is a partially-ordered semigroup if 〈P, ·〉 is a
semigroup and ≤ is a partial order on P such that · is monotone increasing;
i.e.

x ≤ x′ and y ≤ y′ imply x · y ≤ x′ · y′.
An algebra P = 〈P, ·, \, /,≤〉 is a residuated partially-ordered semigroup P
if 〈P, ·〉 is a semigroup, ≤ a partial order on P and moreover the following
condition is satisfied by ·, \ and /: For all x, y, z ∈ P

x · y ≤ z if and only if y ≤ x\z if and only if x ≤ z/y.

This condition is sometimes called the law of residuation, and \ and / are
called the right and left residual of ·, respectively. Any residuated partially-
ordered semigroup is in fact a partially-ordered semigroup, though we don’t
assume the monotonicity of · in its definition. This can be shown by using
the law of residuation as follows:

Suppose that both x ≤ x′ and y ≤ y′ hold. Since x′ · y′ ≤ x′ · y′,
y ≤ y′ ≤ x′\(x′ · y′). Therefore x′ · y ≤ x′ · y′. Thus, x ≤ x′ ≤ (x′ · y′)/y and
hence x · y ≤ x′ · y′. (This argument works in a more general setting. See
Lemma 4.1.)

Any residuated partially-ordered semigroup P such that 〈P,≤〉 forms a
lattice and 〈P, ·〉 has a unit is called a residuated lattice. More precisely, an
algebra P = 〈P,∧,∨, ·, \, /, 1〉 is a residuated lattice if

1. 〈P,∧,∨〉 is a lattice,

2. 〈P, ·, 1〉 is a monoid such that \ and / are the right and left residual of
·, respectively.

When · is commutative, we call P a commutative residuated lattice. In
any commutative residuated lattice, x\y = y/x holds for all x, y. In such a
case, we use the symbol → and write x → y instead of x\y (and of y/x).
Also P is denoted by a sextuple 〈P,∧,∨, ·,→, 1〉.

As an example, we show that any `-group forms a residuated lattice.
Recall that an algebra G = 〈G,∧,∨, ·,−1, e〉 is a lattice-ordered group (or
an `-group, for short) if

1. 〈G,∧,∨〉 is a lattice with the lattice order ≤,

2. 〈G, ·,−1, e〉 is a group,
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3. · is monotone with respect to ≤, i.e. 〈G, ·,≤〉 is a partially-ordered
semigroup.

Then · has both residuals \ and / that are defined by x\y = x−1 · y and
y/x = y · x−1, respectively.

Some of the basic properties of residuated lattices hold in a more general
setting, and as residuation theory tells us, they come from consequences of
residuated structures in general. To see this, we now take a brief look at some
of basic facts in residuation theory. For general information on residuation
theory, see [7].

Let P and Q be posets. A map f : P → Q is residuated if there exists a
map g: Q → P such that the following holds for any p ∈ P and any q ∈ Q:

f(p) ≤ q if and only if p ≤ g(q).

If the above holds, we say that f and g form a residuated pair, and that g is
a residual of f . We can show the following.

Lemma 4.1. If f and g form a residuated pair, both f and g are monotone
increasing.

It is easy to see that if f is residuated then its residual is determined
uniquely by f . Hereafter, f∗ denotes the residual of a map f when f is
residuated. We can show conversely that f is determined uniquely by f∗

when they form a residuated pair. In fact, these uniqueness results come
from the following formulas:

1. f∗(q) = max{p ∈ P : f(p) ≤ q},
2. f(p) = min{q ∈ Q : p ≤ f∗(q)}.

Proposition 4.2. Suppose that f and f∗ form a residuated pair between
posets P and Q, and that X ⊆ P and Y ⊆ Q. If the supremum

∨
X of X

exists then
∨

f(X) (=
∨{f(p) : p ∈ X}) exists and f(

∨
X) =

∨
f(X). Also

if the infimum
∧

Y of Y exists then
∧

f∗(Y ) exists and f∗(
∧

Y ) =
∧

f∗(Y ).

When both P and Q are lattices in the above proposition, we have the
following.

Corollary 4.3. Suppose that f and f∗ form a residuated pair between
lattices P and Q. Then f(x ∨ y) = f(x) ∨ f(y) for all x, y ∈ P, and
f∗(u ∧ v) = f∗(u) ∧ f∗(v) for all u, v ∈ Q.
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If both P and Q are moreover complete, the converse of Proposition 4.2
is true. More precisely, the following holds.

Proposition 4.4. Suppose that both P and Q are complete lattices and that
f is a map from P to Q. Then, f is residuated if and only if f preserves all
(possibly infinite) joins. Dually, a map f∗ : Q → P is the residual of a map
f : P → Q if and only if f∗ preserves all (possibly infinite) meets.

Now let P be a partially-ordered semigroup. For each fixed u ∈ P , define
maps gu and hu from P to P by gu(x) = u ·x and hu(x) = x ·u, respectively,
for each x ∈ P . Then, P is a residuated partially-ordered semigroup if and
only if both gu and hu are residuated maps for every u ∈ P . In this case,
the residuals gu

∗ and hu
∗ are given by gu

∗(y) = u\y and hu
∗(y) = y/u,

respectively.
Thus, applying Corollary 4.3 and Proposition 4.4 to residuated lattices,

we have the following results.

Corollary 4.5. The following equations hold in any residuated lattice. For
all x, y, z,
1. (x ∨ y) · z = (x · z) ∨ (y · z),
2. z · (x ∨ y) = (z · x) ∨ (z · y),
3. (x ∨ y)\z = (x\z) ∧ (y\z),
4. z/(x ∨ y) = (z/x) ∧ (z/y),
5. z\(x ∧ y) = (z\x) ∧ (z\y),
6. (x ∧ y)/z = (x/z) ∧ (y/z).

Corollary 4.6. In any complete residuated lattice, i.e. any residuated
lattice which is complete as a lattice, the following equations hold:
1. x\z = max{y : x · y ≤ z},
2. z/y = max{x : x · y ≤ z}.

4.2. Residuated lattices as algebras for substructural logics

For each basic substructural logic L, there exists a class of residuated lattices
which characterizes the logic L. To show this, we will introduce some classes
of residuated lattices. A residuated lattice is integral if the unit 1 of the
monoid is equal to the greatest element, denoted by >, of the lattice. In any
integral residuated lattice, both x · y ≤ x and x · y ≤ y hold, since by the
monotonicity x·y ≤ x·> = x·1 = x and similarly for the latter. A residuated
lattice P is increasing idempotent if x ≤ x ·x for any x ∈ P . It is easy to see
that a residuated lattice is both integral and increasing idempotent if and
only if x · y = x ∧ y for all x, y.
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By using residuated lattices, we can introduce an algebraic interpretation
of each formula. To give an interpretation of negation in a given residuated
lattice P, we need to introduce a element 0 which is an arbitrary element of
P . Sometimes, x → 0 is denoted as ¬x in any commutative residuated lattice
P with 0. If our language for describing formulas contains propositional
constants > and ⊥, we need to assume that P is bounded, i.e. it has a
greatest element > and a least element ⊥.

To simplify the naming of classes of residuated lattices corresponding to
basic substructural logics and to avoid unnecessary complications, we will
take the following approach.

Let us call any residuated lattice with a fixed element 0, an FL-algebra.
A commutative (increasing idempotent, and commutative, increasing idem-
potent) FL-algebra is called an FLe- (FLc-, FLec-, respectively) algebra.
An integral FL-algebra whose least element is 0, which therefore is bounded,
is called an FLw-algebra. Also, any commutative FLw-algebra is called an
FLew-algebra. If an FLe-algebra P satisfies ¬¬x ≤ x for any x, it is called a
CFLe-algebra. Similarly, we can define CFLec- and CFLew-algebras. Note
that the equation x · y = ¬(x → ¬y) holds always in any CFLe-algebra.

It is well-known that Heyting algebras are algebraic structures for in-
tuitionistic logic. Recall that an algebra P = 〈P,∧,∨,→, 0〉 is a Heyting
algebra if

1. 〈P,∧,∨, 0〉 is a lattice with least element 0, and

2. for all x, y, z ∈ P , x ∧ y ≤ z iff x ≤ (y → z).

It is easy to see that any Heyting algebra is a bounded commutative resid-
uated lattice with the greatest element 1 defined by 1 = 0 → 0, whose
monoid operation is the meet ∧, and in which ∧ and → form a residuated
pair. Therefore each Heyting algebra is moreover increasing idempotent and
integral. Conversely, any increasing idempotent, integral commutative resid-
uated lattice with least element 0 is a Heyting algebra. By Corollary 4.5,
every Heyting algebra is distributive, i.e. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
holds in it. Conversely, every finite distributive lattice is a Heyting algebra,
by Proposition 4.4. When a Heyting algebra is complete, it satisfies the
following infinite distributive law by Proposition 4.4

(
∨

i xi) ∧ y =
∨

i(xi ∧ y),

and conversely, any complete lattice with least element 0 satisfying the above
law is a reduct of a Heyting algebra (see §4.3).
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Also, residuated lattices related to relevant logics have been studied since
the mid 1960s. The special feature of these residuated lattices is that they
are increasing idempotent residuated lattices satisfying the distributive law
between ∧ and ∨. Both increasing idempotent, commutative residuated
lattices with the distributive law and CFLec-algebras with the distributive
law are basic algebraic structures for relevant logics, which are called Dunn
monoids and De Morgan monoids, respectively. See [1].

In the usual way, we can give an interpretation of formulas in an FL-
algebra. For a given FL-algebra P, a valuation v on P is any mapping
from the set of all propositional variables to the set P . Each valuation v is
extended to a mapping from the set of all formulas to P inductively as fol-
lows. Here, recall that we use the same symbols for logical connectives (and
constants) as those for corresponding algebraic operations (and constants,
respectively).

1. v(1) = 1 and v(0) = 0,

2. v(>) = > and v(⊥) = ⊥, when the language contains > and ⊥, and
P is bounded,

3. v(α ∧ β) = v(α) ∧ v(β),

4. v(α ∨ β) = v(α) ∨ v(β),

5. v(α ∗ β) = v(α) · v(β),

6. v(α\β) = v(α)\v(β),

7. v(α/β) = v(α)/v(β).

A formula α is valid in P if v(α) ≥ 1 holds for any valuation v on P. Also,
a given sequent α1, . . . , αm ⇒ β is said to be valid in P if and only if the
formula (α1 ∗ · · · ∗ αm) → β is valid in it, or equivalently, v(α1) · · · v(αm) ≤
v(β) holds for any valuation v on P. Here, we assume v(α1) · · · v(αm) = 1
when m = 0, and v(β) = 0 when β is empty. For a commutative P, a
sequent of the form α1, . . . , αm ⇒ β1, . . . , βn is valid in P if and only if
v(α1) · · · v(αm) ≤ v(β1) + . . . + v(βn) holds for any valuation v on it, where
x + y is defined by x + y = ¬(¬x · ¬y).

We can show the following completeness theorem for basic substructural
logics, by using the standard argument on Lindembaum algebras.
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Theorem 4.7. For any sequent S, S is provable in FL if and only if it is
valid in all FL-algebras. This holds also for other basic substructural logics
and corresponding classes of FL-algebras.

Note that when the language contains constants > and ⊥ it is necessary
to replace the word “FL-algebras” in the above theorem by “bounded FL-
algebras”.

Until now, we were mainly concerned with basic substructural logics
that are defined by using sequent systems. We go a step further now and
introduce the notion of substructural logics in a general sense. Let L be a
set of formulas. We say that L is a substructural logic (over FL) if

1. every formula provable in FL belongs to L,

2. for all formulas α and β, if both α and α\β are in L then β is also in
it,

3. for all formulas α and β, if both α and β are in L then α∧ β is also in
it,

4. for all formulas α and β, if α is in L then both (α\β)\β and β/(β/α)
are also in it.

Here are some comments. First, every substructural logic L is closed under
uniform substitutions. Second, for any substructural logic L, the following
holds:

for all formulas α and β, if both α and β/α are in L then β is
also in it.

In fact, suppose that α belongs to L. Then (β/α)\β belongs also to L, since
α\((β/α)\β) is provable and hence belongs to L. Thus, if moreover β/α is
in L then β belongs to it by the second condition. Lastly, we can replace
the fourth condition by the following two: For all formulas α, β and γ,

• if both α and β\(α\γ) are in L then β\γ is also in it,

• if both α and (γ/α)/β are in L then γ/β is also in it.

Note that the third condition becomes redundant when (α ∗ β)\(α ∧ β) ∈ L
for all α, β, e.g. when the weakening rule holds in it. Also, the fourth
condition becomes redundant when (α∗β)\(β ∗α) ∈ L for all α, β, i.e. when
the exchange rule holds in L.
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It is obvious that every basic substructural logic (as a set of formulas)
is a substructural logic in our sense. We say that a substructural logic L is
characterized by a set {Pi : i ∈ I} of FL-algebras if L =

⋂{L(Pi) : i ∈ I}
holds. In particular, when L is characterized by a singleton set {P}, we say
simply that L is characterized by P. It is easily seen that for any set {Pi :
i ∈ I} of FL-algebras, the set of formulas

⋂{L(Pi) : i ∈ I} is a substructural
logic. We can show the following.

Theorem 4.8. Any substructural logic L is characterized by a single FL-
algebra.

Here is an outline of the proof. Let Ψ be the set of all formulas. Define
a binary relation ≈ on Ψ by

α ≈ β if and only if both α\β and β\α are in L.

Then, we can show that ≈ is a congruence relation on Ψ. Moreover the
quotient set Ψ/ ≈ forms a FL-algebra, say P, and L = L(P) holds.

4.3. Quantales and completions of residuated lattices

A structure Q = 〈Q,∧,∨, ·〉 is a quantale if

1. 〈Q,∧,∨〉 is a complete lattice (and hence is bounded),

2. 〈Q, ·〉 is a semigroup which satisfies that for xi, y ∈ Q
a) (

∨
i xi) · y =

∨
i(xi · y),

b) y · (∨i xi) =
∨

i(y · xi).

By Proposition 4.4, Q is a residuated lattice whose residuals are defined
by the equations in Corollary 4.6. Conversely, any complete residuated lat-
tice, i.e. a residuated lattice whose lattice reduct is complete, is a quantale.
Therefore, quantales are essentially equal to complete residuated lattices.
For general information on quantales, see [40]. When 〈Q, ·〉 is moreover a
commutative monoid, Q becomes a complete commutative residuated lat-
tices. By adding 0 to it, we get a complete FLe-algebra, which sometimes
is called an intuitionistic phase structure.

Theorem 4.7 says that for any basic substructural logic L, a formula α is
provable in L if and only if it is valid in all L-algebras. We can strengthen
this in the following way.

Theorem 4.9. Let L be any one of the basic substructural logics. Then, for
any formula α, α is provable in L if and only if it is valid in all complete
L-algebras.
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To show this, it suffices to prove the if-part by Theorem 4.7. This is
shown as follows. Let α be a formula not provable in L. By Theorem 4.7 α
is not valid in a L-algebra P. We use the following lemma.

Lemma 4.10. Let L be any one of the basic substructural logics. Each L-
algebra can be embedded into a complete L-algebra.

By using this, P is embedded into a complete L-algebra P†, and it is
obvious that α is not valid in P†. To get such P†, it is enough to take
the Dedekind-MacNeille completion of P. For the details of the proof of
this completeness result, see [31]. For more information on completions of
residuated lattices and complete embeddings, see [34] and [35].

5. A Prelude to Algebraic Study of Substructural Logics

The algebraic study of substructural logics is a rapidly growing research field,
which attracts both logicians and algebraists. In this section we will touch
some topics of the study briefly. These results tell us that the algebraic
approach to substructural logics is quite useful and promising. For more
information on the study in this direction, see [18].

5.1. Varieties of residuated lattices

We discuss further relations between substructural logics (in our sense) and
classes of residuated lattices, using some basic notions and results from uni-
versal algebra. In the previous section, we have shown that each substruc-
tural logic is characterized by an FL-algebra and vice versa. Slightly chang-
ing our viewpoint, instead of taking a single FL-algebra we consider a class
V(L) of FL-algebras for each substructural logic L, which is defined by:

V(L) = {P : L ⊆ L(P)}.

Then, we can show that the class V(L) is closed under homomorphic images,
subalgebras and direct products. In universal algebra, such a class is called
a variety. By a fundamental result due to G. Birkhoff, a class V of algebras
is a variety if and only if it is an equational class, i.e. it is defined by a set
of equations. More precisely, a class V of algebras is an equational class if
there exists a set Σ of equations such that

V = {P : s = t holds in P for any s = t ∈ Σ}.
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We explain here how the class of all residuated lattices is defined by a
set of equations. It is well-known that both the class of (bounded) lattices
and the class of monoids are defined by certain sets of equations. So it is
enough to express the law of residuation by equations. Here, we consider
the following.

x · y ≤ z if and only if y ≤ x\z
We note first that each inequality s ≤ t can be expressed in a lattice by the
equation s∧ t = s. Thus, it suffices to show that the above condition can be
expressed by using inequalities. In fact, it is expressed by the following two
inequalities.

1. y ≤ x\((x · y) ∨ z),
2. x · (y ∧ (x\z)) ≤ z.

Theorem 5.1. The class V(L) of FL-algebras is a variety and hence is an
equational class, for each substructural logic L.

Conversely, suppose that an equational class V of FL-algebras is given.
We assume here that a set Σ of equations defines V. Now let L = {α :
the inequality tα ≥ 1 follows from equations in Σ}, where tα is the term
expression of a given formula α. In other words, L = {α : the inequality
tα ≥ 1 holds in every P in V}. Then it is easily seen that L is a substructural
logic. Let us denote this L as LV .

Theorem 5.2. For each variety V of FL-algebras, the set LV of formulas is
a substructural logic. Moreover, V(LV) = V holds.

Let V be a variety of FL-algebras, and W be a nonempty subclass of V.
We say that W generates the variety V if V is the smallest variety containing
W . We can verify easily that a substructural logic L is characterized by a
set {Pi : i ∈ I} of FL-algebras if and only if it generates the variety V(L).

Let us denote the variety of all FL-algebras by FL, which is equal to
V(FL). It is shown that all subvarieties of FL as well as all substructural
logics over FL form a complete lattice. The above two theorems say that
there exists a one-to-one correspondence ϕ between the lattice of all sub-
structural logics and the lattice of all subvarieties of FL, where ϕ is defined
by ϕ(L) = V(L). This ϕ is indeed a dual complete lattice isomorphism. This
implies that we can understand the lattice structure of all substructural log-
ics by studying the lattice of all subvarieties of FL, instead. It follows also
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that for a given substructural logic L, the restriction of ϕ to the lattice of all
extensions of L is a dual complete lattice isomorphism from it to the lattice
of all subvarieties of V(L). Based on this dual lattice isomorphism and using
methods and results from universal algebra, we have many important results
on the lattice structure of extensions of the logic FLew.

Since the varietyHA of Heyting algebras, which is one of the subvarieties
of V(FLew), has been studied quite well, it is interesting to make a compar-
ison of the lattice structure of subvarieties of HA with that of V(FLew). In
fact, there is a big difference between them as the following example shows.

It is easy to see that there is only one minimal variety BA of FLew-
algebras, which is in fact the variety of Boolean algebras, since any nontrivial
FLew-algebra has the two-element Boolaen algebra as a subalgebra. Also,
among subvarieties of HA, there is only one almost minimal variety, i.e. the
variety which covers BA in the lattice of subvarieties of HA. This is the
variety generated by the three-element Heyting algebra. On the other hand,
T. Kowalski and M. Ueda obtained the following. See [22] and [18] for the
details.

Theorem 5.3. There exist uncountably many almost minimal varieties of
FLew-algebras.

For more information on extensions of the logic FLew and on subvarieties
of the variety of FLew-algebras, see e.g. [37], [22] and [36].

5.2. Algebras for many-valued logics and fuzzy logics

We will take here special subvarieties of the variety of FLew-algebras that
correspond to ÃLukasiewicz’s many-valued logics and fuzzy logics in the nar-
row sense (see [9] and [15]).

Algebraic structures for ÃLukasiewicz’s many-valued logics are originally
introduced as follows. Let R be either the set {0, 1/n, 2/n, . . . , (n− 1)/n, 1}
(for (n + 1)-valued logic) or the unit interval [0, 1] (for infinite-valued logic).
In either case, R is totally ordered by the natural order on the reals. Define
two operations → and · on R by

• x → y = min{1, 1− x + y},

• x · y = max{0, x + y − 1}.
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Then the algebra R = 〈R, min, max, ·,→, 1〉 forms a bounded commutative
residuated lattice with least element 0, and is in fact an FLew-algebra. We
note that when R denotes a set of the form {0, 1/n, 2/n, . . . , (n−1)/n, 1}, R
is isomorphic to an FLew-algebra with the underlying set {an, . . . , a2, a, a0}
such that an = 0, whose total order < satisfies ai+1 < ai for each i =
0, . . . , n− 1. Here, aj is defined by a0 = 1 and aj = a ∗ aj−1 for each j > 0,
where ∗ is a semigroup operation on R. In this case, the residual→ is defined
by ak → am = amax{0,m−k}.

We can show that the following holds always in any algebra R under
consideration:

(x → y) → y = (y → x) → x for all x, y (1).

Now, let us generalize this. We say that a FLew-algebra P is an MV-algebra
if it satisfies the above condition (1). It is known that they serve as algebraic
structures for many-valued logics.5 We note that any MV-algebra is in fact a
CFLew-algebra, and moreover the following two equations hold in it: for all
x, y x∨y = (x → y) → y and x∧y = ¬(¬x∧¬y). The following completeness
theorem holds. For further information on many-valued logics, see e.g. [9].

Theorem 5.4. The following three conditions are mutually equivalent for
any formula α.
1. α is provable in the logic obtained from FLew by adding ((β → γ) →
γ) → ((γ → β) → β),
2. α is valid in the ÃLukasiewicz’s infinite-valued algebra, i.e. the MV-
algebra determined by the unit interval [0, 1],
3. α is valid in any MV-algebra.

A map T from [0, 1]2 to [0, 1] is a triangular norm (or, simply, a t-norm)
if 〈[0, 1], ◦, 1〉 is a partially ordered commutative monoid where ◦ is defined
by x ◦ y = T (x, y). It is obvious that 〈[0, 1], min, max, 0, 1〉 forms a complete
lattice. Typical examples of t-norms are min{x, y}, x×y (the multiplication
of real numbers), and max{x+y−1, 0}. The last one is the monoid operation
used in ÃLukasiewicz’s many-valued algebra.

Now, a question is when these partially ordered commutative monoids
become residuated. Proposition 4.4 tells us that a partially ordered monoid
defined by a t-norm T is residuated if and only if ◦ satisfies

(
∨

xi) ◦ y =
∨

(xi ◦ y).

5Usually, MV-algebras are defined in a different way. But, the definition given here
determines essentially the same algebras as those defined in the standard way.
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Since ◦ is defined on an interval [0, 1] of reals, this can be expressed also as

T (x, y) = limz→x−0 T (z, y) = limw→y−0 T (x,w),

which means that a map T is left-continuous. Thus, we can see that every
left-continuous t-norm determines a commutative, integral residuated lat-
tice, and then this residuated lattice characterizes a substructural logic over
FLew. For instance, t-norms min{x, y}, x × y and max{x + y − 1, 0} de-
termine a superintuitionistic logic called Dummett-Gödel logic, the product
logic introduced by Hájek (see [15]), and ÃLukasiewicz’s infinite-valued logic,
respectively.

When a left-continuous t-norm ◦ satisfies moreover that

(
∧

xi) ◦ y =
∧

(xi ◦ y),

it is continuous. We introduce here two extensions of FLew in an axiomatic
way. Define MTL (monoidal t-norm logic) to be the logic obtained from
FLew by adding (α → β) ∨ (β → α) as the axiom, and BL (basic logic)
to be the logic obtained from MTL by adding (α ∧ β) → (α ∗ (α → β)) as
the additional axiom. They are introduced by Esteva and Godo in [11] and
Hájek in [15], respectively. Then the following results, called the standard
completeness theorems for MTL and BL, are obtained in [17] and [8], re-
spectively. Note here that ÃLukasiewicz’s infinite-valued logic is shown to be
equal also to the logic obtained from BL by adding ¬¬α → α as the axiom.

Theorem 5.5. 1. The logic MTL is complete with respect to the class of
all FLew-algebras determined by left-continuous t-norms.
2. The logic BL is complete with respect to the class of all FLew-algebras
determined by continuous t-norms.

5.3. Finite model property and finite embeddability property

A substructural logic L has the finite model propery if there exists a set {Pi :
i ∈ I} of finite FL-algebras such that L =

⋂{L(Pi) : i ∈ I} holds. This is
equivalent to saying that the variety V(L) is generated by its finite members.
The finite model property is a useful property in showing the decidability of
a given logic, as Harrop’s theorem says that a logic is decidable if it has the
finite model property and is finitely axiomatizable.

In modal logic, proving the finite model property with respect to Kripke
models is a standard and most powerful technique of showing decidability.
On the other hand, since Kripke frames for substructural logics, e.g. those
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introduced in [37], are hardly manageable, the finite model property of basic
substructural logics had remained open until R.K. Meyer and the present
author gave a positive answer to the implicational fragments of both FLew

and FLec (see [28]). This makes an interesting contrast with the fact that the
decidability of basic substructural logics except FLc is an easy consequence
of the cut elimination theorem, as discussed already in §3. Then, Y. Lafont
[25] succeeded to show the finite model property of both CFLew and CFLec.
The methods used there were then extended and elaborated in the paper by
M. Okada and K. Terui [29], who succeeded to show the finite model property
of other basic substructural logics. Interestingly enough, in [25] and [29] the
cut elimination theorem is used in an essential way in proving the finite
model property of some of logics. An algebraic presentation of the method
used in them is given in [5].

Extending an idea of [29], Blok and van Alten [6] have developed a
method of proving the finite model property using the finite embeddabil-
ity property. The method can be regarded as an algebraic substitute of the
filtration method for Kripke frames.

We say that the class K of algebras has the finite embeddability property
when for a given finite partial subalgebra R of an algebra P in K, there exists
a finite algebra Q in K into which R can be embedded. It is well-known that
the class HA of Heyting algebras has the finite embeddability property. For,
if R is a finite partial subalgebra of a Heyting algebra P, then the sublattice
Q generated by the underlying set of R becomes a finite distributive lattice
and hence is a finite Heyting algebra, into which R is embedded.

Suppose that a formula α is not provable in L. Then there exist an algebra
P in V(L) and a valuation v of P such that v(α) ≥ 1 doesn’t hold. The
set {v(δ) : δ is a subformula of α} ∪ {0, 1} forms a finite partial subalgebra
R of P. We assume now that the variety V(L) has the finite embeddability
property. Then R is embedded into a finite algebra Q in V(L). Therefore,
α is not valid in Q. Hence we have the finite model property of L. Thus the
finite embeddability property of V(L) implies the finite model property of
L.

For the class of FLew-algebras, the proof of the finite embeddability
property becomes much more complicated than that for HA. We will give
here a brief outline of the proof. Suppose that R is a partial subalgebra of
a FLew-algebra P. Let M = 〈M, ·, 1,≤〉 be the partially-ordered submonoid
generated by the domain R of R. The set M is not necessarily finite even
if R is finite. For each u ∈ M and r ∈ R, we define a subset (u Ã r] of M
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by (u Ã r] = {w ∈ M : uw ≤ r}. Let D be the set of all subsets of M of
the form (u Ã r] with u ∈ M and r ∈ R. For each subset X of M , define
CX =

⋂{Z ∈ D : X ⊆ Z}. Then C determines a closure operation on
℘(M) and it is shown that the collection of all C-closed subsets of M forms
a FLew-algebra Q, into which R can be embedded. Moreover, we can show
that Q is finite when R is finite. Thus, we have the following (see [6]).

Theorem 5.6. The class of FLew-algebras has the finite embeddability prop-
erty. Therefore, the logic FLew has the finite model property. This holds
also for FLw.

We note that though FLe has the finite model property, the class of FLe-
algebras doesn’t have the finite embeddability property. Thus, the finite
model property of L doesn’t always imply the finite embeddability property
of V(L).

6. Final Remarks

More than ten years have already passed since a study of nonclassical logics
under the name “substructural logics” started. The study seems to be quite
promising, as so many different kinds of nonclassical logics studied so far
can be discussed within this framework. On the other hand, it seems to
be not clear yet why it works so well, or more precisely why restrictions on
“structural rules” play such a key role when logics are formalized as sequent
systems. Here we will try to give some explanations for this by using the
notion of residuation.

Most of people will agree that the “implication” is the most important
logical connective. The meanings and purpose of implication have been
argued from various philosophical and mathematical points of view. Let us
suppose here that our implication satisfies the following relation in a given
sequent system L:

Γ, α ⇒ β is provable in L if and only if Γ ⇒ α → β is provable
in it.

This relation can be shown by the help of the cut rule as long as we have
the standard sequent rules for →. We introduce now an auxiliary logical
connective ∗, called fusion, to represent commas (in the left-hand side) of
sequents, as we have done in §2. Then the above relation, which we call
the residuation relation, expresses the fact that implication is the residual
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of fusion. Fusion is regarded as a monoid operation from the mathematical
point of view, that is much more manageable than implication. Thus, once
we admit the residuation relation between them, we can shift our attention
from implication to fusion, and study the latter in order to know properties
of the former. This shift is justified by residuation theory, which tells us
that each fusion determines uniquely an implication and vice versa.

Some of the basic properties of fusions as monoid operations can be
described by structural rules in sequent systems, such as the commutativity
of fusions is described by exchange rules, for instance. This means that by
controling structural rules we can deal with logics having various kinds of
implications. This, we think, will explain the reason why the framework of
substructural logics works well.

Though there is already much literature on substructural logics, we have
no common understanding of the definition of substructural logics. In the
present paper, we have given a definition of substructural logics over FLew.
But there are still many other logics that should be counted substructural
logics. For example, let us consider the implicational logic BCK which is the
implicational fragment of FLew. This logic is not an extension of FL, but
should be regarded as a substructural logic. Then, what is a suitable defini-
tion of substructural logics in general? Based on discussions in the present
paper, it will be quite reasonable, we think, to understand substructural
logics in the following way:

Substructural logics are logics of residuated structures.

We need to add a comment on the above proposal. While BCK has no
fusion, it can be extended conservatively to a logic having the law of residu-
ation, in fact to the logic FLew. Because of this, we may regard BCK as a
substructural logic in our sense. Thus, by a “logic of residuated structures”
we mean a logic which can be extended conservatively to a logic in which
the law of residuation holds.

If we adopt this definition, logics like the “basic logic” B which was
introduced in [4] and its extensions without the deductive face, i.e. logics
without the law of residuation, will not be within the scope of substructural
logics in our sense, though they are of their own importance and interest.

As a matter of fact, most nonclassical logics except linear logic and rel-
evant logics don’t contain fusion explicitly as a logical connective. On the
other hand, since each sequent system contains usually comma as an aux-
iliary symbol, which behaves as a monoid operation, we may say that it
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includes already fusion in an implicit way. For example, consider a cut-free
sequent system of BCK introduced by Y. Komori in [21]. By simply adding
rules for fusion to it, we get a cut-free sequent system for an extension of
BCK with fusion, in which the residuation relation holds between fusion
and implication. Note that the fact that the extended sequent system is
cut-free ensures that it is a conservative extension of the original BCK.
This shows that sequent systems are quite useful in extracting residuation
relations in logics. In other words, such residuation relations will hardly be
observed as long as we take Hilbert-style formalization. These observations
can be summarized as follows.

Formalizing logics in cut-free sequent systems will reveal hidden
residuation relations in them. Therefore, sequent systems are
suitable for describing residuated structures.

The structure of the partially-ordered monoid in a given residuated lattice
corresponds to structural rules while the lattice structure corresponds to
rules for conjunction and disjunction. These two parts are combined by
implication, through the law of residuation.

As we have shown, algebraic study of substructural logics is important
not only from a technical point of view but also from a conceptual one.
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