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What did we see yesterday?

CS validates positive and negative introspection over
arbitrary Kripke structures

How does it do this? double-indexing
What else is it good for?
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Reminder: CS

1. M, (w ,w ′) |=CS p iff w ′ ∈ V (p)
2. M, (w ,w ′) |=CS ¬φ iff M, (w ,w ′) 2CS φ
3. M, (w ,w ′) |=CS (φ ∧ ψ) iff M, (w ,w ′) |=CS φ and

M, (w ,w ′) |=CS ψ.
4. M, (w ,w ′) |=CS �φ iff for every w” such that wRw”,

M, (w ,w”) |=CS φ

Def: M,w |=CS φ iff M, (w ,w) |=CS φ
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Main properties

Theorem
Proposition 1: |=CS φ iff `K 45 φ

⇒ CS as a logic of introspective belief

Definition: (CMS semantics) M, (w ,w ′) |=CMS �φ iff for every
v such that d(w , v) ≤ α, M, (w , v) |=CMS φ

Theorem
Proposition 2: |=CMS φ iff `S5 φ

⇒ CMS as a logic of introspective knowledge

⇒ K45 and S5 are not logics of exact knowledge per se, since
we can now work with non-transitive and non-euclidian models.

Paul Égré Kolkata 09 - Lecture 2



Token Semantics Common Knowledge The Email Game Perspectives

Main properties

Theorem
Proposition 1: |=CS φ iff `K 45 φ

⇒ CS as a logic of introspective belief

Definition: (CMS semantics) M, (w ,w ′) |=CMS �φ iff for every
v such that d(w , v) ≤ α, M, (w , v) |=CMS φ

Theorem
Proposition 2: |=CMS φ iff `S5 φ

⇒ CMS as a logic of introspective knowledge

⇒ K45 and S5 are not logics of exact knowledge per se, since
we can now work with non-transitive and non-euclidian models.
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Proof sketch

Lemma
M,w |= φ iff M,w �CS φ for every transitive euclidian model M.

Furthermore: K 45 ` φ iff for every transitive euclidian model M,
M |= φ (completeness).

Suppose �CS φ, yet K 45 0 φ. Then there is a transitive
euclidian model M, such that M 2 φ. By the lemma,
M,w 2CS φ: contradiction.
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Back to luminosity

Luminosity-without-triviality: |=CS φ→ �φ ; |=CS φ or |=CS ¬φ

9
��

oo // 10
��

oo // 11
��

oo // 12
��

oo // 13
��

p p p ¬p ¬p

�p is luminous in the model, yet not trivial.

Consequence: we can agree with Williamson that not every
mental state is luminous, or even that most of our mental states
are not luminous, and still disagree about knowledge (seen as
a mental state).
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Paul Égré Kolkata 09 - Lecture 2



Token Semantics Common Knowledge The Email Game Perspectives

Beyond CS: outline

1 Token semantics
2 Common Knowledge and Almost Common Knowledge
3 Multi-agent Token Semantics
4 The Email Game
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Generalizing Centered Semantics
Key ideas

CS allows one to visit only a subpart of the initial model:
worlds 1 step away. What about relaxing this constraint to
worlds that are 2 steps away, 3 steps,... n steps?

Motivation: think of n as the number of nestings of
knowledge operators that require checking
This number n is materialized by means of a parameter:
tokens
Enlargement of the supervenience basis of higher-order
knowledge (relative to CS)
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Tokens

Formulas are evaluated relative to a number n of tokens

For each non-trivial move in a model (box or diamond), a
token is spent, so not for reflexive moves, which come at
no cost.
When all tokens have been spent, get a token back,
backtrack to the previous position in the model, and
continue (loop).
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Token semantics

Evaluation of sentences with respect to a sequence of worlds
(and a token):

(i) M,qw |=TS p [n] iff w ∈ V (p).

(ii) M,qw |=TS ¬φ [n] iff M,qw 2TS φ [n].
(iii) M,qw |=TS (φ ∧ ψ) [n] iff M,qw |=TS φ [n] and M,qw |=TS

ψ [n].
(iv) M,qw |=TS �ψ [n] iff

• n 6= 0 and for all w ′ s.t. wRw ′, qww ′ |=TS ψ [n − k ], with
k = 1 if w 6= w ′, k = 0 if w = w ′.
• Or n = 0 and q |=TS �ψ [1].

Def: [TS(n)-semantics] M,w �TS(n) φ iff M,w |=TS φ [n].

Paul Égré Kolkata 09 - Lecture 2



Token Semantics Common Knowledge The Email Game Perspectives

Token semantics

Evaluation of sentences with respect to a sequence of worlds
(and a token):

(i) M,qw |=TS p [n] iff w ∈ V (p).
(ii) M,qw |=TS ¬φ [n] iff M,qw 2TS φ [n].

(iii) M,qw |=TS (φ ∧ ψ) [n] iff M,qw |=TS φ [n] and M,qw |=TS
ψ [n].

(iv) M,qw |=TS �ψ [n] iff
• n 6= 0 and for all w ′ s.t. wRw ′, qww ′ |=TS ψ [n − k ], with
k = 1 if w 6= w ′, k = 0 if w = w ′.
• Or n = 0 and q |=TS �ψ [1].

Def: [TS(n)-semantics] M,w �TS(n) φ iff M,w |=TS φ [n].
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Paul Égré Kolkata 09 - Lecture 2



Token Semantics Common Knowledge The Email Game Perspectives

Token semantics

Evaluation of sentences with respect to a sequence of worlds
(and a token):

(i) M,qw |=TS p [n] iff w ∈ V (p).
(ii) M,qw |=TS ¬φ [n] iff M,qw 2TS φ [n].
(iii) M,qw |=TS (φ ∧ ψ) [n] iff M,qw |=TS φ [n] and M,qw |=TS

ψ [n].
(iv) M,qw |=TS �ψ [n] iff

• n 6= 0 and for all w ′ s.t. wRw ′, qww ′ |=TS ψ [n − k ], with
k = 1 if w 6= w ′, k = 0 if w = w ′.
• Or n = 0 and q |=TS �ψ [1].

Def: [TS(n)-semantics] M,w �TS(n) φ iff M,w |=TS φ [n].
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Example

9
��

oo // 10
��

oo // 11
��

oo // 12
��

oo // 13
��

p p p ¬p ¬p

10 |=TS �p [1]

for (10,9), (10,11) |=TS p [0] and (10,10) |=TS p [1]

As in CS:

10 |=TS ��p [1]

⇔ (10, x) |=TS �p [0] for x = 9,11, and (10, x) |=TS �p [1] for
x = 10.
⇔ 10 |=TS �p [1] and (10,10) |=TS �p [1]
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Example Cont’d

9
��

oo // 10
��

oo // 11
��

oo // 12
��

oo // 13
��

p p p ¬p ¬p

However, 10 2TS ��p [2]

otherwise we would have 10,11 |=TS �p [1]

and, 10,11,12 |=TS p [0]: not so.
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A spectrum of semantics

TS(1) aka Centered Semantics, validates positive and neg-
ative introspection over arbitrary structures

TS(ω) aka Kripke Semantics, no introspection principles are
validated

TS(n) 1 < n < ω, aka Token Semantics, weakened versions
of the introspection principles
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Main properties

Each TS(n)-semantics has a sound and complete
axiomatization

The resulting logics are intermediate in strength between
K45 and K

ex: TS(2) |= ��p → ���p
ex: TS(3) |= �3p → ��3p
...
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Example: TS(2)

(4.2’). (¬p1 ∧ ♦(p1 ∧ ♦♦r))→ ♦(p1 ∧ ♦r)

(5.2’). (¬p1 ∧ ♦(p1 ∧ ♦r)→ ♦(p1 ∧�♦r)
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Main consequences for introspection

Gradient between automatic introspection and
introspection at the second order: I may fail to know that I
know, but if I know that I know, then I automatically know
that I know that I know.

A more fine-grained control of iterations
Interest for the multi-agent case
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Common knowledge

Shared knowledge: everyone knows that p
Common knowledge: everyone knows that p, everyone
knows that everyone knows that p, everyone knows that
everyone knows that everyone knows that p, ...
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Multi-agent Epistemic logic

�aφ : a knows/believes φ
Ea,bφ ≡ �aφ ∧�bφ

Ca,bφ ≡ Ea,bφ ∧ Ea,bEa,bφ ∧ . . .

M,w |= �aφ iff for every w ′ in Ra(w), M,w ′ |= φ

M,w |= Ea,bφ iff for every w ′ in (Ra ∪ Rb)(w), M,w ′ |= φ

M,w |= Ca,bφ iff for every w ′ in (Ra ∪ Rb)∗(w), M,w ′ |= φ.
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Attaining Common Knowledge

Attaining CK sometimes can be easy, sometimes can be hard:

Public announcements (static, easy): “the deck has 52
cars”
Coordinated attack problem (dynamic, hard): 2 generals
communicate sequentially; a send a message to b to say
he will attack at dawn; b replies to a to confirm reception of
the message; a replies to b to say he got b’s
confirmation,...
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Consecutive numbers
Kooi, van Ditmarsh, van der Hoek 2003

Two agents a and b each are given a positive natural number.
Each one knows his number, not the number of the other. It is a
public rule that the numbers are consecutive.

Example: a holds a 2 and b holds a 3. Is it common knowledge
between them that their numbers are less than 100, 1000,
10000...?

(0,1)

a��

b

HH
oo b // (2,1)

a��

b

HH
oo a // (2,3)

a��

b

HH
oo b // (4,3)

a��

b

HH
oo a // (4,5)

a��

b

HH
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A puzzle about common knowledge

φ≤10000:= “a and b’s numbers are less than 10000”
φ≤n= “a and b’s numbers are less than n”

M, (2,3) 2 Ca,bφ≤10000

More generally, for every n,

M, (2,3) 2 Ca,bφ≤n

Common knowledge about the size of the numbers is never
attained, however large the number.
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attained, however large the number.
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Non-transitivity

Individual accessibility relations Ra and Rb are transitive
Not so for for Ra ∪ Rb

Similarity with our initial example for a single agent
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Two intuitions

Step by step reasoning:
a if b holds a 3

he may think I hold a 4 (♦b4a)
and think that [if I hold a 4] I think he holds a 5 (♦b♦a5b)
and think I think that [if he holds a 5] he may think I hold a 6
(♦b♦a♦b6a)

Spontaneous intuition: a and b both know that both numbers
are less than 100000. Each of them believes that the other
believes it, and so on / that it is common knowledge
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Almost common knowledge

(Rubinstein 1989) “by ‘almost common knowledge’, I refer
to the case when the numbers [of iterations] are ‘very
large’”: ie sufficiently large but finite amount of shared
knowledge (NB. probably what people would intuitively
understand by CK)

In the game of consecutive numbers, the agents have
almost common knowledge that the numbers are less than,
say, 1000, or even 100
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Proposal

Account for situations of this kind by generalizing tokens to
several agents
Show that (almost) common knowledge can then be
reduced to a finite level of shared knowledge
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Multi-agent Token Semantics (2 agents)

Main idea: use as many token registers as there are
agents

M,qw �MTS φ [ma,mb]

The semantics, informally: same as the one-agent case,
but when mi = 0 and �i is to be evaluated:
(i) backtrack to the closest antecedent world v reached by
an i-move
(ii) pick up and reassign all tokens that were spent along
the way, including for other agents.
(iii) continue.
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Common Knowledge Trivialized

Theorem (trivialization)

�MTS (Ea,b)≤n+nφ↔ Ca,b φ [n,n]

Example: M, (2,3) �MTS Ca,b φ≤5 [1,1]

(0,1)

a��

b

HH
oo b // (2,1)

a��

b

HH
oo a // (2,3)

a��

b

HH
oo b // (4,3)

a��

b

HH
oo a // (4,5)

a��

b

HH
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Interpretation

How legitimate is it to equate common knowledge with some
finite amount of shared knowledge?

In principle, the use of TS is neutral between two
interpretations:

Illusion of common knowledge as a side-effect of bounded
rationality (agents are lazy in their computations)
or
Common knowledge actually reached on a finite amount of
shared knowledge.

Problem: how can we tease apart the two interpretations?
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An objection against TS

If it is CK that a’s number is less than k + 1, then it is CK that it
is less than k [from an. rev.]

1. C (n(a) ≤ k + 1) (assumption)

2. n(a) = k + 1→ ¬�a�b (n(a) ≤ k + 1) (structure of the
game)

3. C (n(a) = k + 1)→ ¬�a�b (n(a) ≤ k + 1) (CK of the
structure of the game)

4. C�a�b (n(a) ≤ k + 1) (from the def. of C)

5. C (n(a) 6= k + 1)

However: TS does not validate the inference from 2 to 3: a
property can be true everywhere in a game without being CK.
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Paul Égré Kolkata 09 - Lecture 2



Token Semantics Common Knowledge The Email Game Perspectives

An objection against TS

If it is CK that a’s number is less than k + 1, then it is CK that it
is less than k [from an. rev.]

1. C (n(a) ≤ k + 1) (assumption)

2. n(a) = k + 1→ ¬�a�b (n(a) ≤ k + 1) (structure of the
game)

3. C (n(a) = k + 1)→ ¬�a�b (n(a) ≤ k + 1) (CK of the
structure of the game)

4. C�a�b (n(a) ≤ k + 1) (from the def. of C)

5. C (n(a) 6= k + 1)

However: TS does not validate the inference from 2 to 3: a
property can be true everywhere in a game without being CK.
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Interpretation

Fact: In TS, a property can be true everywhere in a game
without being CK

1. n(a) = k → ♦a♦b (n(a) > k) (structure of the game)

2. C (n(a) = k → ♦a♦b (n(a) > k)) (CK of the structure of the
game)

The concept of CK described using TS is most likely a
common illusion of common knowledge, rather than real
common knowledge.
This does not mean that such a notion is not operational
for practical decisions.
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The Electronic Mail Game
Rubinstein 1989

Bayesian game: Agents a and b have the choice between two
actions A and B. The game is either g1 or g2, depending on the
state of nature, which only a can observe. a sends an email to
b only if the game is g2; b’s machine sends an automatic
response in that case, and likewise for a. Both machines have
the same probability of transmission failure ε. Each agent sees
on his screen the number of messages he sent at the end of
the communication process, but not the other’s number.
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g1 A B
A 10,10 0, -5
B -5,0 0,0

g2 A B
A 0,0 0, -5
B -5,0 10,10

(0,0)

a��

b

HH
oo b // (1,0)

a��

b

HH
oo a // (1,1)

a��

b

HH
oo b // (2,1)

a��

b

HH
oo a // (2,2)

a��

b

HH

g1 g2 g2 g2 g2
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Theorem (Rubinstein)
The email game has a unique Nash Equilibrium, in which both
players always choose A.

Main ingredients of the proof:

Induction, with base case the fact that action A is strictly
dominant for a in the state (0,0) (when the game is g1)
Bayesian hypotheses in order to compute b’s best action in
that case and in the following.
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Diagnosis

Rubinstein: “the source of the discrepancy lies in the fact that
mathematical induction is not part of the reasoning process of
human beings”.

the induction proof rests crucially on the fact that the state
(0,0) is a relevant epistemic alternative for at least one
player
However, it is relevant only when the numbers are
sufficiently small. When the numbers are high, agents
simply fail to compute knowledge iterations that would lead
them too far from their respective context.
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Towards a solution

Suppose the real state of the world is (17,16), namely a’s
last message failed. p1= the game is G1, and p2= the
game is G2.
Suppose that each agent has 2 tokens

(17,16) �MTS Ca,bp2 [2,2]
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Work in Progress

Can (B,B) be derived as an interesting outcome
(equilibrium?) of the game, if one makes use of the revised
concept of common knowledge?
Idea: consider the first state (m,n) from (0,0) such that it
becomes CK (in MTS) that the game played is g2. Can we
prove that below (m,n), (A,A) is the equilibrium, and that
from (m,n) onward, (B,B) becomes the equilibrium?
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The Vagueness problem

Arbitrariness of the number of tokens assigned to the
agents: below 4 or 5 messages exchanged, agents are
likely to consider (0,0) as a relevant alternative, while
above 50 messages exchanged, (0,0) certainly is no longer
considered relevant.
Experimental data by Camerer & al. 2003: when the Email
Game is repeated a number of times, agents gradually
learn to play A after experiencing a loss on unsuccessful
play of B.
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Summary and conclusion

TS: logics for introspection, bridging K and K45
MTS: Literal implementation of the idea of bounded
rationality
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Perspectives

Further applications of TS: higher-order vagueness (Egré
& Bonnay forthcoming)
Applications in game theory to work out
Work in progress on dynamic centered semantics and
learning
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MTS

Evaluation relative to sequences (w , k) of ordered pairs k = 0 if
no token is spent, k = i if i spends one token.
i) M,q(w , k) �MTS φ [ma,mb] iff w ∈ V (p).
(ii) M,q(w , k) �MTS ¬φ [ma,mb] iff M,q(w , k) 2MTS φ [ma,mb].
(iii) M,q(w , k) �MTS (φ ∧ ψ) [ma,mb] iff M,q(w , k) �MTS φ and

M,q(w , k) �MTS ψ [ma,mb].
(iv) M,q(w , k) �MTS �aψ [ma,mb] iff

• ma 6= 0 and for all w ′ such that wRaw ′,
M,q(w , k)(w ′, l) �MTS ψ [ma − s,mb] where (l , s) = (1, i)
for non reflexive moves, s = l = 0 otherwise.
• Or ma = 0 and M,q′ �MTS �aψ [ma + ra,mb + rb] with
ri=number of tokens picked up along the path to reach q′

where q′ is the longest initial segment of q(w , k) such that
(v , i) belongs to q(w , k) but not q
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Model-necessitation and CS

The rule of necessitation: if φ, then �φ

is standardly valid over frames and over models, namely
M |= φ implies M |= �φ for Kripke semantics.
is not model-valid relative to CS, although frame-valid
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Model validity and CS

9
��

oo // 10
��

oo // 11
��

oo // 12
��

oo // 13
��

M �CS �¬(i + 1)→ ¬i (for i ∈ N )
but M 2CS �(�¬(i + 1)→ ¬i)

Example:

10 �CS �¬12→ ¬11
but 10 2CS �(�¬12→ ¬11)

because⇒ 10,11 �CS �¬12→ ¬11
yet 10,11 �CS �¬12, but 10,11 2CS ¬11.
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Further specificities

The correspondence properties of TS are not the expected
ones. Aspects worth emphasizing concern:

The rationale for having reflexive arrows at no cost
the case of symmetry and the B axiom
Frame definability properties will also shift with the new
semantics (transitivity, enclideanness).
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