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Background of these lectures

@ Work in epistemic logic
@ Focus on some aspects of knowledge representation over
non-transitive structures

@ Special interest for some paradoxes involving iterations of
knowledge and involving such structures (~ sorites
paradoxes)
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@ First two lectures on epistemic logic over non-transitive
structures (joint work with Denis Bonnay)
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@ First two lectures on epistemic logic over non-transitive
structures (joint work with Denis Bonnay)

@ Last lecture on the sorites paradox proper and how to
make use of non-transitive structures (joint work with
Robert van Rooij and Pablo Cobreros, in progress)
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Why vagueness and non-transitivity ?

@ Williamson 1994: “vagueness issues from our limited
powers of conceptual discrimination”
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Why vagueness and non-transitivity ?

@ Williamson 1994: “vagueness issues from our limited
powers of conceptual discrimination”

@ Expression of this limitation: non-transitivity of perceptual
indiscriminability
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Some useful references

Textbooks:
@ Fagin, Halpern, Moses, Vardi 1995. Reasoning about
Knowledge, MIT Press.
@ Blackburn, de Rijke, Venema 2001. Modal Logic.
Cambridge Tracts in Theoretical Computer Science.

@ van Ditmarsch, van der Hoek, Kooi 2007. Dynamic
Epistemic Logic, Springer Synthese Library 237
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On inexact knowledge

T. Williamson:

@ T. Williamson 1992. Inexact Knowledge, Mind.
@ T. Williamson 1994. Appendix to Vagueness, Routledge.
@ T. Williamson 2000. Knowledge and its Limits, OUP.
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On inexact knowledge

T. Williamson:

@ T. Williamson 1992. Inexact Knowledge, Mind.
@ T. Williamson 1994. Appendix to Vagueness, Routledge.
@ T. Williamson 2000. Knowledge and its Limits, OUP.

Replies:

@ Halpern 2004. Intransitivity and Vagueness, KR 2004.

@ Dokic & Egré 2008. Margin for Error and the Transparency
of Knowledge, Synthese.

@ Bonnay & Egré 2009. Inexact Knowledge with
Introspection, Journal of Philosophical Logic.

@ Egré & Bonnay (forthcoming). Vagueness, uncertainty an
degrees of clarity. Forthcoming in Synthese.
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Outline Lecture 1

@ Background on Epistemic Logic

@ Inexact knowledge

@ Centered Semantics

@ Comparison with explicit 2d-semantics
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Outline Lecture 2

@ Token semantics
@ Extensions: dynamic / common knowledge
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Outline Lecture 3

@ Presentation of joint work in progress (with R. van Rooij &
P. Cobreros)

@ Use of non-transitive structures to try and provide a
solution to the sorites paradox more generally

@ Connections to other frameworks in particular super- and
sub-valuationism.
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Epistemic Logic

The language of modal epistemic logic

¢p:=p|-dlopAd[0O |
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Epistemic Logic

The language of modal epistemic logic
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@ [p = K¢: | know that ¢
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Epistemic Logic

The language of modal epistemic logic

¢p:=p|-dlopAd[0O |

@ [p = K¢: | know that ¢
@ Focus on a single agent
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Epistemic Logic

The language of modal epistemic logic

¢p:=p|-dlopAd[0O |

@ [p = K¢: | know that ¢
@ Focus on a single agent
@ Equally we could talk of belief instead of knowledge
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Epistemic Logic
Semantics

Q@ M= (W,R,V)

W = epistemic states
R = epistemic uncertainty
V = distribution of information
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Epistemic Logic
Semantics

Q@ M=(W,RV)

W = epistemic states
R = epistemic uncertainty
V = distribution of information

Q@ M, w E Og iff for every w' : wRW', M, W' |= ¢.

“I know ¢ iff ¢ holds at every epistemic alternative”.
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Epistemic Logic

More precisely
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Epistemic Logic
More precisely

QO M,wEpiff we V(p)

Paul Egré Kolkata 09 - Lecture 1



Epistemic Logic
More precisely

Q@ M,wEpiff we V(p)
Q MwkE—¢iff M,wE ¢

Paul Egré Kolkata 09 - Lecture 1



Epistemic Logic
More precisely

Q@ M,wEpiff we V(p)
Q MwkE—¢iff M,wE ¢
QO MwE (ony)iff Miw = ¢and M,w = o

Paul Egré Kolkata 09 - Lecture 1



Epistemic Logic
More precisely

Q M, wEpiff we V(p)

Q MwkE—¢iff M,wE ¢

QO MwE (ony)iff Miw = ¢and M,w = o
Q M,w =0 iff R(w) C [¢]

As usual: Q¢ := =[0-¢: for all | know, ¢ is possible / | cannot
exclude that ¢
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Epistemic Logic
A very simple example
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Epistemic Logic
A very simple example

w = -0p
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Epistemic Logic
A very simple example

w = -0p
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Epistemic Logic
A very simple example

w = -0p
w = --p
w = 0O-0p

Paul Egré Kolkata 09 - Lecture 1



Epistemic Logic
A very simple example

w = -Op

w |: ﬁljﬁp
w = 0O-0p
w = 00-0p
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Epistemic Logic
Definitions

Model-validity vs Validity

e MEog:foralwe M, M,w = ¢
@ =¢:forall Mandallwe M: M,w = ¢
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Epistemic Logic
Definitions

Model-validity vs Validity

e MEog:foralwe M, M,w = ¢
@ =¢:forall Mandallwe M: M,w = ¢
Frame-validity:

@ =, ¢ iff ¢ is valid in all models whose accessibility relation
is reflexive

@ =4 ¢ iff ¢ is valid in all models whose accessibility relation
is transitive

@ |=ou0 ¢ iff ¢ is valid in all models whose accessibility
relation is euclidian
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Epistemic Logic
Frame properties

Reflexivity xRx

Transitivity xRy A yRz — xRz
Euclideanness | xRy A xRz — yRz
Symmetry xRy — yRx
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Epistemic Logic
S5 models

o 4

Up—p

Op — OOp
-Op — O-0p
p — U=-U-p

factivity

positive introspection

negative introspection

“Brouwersche”

reflexivity
transitivity
euclidianity
symmetry

Paul Egré
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Epistemic Logic
Exact knowledge

@ KT45 = KT5 = KTB4 = S5
@ “S5 models” : R is an equivalence relation

@ Equivalence relations determine partitional models of
information: for every w, R(w) is a cell of the partition
induced by R when R is S5.
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Inexact Knowledge
Inexact knowledge
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Inexact Knowledge
Inexact knowledge

@ Partitional models of information are models of exact
knowledge
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Inexact Knowledge
Inexact knowledge

@ Partitional models of information are models of exact
knowledge

@ Situations of inexact knowledge: overlap of the information
sets, or failure of transitivity / euclideanness of R
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Inexact Knowledge
Inexact knowledge

@ Partitional models of information are models of exact
knowledge

@ Situations of inexact knowledge: overlap of the information
sets, or failure of transitivity / euclideanness of R

@ Example: | don’t discriminate between objects whose size
differs by less than 1 cm.

11 12 13 e
p p p p P

O O O O O
S 9=—>10
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Inexact Knowledge
Inexact knowledge

@ Partitional models of information are models of exact
knowledge

@ Situations of inexact knowledge: overlap of the information
sets, or failure of transitivity / euclideanness of R

@ Example: | don’t discriminate between objects whose size
differs by less than 1 cm.

QQOOO

11 12 13 e
p p p p P

@ R : epistemic uncertainty as perceptual indiscriminability
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Inexact Knowledge
First-order knowledge

O O O O O

w9 10 11 12 13
p p p -p -p
e 10 =0p
e 11,12 =-OpA-0O-p
@ 13=0-p
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Inexact Knowledge
Higher-order knowledge

O 0O O O O
910

11 12 13 e
p p p -p =P

e 10 =-0O0p
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Inexact Knowledge
Higher-order knowledge

O 0O O O O
910

11 12 13 e
p p p -p =P

e 10 =-0O0p
e 9 =00OpA-000p
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Inexact Knowledge
Higher-order knowledge

O 0O O O O
910

11 12 13 e
p p p -p =P

e 10 =-0O0p
e 9 =00OpA-000p
e 8 E00O0Op A -0000p
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Inexact Knowledge
Higher-order knowledge

O 0O O O O
910

11 12 13 e
p p p -p =P

e 10 =-0O0p

e 9 =00OpA-000p

e 8 E00O0Op A -0000p
° ..

Paul Egré Kolkata 09 - Lecture 1



Inexact Knowledge
Higher-order knowledge

O 0O O O O
910

11 12 13 e
p p p -p =P

e 10 =-0O0p

e 9 =00OpA-000p

e 8 = 000p A -O000p
° ...

@ 0 =0"0pA-00"
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Inexact Knowledge
Higher-order knowledge

O 0O O O O
910

11 12 13 e
p p p P P

e 10 =-00p

e 9 =00OpA-000p

e 8 = 000p A -O000p
° ...

@ 0 =0"0pA-00"

Williamson 1992: “iteration of knowledge operators is a process
of gradual erosion”
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Inexact Knowledge

Margin for error semantics
Williamson 1992, 1994, “Logic of Clarity”
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Inexact Knowledge

Margin for error semantics
Williamson 1992, 1994, “Logic of Clarity”

@ Margin models: M = (W, d, a, V)

d = metric over W
a € RT = margin for error
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Inexact Knowledge

Margin for error semantics
Williamson 1992, 1994, “Logic of Clarity”

@ Margin models: M = (W, d, a, V)

d = metric over W
a € RT = margin for error

o M,w gy Oeiffforall vs. t. d(v,w) < a,M,v =gy ¢.

“I know ¢ iff ¢ holds throughout the margin of error”
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Inexact Knowledge

Theorem (Williamson 1992)

Frm ¢ ifftkTe ¢
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Inexact Knowledge

Theorem (Williamson 1992)
Frm ¢ iff-kre ¢

Neither 4 nor 5 is FM-valid. \
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Inexact Knowledge
Margin for error principles

@ Standard inductive premise: Vxy : P(x) Ax ~y — P(y)
@ Epistemic solution: deny the soundness of this premise.

@ Margin for error principle: Vxy : OP(x) Ax ~y — P(y)

Remark: the margin principle is analytically true.
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Inexact Knowledge
Luminosity

@ Luminosity Paradox: suppose (p — OCp were to hold
everywhere in the model. Then: 0 = COp = i = p for every
i > 0: “every pen will fit in the box” (cf. sorites)
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Inexact Knowledge
Luminosity

@ Luminosity Paradox: suppose (p — OCp were to hold
everywhere in the model. Then: 0 = COp = i = p for every
i > 0: “every pen will fit in the box” (cf. sorites)

@ Call a sentence ¢ luminous iff ¢ — (¢ is valid.
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Inexact Knowledge
Luminosity

@ Luminosity Paradox: suppose (p — OCp were to hold
everywhere in the model. Then: 0 = COp = i = p for every
i > 0: “every pen will fit in the box” (cf. sorites)

@ Call a sentence ¢ luminous iff ¢ — (¢ is valid.

Theorem (Williamson 1992)
Fem ¢ — O iff Erv ¢ or B —¢
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Inexact Knowledge
Luminosity

@ Luminosity Paradox: suppose (p — OCp were to hold
everywhere in the model. Then: 0 = COp = i = p for every
i > 0: “every pen will fit in the box” (cf. sorites)

@ Call a sentence ¢ luminous iff ¢ — (¢ is valid.
Theorem (Williamson 1992)
Fr ¢ — O¢ iff Erv ¢ o =pm —¢

@ Whenever knowledge obeys a margin for error, the only
luminous properties are the trivial properties (holding
everywhere or nowhere)
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Inexact Knowledge
Anti-luminosity

Application to mental states:

@ A state of mind e is luminous iff its occurrence entails the
knowledge that one is in e

@ A state of mind is non-trivial iff it lasts for some time, not all
the time
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Inexact Knowledge
Anti-luminosity

Application to mental states:

@ A state of mind e is luminous iff its occurrence entails the
knowledge that one is in e

@ A state of mind is non-trivial iff it lasts for some time, not all
the time

Anti-Luminosity: no non-trivial mental state is luminous, not
even states of knowledge (Williamson 2000)
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Inexact Knowledge
Supervenience issue

Things may be viewed the other way around:

@ How can | know that | know without knowing that | know
that | know? or know that | know that | know without
knowing that | know that | know that | know?
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Inexact Knowledge
Supervenience issue

Things may be viewed the other way around:

@ How can | know that | know without knowing that | know
that | know? or know that | know that | know without
knowing that | know that | know that | know?

@ Supervenience issue: should each further level of

knowledge necessarily supervene on more than what the
previous level supervenes on?
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Inexact Knowledge
Supervenience issue

Things may be viewed the other way around:

@ How can | know that | know without knowing that | know
that | know? or know that | know that | know without
knowing that | know that | know that | know?

@ Supervenience issue: should each further level of

knowledge necessarily supervene on more than what the
previous level supervenes on?

Answer: not necessarily so, possibly second-order knowledge
supervenes only on no-more than first-order knowledge.

Paul Egré Kolkata 09 - Lecture 1



Centered Semantics

Centered Semantics
Bonnay & Egré 2006, 2008

@ A “cartesian” logic of knowledge, satisfying strong
introspection properties

@ A contextualist, two-dimensional semantics, in which
alternatives relevant to evaluate higher-order knowledge
are the same as those relevant for the evaluation of
first-order knowledge
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Centered Semantics
Centered semantics

Given a Kripke structure M = (W, R, V) like the one pictured:
1. M, (w,w') =cs piff w' € V(p)

2. M, (w,w') Ecs —piff M, (w, w') ¥cs p

3. M, (w,w') [=cs (¢ A0) iff M (w,w') [=cs ¢ and
M, (W’ W/) ’:CS .

4. M,(w,w') =cs Og iff for every w” such that wRw",
M, (W’ 4 ) ):CS ¢
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Centered Semantics
Centered semantics

Given a Kripke structure M = (W, R, V) like the one pictured:
1. M, (w,w') =cs piff w' € V(p)

2. M, (w,w') Ecs —piff M, (w, w') ¥cs p

3. M, (w,w') [=cs (¢ A0) iff M (w,w') [=cs ¢ and
M, (W’ W/) ’:CS .

4. M,(w,w') =cs Og iff for every w” such that wRw",
M, (W’ 4 ) ):CS ¢

Def: M,w [=¢s ¢ iff M, (w, w) =cs ¢
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Centered Semantics
Centered semantics

Given a Kripke structure M = (W, R, V) like the one pictured:

1. M, (w,w') Ecspiff w' e V(p)

2. M, (w,w') Ecs —piff M, (w,w') ¥cs p

3. M, (W7 W/) ':CS (¢ A ¢) iff Mv(W7 WI) l:CS ¢ and
M’ (W’ W/) ’708 1/}

4. M, (w,w') Ecs O iff for every w” such that wRw",
M, (w,w") =cs ¢

Def: M,w [=¢s ¢ iff M, (w, w) =cs ¢

@ “Perceptual” statements are evaluated with respect to the
second index, and “Reflective” statements are evaluated
w.r.t. the first index only.
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Centered Semantics
Example

OO0 O o O
p

10
p

o
J
o
|
o

@ Identical predictions for first-order knowledge:

10 =cs Up
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Centered Semantics
Example

OO0 O o O
p

10 11 12 13
p

o
J
o
|
o

@ Identical predictions for first-order knowledge:

10 =cs Up
for (1079)7 (107 10)7(10711) ':CS p
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Centered Semantics
Example

OO0 O o O
p

10 11 12 13
p

o
J
o
|
o

@ Identical predictions for first-order knowledge:

10 =cs Up
for (1079)7 (107 10)7(10711) ':CS p

@ But different predictions at higher-orders:
10 =cs O0p
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Centered Semantics
Example

OO0 O o O
p

10 11 12 13
p

o
J
o
|
o

@ Identical predictions for first-order knowledge:

10 =cs Up
for (1079)7 (107 10)7(10711) ':CS p

@ But different predictions at higher-orders:

10 =cs O0p
= (10, 10) ):CS OOp
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Centered Semantics
Example

OO0 O o O
p

10 11 12 13
p

o
J
o
|
o

@ Identical predictions for first-order knowledge:

10 =cs Up
for (1079)7 (107 10)7(10711) ':CS p

@ But different predictions at higher-orders:
10 =cs O0p

= (10, 10) ):CS OOp
< (10,9), (10,10) and (10, 11) |=¢s Op
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Centered Semantics
Example

OO0 O o O
p

10 11 12 13
p

o
J
o
|
o

@ Identical predictions for first-order knowledge:

10 =cs Up
for (1079)7 (107 10)7(10711) ':CS p

@ But different predictions at higher-orders:

10 =cs O0p

= (10,10) ):CS OOp

< (10,9), (10,10) and (10,11) =cs Op
< (10,9),(10,10),(10,11) Ecs p: v/
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Centered Semantics
Main properties
Proposition 1: =¢s ¢ iffbxas ¢ \

= CS as a logic of introspective belief
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Centered Semantics
Main properties
Proposition 1: =¢s ¢ iffbxas ¢ \

= CS as a logic of introspective belief

Definition: (CMS semantics) M, (w, w') |=cus D¢ iff for every
v such that d(w, v) < o, M, (w, V) EFcus ¢

Paul Egré Kolkata 09 - Lecture 1



Centered Semantics
Main properties
Proposition 1: =¢s ¢ iffbxas ¢

= CS as a logic of introspective belief

Definition: (CMS semantics) M, (w, w') |=cus D¢ iff for every
v such that d(w, v) < o, M, (w, V) EFcus ¢

Proposition 2: ):CMS gf) iff|—35 qb

= CMS as a logic of introspective knowledge

= K45 and S5 are not logics of exact knowledge per se, since
we can now work with non-transitive and non-euclidian models.
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Centered Semantics
Proof sketch
M, v = ¢ iff M, w Ecs ¢ for every transitive euclidian model M.

Furthermore: K45 - ¢ iff for every transitive euclidian model M,
M = ¢ (completeness).

Suppose Fcs ¢, yet K45 ¥ ¢. Then there is a transitive
euclidian model M, such that M ¥ ¢. By the lemma,
M, w ¥cs ¢: contradiction.
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Centered Semantics
Back to luminosity

Luminosity-without-triviality: Fcs ¢ — O¢ % =cs ¢ Of Ecs ¢

O 0O O O O
910~ 11 13

p P p -p -p

Op is luminous in the model, yet not trivial.

Paul Egré Kolkata 09 - Lecture 1



Centered Semantics
Back to luminosity

Luminosity-without-triviality: Fcs ¢ — O¢ % =cs ¢ Of Ecs ¢

O O O O O
9= 10~ 11

p P p -p -p

Op is luminous in the model, yet not trivial.

Consequence: we can agree with Williamson that not every
mental state is luminous, or even that most of our mental states
are not luminous, and still disagree about knowledge (seen as
a mental state).
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Comparisons
Comparisons

CS can be related to:

@ Standard 2d-semantics with actuality operators (enriching
the language)

@ Halpern’s 2d semantics (transforming the models)

Paul Egré Kolkata 09 - Lecture 1



Comparisons

Actuality operators

Indexical knowledge

“I know ¢ iff ¢ holds at all my actual epistemic alternatives. (cf.
Kamp 1971 for the analog in temporal case)

o M, (w,w') Fxas A iff M, (w, w) = ¢
o M, (w,w) Exas K¢ iff for every w” such that w/Rw”,
M7 (W7 W”) ':KZS ¢

Translation from £(K) to L(A,K): p* = p, (¢ AN)* = (¢* ANY¥),
(=) = =¢", (K¢)" = AK¢"

M, (W, W/) ':CS ¢ iff M, (W, W/) ':KZS (25*
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Comparisons
Halpern’s logic

Also a two-dimensional framework, but for a logic with two
modalities:

“Intransitivity in reports of perceptions does not necessarily
imply intransitivity in actual perceptions” (Halpern 2004)

@ R¢: “l report that ¢” ((¢)
@ D¢: “according to me, ¢ is definitely the case”

Main idea: the composition of two equivalence relations need
not be transitive.
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Comparisons
Halpern’s semantics

A simplified Halpern model: M = (W, ~g, ~, V), with
WCSxO

~g, ~o €quivalence relations
e M, (w,w') = Ry iff for every (¢, t') such that
(w,w') ~s (8, 1), M, (t, V) E ¢.
o M, (w,w') = D¢ iff for every (t,t') such that
(w, W) ~o (t, 1), M,(t, V) E &.

ex: M, (2,3) = Rp: when the actual value is 3 and when |
measure 2, | report that p”
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Comparisons

W={(nmeNxN;|n—m| <1}
(n,m) ~s (W, m)iffm=m" (n,m) ~,(n',m)iffn="r/
(2,3) = DRp, but (2,3) ¥ DRDARp

| -p

5 p——p——p
4 p—p——p

3 p—p—p

2 p—p—>

{—p—p

0 1 2 3 4 5
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Comparisons
Layering

Transformation: M = (W, R, V) ~ L(M) = (W', R", V')
o W={(w,w)eWxW,wRwvWw =w}
o (w,w)R'(u,l)iff w =u and w'Ru
° (w,w) e V'(p)iff we V(p).

For all (w,w') € L(M): M, (w, W) Ecs ¢ iff L(M), (W, w) = ¢

M, w Ecs ¢ iff LIM), (w,w) E ¢

NB. Given any R, R’ is necessarily transitive and euclidian.
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Comparisons
Interpretation

Layering shows how to recover a transitive relation of epistemic
uncertainty from a non-transitive relation.

Same relativization of higher-order knowledge to actual
epistemic alternatives
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Comparisons
Summary for today

What did we see?
@ Basic epistemic logic
@ Margin semantics
@ Centered semantics
@ Correspondence with other two-dimensional frameworks
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Comparisons
Main lessons from today

@ Positive and negative introspection can be forced to be
valid on non-transitive/non-euclidean structures

@ Williamson’s epistemic sorites blocked

@ Centered semantics does not handle first-order knowledge
and higher-order knowledge on a par: FO-knowledge is
constrained by a margin of error, but not so for
HO-knowledge.
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Comparisons
What are we going to see tomorrow

Closer confrontation between Williamson’s argument and the
present framework:
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Paul Egré Kolkata 09 - Lecture 1



Comparisons
What are we going to see tomorrow

Closer confrontation between Williamson’s argument and the
present framework:

@ Token semantics: generalization of Centered semantics
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Comparisons
What are we going to see tomorrow

Closer confrontation between Williamson’s argument and the
present framework:
@ Token semantics: generalization of Centered semantics
@ Finer features of Centered Semantics
@ Applications to common knowledge
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