
2. CONDITIONALS AND
PROBABILITY 

• Representing uncertainty: basic settings
• Conditionals without probability
• Inference with conditionals : a three-
valued logic.
• Bayesian probability: strengths and
limitation



UNCERTAINTY :
representing graded belief.

• AN AGENT IS UNCERTAIN ABOUT A
PROPOSITION IF (S)HE DOES NOT KNOW
ITS TRUTH VALUE
– Examples

• The probability that the trip is more than one hour long is 0.7.
•   It is quite possible it snows to-morrow.
• The agent has no certainty that Jean comes to the meeting

• HOW TO EVALUATE THE PROBABILITY,
THE POSSIBILITY,  THE CERTAINTY, THAT
A PROPOSITION IS TRUE OR FALSE



UNCERTAINTY THEORIES
• Set-based representations: Reasoning about belief in terms

of possibility and certainty
– Propositional logic: Believing = proving from a belief base.
– Interval analysis : Propagation  of incomplete information.

• Probability theory: statistical, subjective
• Possibility Theory ordinal or numerical:

– Tells plausible states from less plausible ones
– use  fuzzy sets of  mutually exclusive values

• Disjunctive random sets (Dempster-Shafer-Smets):
probability on set-representations

• Imprecise Probabilities : the  most general setting, with
probability intervals.



SINGULAR vs. GENERIC INFORMATION
• PIECES OF EVIDENCE refer to a particular situation

(measurement data, testimonies) and are singular.
– E.g. results of medical tests on a patient
– Observations about the current state of facts
– May be imprecise, incomplete, unreliable, irrelevant,

wrong, etc.
• BACKGROUND KNOWLEDGE refers to a class of

situations and summarizes a set of trends
– Laws of physics, commonsense knowledge (birds fly)
– Professional knowledge (of medical doctor), Statistical

knowledge
– Not absolutely true knowledge in the mathematical sense:

tainted with exceptions, incompleteness, variability



Warning about the word
« knowledge »

• The term may refer to two notions
– True belief: Knowing p => p is true in the real world (while beliefs

need not be true)
– Generic information: background knowledge, that summarizes the

agent ‘s experience across a collection of situations (while belief
refers to a singular situation)

• In this tutorial we adopt the second point of view



GENERIC KNOWLEDGE, EVIDENCE,
BELIEFS

• An agent  usually possesses three kinds of
information on the world
1. Generic information (background knowledge) :  it

pertains to a range of situations the agent is aware of.
• Examples : statistics on a well-defined population

commonsense knowledge (often ill-defined population)
2. Singular information on the current situation

(evidence)
• Observed facts (results of tests, sensor measurement,

testimonies)

3. Beliefs about the current situation
– Derived from observed facts and singular observations



• Generic knowledge may be tainted with
exceptions
– It all comes down to considering some propositions are

generally more often the case than other ones.
– Generic knowledge induces  a normality or plausibility

relation on the states of the world.
– numerical (frequentist) or ordinal  (plausibility ranking):

• Observed evidence is often made of propositions
known as true about the current world.
– Can be encoded as disjunctive sets, or wff in

propositional logic.
– It delimits a reference class of situations for the case

under study.
– Can be uncertain (subjective probability, Shafer)



A first problem : PLAUSIBLE REASONING 
• Inferring beliefs (plausible conclusions) on the

current situation from observed evidence, using
generic knowledge
– Example : medical diagnosis  Medical knowledge +

test results ⇒ believed disease of the patient.
• This mode of inference makes sense regardless of

the representation, but
• in a purely propositional setting, one cannot tell generic

knowledge from contingent evidence 
• in the first order logic setting there is no exception.

– Need more expressive settings for representing
background knowledge



A second problem :
MERGING UNCERTAIN EVIDENCE

• Observations about the current world may be
unreliable, uncertain, inconsistent:
– Sensor failures, dubious testimonies
– Propositional logic cannot account for unreliable

evidence
– Probability theory alone cannot account for incomplete

evidence
• A proper account of uncertain evidence needs to

cope with uncertainty and the necessity for
merging unreliable evidence in a flexible way,
before even inferring beliefs



Belief construction
• Beliefs of an agent about a situation  are derived from

generic knowledge and observed singular evidence about
the case at hand.

• Example :Statistical beliefs = Hacking principle
– Generic knowledge = probability distribution P built

from statistics
– Singular observed fact = a set A
– Computing the conditional probability P(B|A) for the

reference class A
– BelA(B) = P(B|A): equating degree of belief and

frequency



Belief construction
• Beliefs of an agent about a situation  are inferred from

generic knowledge AND observed singular evidence about
the case at hand.

• Example :Commonsense inference
– Generic knowledge = birds fly, penguin are birds,

penguins don’t fly.
– Singular observed fact = Tweety is a bird
– Inferred belief = Tweety flies
– Additional evidence = Tweety is a penguin
– Inferred revised belief = Tweety does not fly



The Conditional:
A naturally 3-valued proposition

• WHAT IS THE LOGICAL or MATHEMATICAL STATUS OF A
"RULE" IN A RULE-BASED SYSTEM ?
– Not a logical clause (material conditional   ¬p ∨ q) nor a classical

inference rule « if p, always deduce q » BECAUSE THEY
CANNOT HANDLE EXCEPTIONS

– A RULE IS OFTEN A DEFAULT RULE: IF ALL I KNOW IS p
THEN DEDUCE q »

• A CONDITIONAL PROBABILITY ATTACHES A
"CERTAINTY FACTOR » to a rule and copes with
exceptions (« Most p’s are q’s » quantified by P(q|p)).

•  But the probability of a material conditional is not a
conditional probability! What is the entity whose
probability is a conditional probability???

                         A conditional event!!!!



Material implication : the raven
paradox

• Testing the rule « all ravens are black »
viewed as ∀x, ¬Raven(x) ∨ Black(x)

• Confirming the rule by finding situations
where the rule is true.
– Seeing a black raven confirms the rule
– Seeing a white swan also confirms the rule.
– But only the former is an example of the rule.



3-Valued Semantics of
conditionals

• A rule « if p then q » shares the world in 3
– Examples : interpretations where p∧q is true
– Counterexamples: interpretations where p∧¬q is true
– Irrelevant cases: interpretations where p is false

• Truth-table of p → q
– Truth(p → q) = T if truth(p)= truth(q) = T
– Truth(p → q) = F if truth(p)=T and  truth(q) = F
– Truth(p → q) = I if truth(p)= F

• This truth-table is the solution X of p∧q = X ∧p.
• Rules « all ravens are black » and « all non-black birds are

not ravens » have the same exceptions (white ravens), but
different examples (black ravens and white swans resp.)



A conditional event is
a pair of nested sets

• The models of a conditional p → q can be
represented by the pair (A∩B, Ac∪B) if A and B
are the sets of models of p and q respectively.

• The set of models Ac∪B of  material implication
¬p∨q excludes exceptions to the rule p → q.

• (A∩B, Ac∪B) is an interval in the Boolean
algebra of subsets of interpretations.

• It calls for a three-valued logic.



Inferring a rule from a rule

• A rule p → q implies another rule r → s, if the
latter has more examples and less exceptions than
the former

• Equivalent formulations:
– p → q |= r → s iff p∧q |= r∧s and ¬p∨q |= ¬r∨s
(This is the canonical extenstion of the semantic inference

relation  |= to intervals in the Boolean algebra)
– Equipping the truth-set {T, F, I} with the logical

ordering T > I > F:
     p → q |= r → s iff t(p → q) ≤ t(r → s)



Validity of a rule base
• Let Δ be a set of rules pi → qi, i = 1..N.

–  Δ is verified by an interpretation if it verifies at least
one rule and does not falsify any other.

– The rule base Δ is falsified by an interpretation if it
falsifies one rule.

• The validity of Δ  is the one of the quasi-conjunction
of its rules

       &i = 1..N (pi → qi ) = (∨i = 1..N pi )→ ∧ i = 1..N ¬pi ∨ qi

• Equipping the truth-set {T, F, I} with the q-c ordering
I > T > F:
– t(Δ) = min{t(pi → qi), i = 1..N}



Inferring a rule from a rule base:
semantic entailment

• Let Δ be a set of rules, and QC(Δ) be its
quasi-conjunction.

• The rule base Δ  is consistent iff
∀ Σ ⊆ Δ, Σ has one example

• Definition:
   Δ |= p → q  iff ∃ Σ ⊆ Δ, QC(Σ) |= p → q



Valid patterns of inference for conditionals

• Left logical equivalence:
if q =||= r then q → p =||= r → p

• Right weakening: if q |= r then p → q |= p → r
• Cautious monotony: {p → q, p → r} |= p∧q → r
• Cut:  {p → q, p∧q → r} |= p → r
• AND: {p → q, p → r} |= p → q ∧ r
• OR : {p → q, r → p} |= p∨r → q
• Half deduction theorem: p∧q → r |= p → ¬q ∨ r



Invalid patterns of inference for
conditionals

• Monotony: p → q|≠ p∧q → r
– Indeed p∧q → r has less examples than p → q

• Transitivity {p → q, q → r} |≠ p → r
–   An  example to q → r that falsifies p verifies the

quasi-conjunction of the two premises.
• Half deduction theorem p → ¬q ∨ r |≠ p∧q → r

–  p ∧¬q verifies the premise, not the conclusion



Syntactic inference
with conditional knowledge

• Definition : Δ |− p → q  iff p → q can be produced
from {r → r,  ∀r ≠ ⊥} ∪ Δ using Left logical
equivalence, Right weakening, Cautious monotony, AND,
OR

•  This is basically « system P » of Kraus, Lehmann and
Magidor.

• Soundness + Completeness (Dubois &Prade 1994):
 Δ |− p → q  iff Δ |= p → q
 So we can reason in system P in a 3-valued logic with truth

set {T, F, I} equipped with 2 orderings.



Belief construction in the logic of
conditionals

• Observed singular evidence on a situation = propositional formula p
• Generic knowledge = a conditional knowledge base Δ
• Proposition q  is believed about the situation  after observing p  and

under  generic knowledge Δ iff p → q can be inferred from Δ.
• Example : Commonsense inference

– Knowledge : Δ = {b(x) → f (x), p(x) → b(x), p(x) → ¬f(x)}
– Singular observed fact = b(Tweety)
– Inferred belief = f(Tweety)
– Additional evidence = p(Tweety)
– Inferred belief = ¬f(Tweety) (p(x) → f(x) fails as no transitivity)

• But this system is notoriously too weak
– from b(Tweety) red(Tweety) , f(Tweety) is unknown



GRADUAL REPRESENTATIONS OF
UNCERTAINTY

        Belief is a matter of degree !
• Family of propositions or events E  forming a

Boolean Algebra
– S, Ø are events that are certain and ever impossible

respectively.
• A confidence measure g : a function from E in

[0,1] such that
– g(Ø) = 0       ;        g(S) = 1
– if A implies (= included in) B  then g(A) ≤ g(B)

(monotony)
• g(A) quantifies the confidence of an agent in

proposition A.



BASIC PROPERTIES OF CONFIDENCE
MEASURES

• g(A∪B) ≥ max(g(A), g(B));
• g(A∩B) ≤ min(g(A), g(B))
• It includes :

– probability measures :  P(A∪B) = P(A) + P(B) − P(A∩B)
– possibility measures Π(A∪B) = max(Π(A), Π(B))
– necessity measures N(A∩B) = min(N(A),N(B))

• The two latter functions do not require a
numerical setting



Probability Representations (on finite sets)
• A finite set S with n elements: A probability measure is

characterized by a set of  non negative weights p1, …, pn,
such that  ∑i=1,n pi = 1.
– pi = probability of state si

• Possible meanings of a degree of probability :
–  Counting favourable cases for si over the number of

possible cases assuming uniform distribution (coins,
dice, cards,…)

– Frequencies from statistical information: pi = limit
frequency of occurrence of si  (Objective probabilities)

–  Money involved in a betting scheme (Subjective
probabilities)



SUBJECTIVE PROBABILITIES
(Bruno de Finetti, 1935)

• pi = belief degree of an agent on the occurrence of si
• measured as the price of a lottery ticket with reward 1 €  if

state  is  si in a betting game
• Rules of the game:

– gambler proposes a price  pi
–  banker  and gambler exchange roles if price pi is  too

low
• Why a belief state is a single distribution:

– Assume player buys all lottery tickets i = 1, m.
– If state sj is  observed, the gambler gain is 1  – ∑j pj
–  and  ∑j pj– 1 for the gambler
– if ∑pj > 1 gambler always loses money ;
– if  ∑pj < 1 banker exchanges roles with gambler



Probabilistic belief from statistical
probabilities

• Subjective probability of the particular occurrence of an
event may derive from its statistical probability.

• Probabilistic beliefs: Hacking principle
– Generic knowledge = probability distribution P
– BetP(A) = FreqP(A): equating belief and frequency

• Beliefs can be directly elicited as subjective probabilities
with no frequentist flavor if frequencies are not available
or for non repeatable events.



Remarks on the representation of belief by
a single probability distribution

• Computationally simple : P(A) = ∑s ∈ A p(s)
• P(A) = 0 iff A impossible; P(A) = 1 iff A is

certain; usually P(A) = 1/2 for ignorance
•  Meaning :

– Objective probability is generic knowledge (statistics
from a population)

– Subjective probability is contingent (degrees of belief)
• The counterpart of a conditional knowledge base

is a Bayesian network: a set of conditional
probability assessments that represent a unique
distribution



Conditional Probability

• Two definitions:
– derived  (Kolmogorov): P(A | C) =
          requires P(C) ≠ 0
– primitive: P(A|C) is assigned a value and P is

derived such that P(A∩C) = P(A|C)·P(C).
Makes sense even is P(C)= 0

The probability of  A if C represents all that is known
on the situation.

P(A ∩ C)
     P(C)



THE MEANING OF CONDITIONAL
PROBABILITY

• P(A|C) : probability of a conditional event « A in epistemic
context C » (when C is all that is known about the
situation).

• It is NOT the  probability of A, if B is  true.
• Counter-example :

– Uniform Probability on {1, 2, 3, 4, 5}
– P(Even |{1, 2, 3}) = P(Even |{3, 4, 5}) = 1/3
– Under a classical logic interpretation :

• From « if result ∈  {1, 2, 3} then P(Even) = 1/3 »
• And« if result ∈  {3, 4, 5} then P(Even) = 1/3 »
• Then (classical inference) : P(Even) = 1/3  unconditionally!!!!!

– But of course : P(Even) = 2/5.



Probability of conditionals
• Let [q] = A, [p] = C, P(A|C) = P(p → q) where p
→ q is a 3-valued conditional.

• Indeed P(A|C) is totally determined by
– P(A∩C) (proportion of examples)
–  P(Ac∩C) = 1 − P(A∪Cc) (proportion of

examples)

• P(A|C) is increasing with P(A∩C)  and decreasing
with P(Ac∩C)

• If p → q |= r → s then P([q]|[p]) ≤ P([s]|[r])

        P(A∩C)
P(A∩C) + 1 − P(A∪Cc)

P(A|C) =



JOINT PROBABILITY and GRAPHICAL
REPRESENTATIONS

• If the finite domain is  a Cartesian product S =
S1xS2x…xSn with variables : x1, …,xn, a joint probability
is a big table containing  p(s1, …,sn), for all (s1, …,sn) ∈ S

• Claim : Any positive joint probability can be represented
by a set of conditional probabilities forming a directed
graph:
– rank  variables in arbitrary order x1, …,xn
–  express p(x1, …,xn) as
        p(x1| x2…,xn) ⋅p(x2| x3…,xn) ⋅… ⋅p(xn- 1 | xn) ⋅p(xn)
– simplify the expression if conditional independence

relations hold (e.g p(x1| x2…,xn)  = p(x1| x2) )



Examples

• p(x1, x2, x3) = p(x1| x2, x3) ⋅p(x2| x3) ⋅p(x3)

1. If x2 and x3 are independent :
p(x3| x2) = p(x3), then
 p(x1, x2, x3) = p(x1| x2, x3) ⋅p(x2) ⋅p(x3)

2. If x1 is independent from x3 given  x2 :

P(x1 | x2, x3) = P(x1 | x2), then:

p(x1, x2, x3) = p(x1| x2) ⋅p(x2|x3) ⋅p(x3)

x2

x3

x1

x3 x2 x3



PLAUSIBLE REASONING WITH BAYES NETS

• A Bayes net represents generic knowledge (especially
frequentist) in the form of a probability measure P.

• Querying a Bayes net comes down to instantiating the
values of some variables and computing the conditional
probability of a proposition A of interest in the context C
described by all instantiated variables.
– E is contingent evidence on a case (it is not true that P(C) = 1,

generally)
– P(A|C) is the probability (frequency) that in general A occurs in

context C.
– P(A|C) is then interpreted as the degree of belief BelC(A) that A

holds for the case at hand  about which all that is known is that C
is true.

– This framework handles non-monotonicity: one may have P(A|C)
high and P(A |C ∩B)  low.



LIMITATIONS OF BAYESIAN PROBABILITY
FOR THE REPRESENTATION OF BELIEF

• A single probability cannot represent
ignorance

• Subjective specification of a Bayes net
imposes unnatural conditions on conditional
probabilities to be assessed: complete and
consistent conditional probability
assessments are requested



Why the unique distribution
assumption?

• Laplace principle of insufficient reason : What is
EQUIPOSSIBLE must be  EQUIPROBABLE
– It postulates the identity between IGNORANCE and

RANDOMNESS
– like the principle of maximal entropy

• The exchangeable betting framework enforces the
elementary probability assessments to sum to 1.
– It enforces uniform probability when there is no reason to believe

one outcome is more likely than another
– Betting rates are induced by belief states, but are not in one-to-one

correspondence with them : ignorance and knowledge of
randomness justify uniform betting rates.



THE PARADOX OF IGNORANCE

• Case 1:               life outside earth/ no life 
– ignorant's response 1/2        1/2

• Case 2 :        Animal life / vegetal only/  no life
– ignorant's  response    1/3 1/3      1/3

• They are inconsistent answers :
– case 1 from case 2 :  P(life) = 2/3 > P(no life)
– case 2 from case 1 : P(Animal life) = 1/4 < P(no life)

• ignorance produces information 
• Conclusion : a probability distribution cannot

model incompleteness



Single distributions do not distinguish
between incompleteness and variability

• VARIABILITY: Precisely observed random
observations

• INCOMPLETENESS:  Missing information
• Example: probability of facets of a die

– A fair die tested many times : Values are known to be
equiprobable

– A new die never tested: No argument in favour of an
hypothesis nor its contrary, but frequencies are
unknown.

• BOTH NOTIONS LEAD TO TOTAL INDETERMINACY BUT THEY
DIFFER AS TO THE QUANTITY OF INFORMATION



Example
• Variability: daily quantity of rain in Toulouse

– May change every day
– It is objective: can be estimated through statistical data

• Incomplete information : Birth date of Brazilian
President
– It is not a variable: it is a constant!
– Information is subjective: Most may have a rough idea

(an interval), a few know precisely, some have no idea.
– Statistics on birth dates of other presidents do not help

much.



Instability of prior probabilities

1. A uniform prior on x induces a non-
uniform prior on f(x) if f is non-affine :
again Laplacean ignorance produces
information

2. When information is missing, decision-
makers do not always choose according to
a single subjective probability (Ellsberg
paradox).



Ellsberg Paradox

• Savage claims that rational decision-makers
choose according to expected utility with respect
to a subjective probability.

• Counterexample :An Urn containing
– 1/3 red balls (pR = 1/3)
– 2/3 black or white balls (pW + pB = 2/3)

• For the ignorant subjectivist: pR = pW = pB = 1/3
• But this is contrary to overwhelming empirical

evidence



Ellsberg Paradox

1. Choose between two bets
B1 : Win 1$ if red (1/3) and 0$ otherwise (2/3)
B2 : Win 1$ if white (≤ 1/3) and 0$ otherwise

Most people prefer B1 to B2
2.  Choose between two bets (just add 1$ on Black)

B3 : Win 1$ if red or black (≥ 1/3)  and 0$ if white
B4 : Win 1 $ if black or white (2/3) and 0$ if red (1/3)

Most people prefer B4 to B3



Ellsberg Paradox
• Let 0 < u(0) < u(1) be the utilities of gain.
• If decision is made according to a subjective probability

assessment for red black and white: (1/3, pB, pW):
– B1 > B2:
       EU(B1) = u(1)/3 + 2u(0)/3 > EU(B2) = u(0)/3 +u(1)pw+u(0)pB
– B4 > B3:
       EU(B4) = u(0)/3 + 2u(1)/3 > EU(G) = u(1) (1/3 + pN) +u(0)pW 
⇒ (summing, as pB+pN= 2/3) 2(u(0) + u(1))/3 > 2(u(0) + u(1))/3:

CONTRADICTION!
• Such an agent cannot reason with a unique probability

distribution: Violation of the sure thing principle.



Ellsberg Paradox

• Plausible Explanation: In the face of ignorance, the
decision maker is pessimistic:

• In the first choice, agent supposes pw = 0: no white ball
EU(B1) = u(1)/3 + 2u(0)/3 > EU(B2) = u(0)

• In the second choice, agent supposes pB = 0: no black ball
EU(B4) = u(0)/3 + 2u(1)/3 > EU(B3) = 2u(0)/3 + u(1)/3

• The agent does not use the same  probability in both
cases (because of pessimism): the subjective probability
depends on the proposed game.



Beyond classical logic and probability
• Classical logic

– is not expressive enough to grasp the difference between singular
and generic information

– Does not express shades of belief
– Cannot account for non-monotonic feature of plausible reasoning

with incomplete knowledge
• Bayesian Probability

– Cannot account for incomplete knowledge
– Does not tell the difference between variability and ignorance
– Is too information-demanding when only subjective sources are

available
– Handles exceptions and non-monotonicity of inference

• The way out: ordinal uncertainty theories and imprecise
probabilities (strengthening the logic of conditional events).



Probability vs. Classical logic: a basic difference

• In classical logic,
– all variables are supposed to be independent.
– All pieces of knowledge express (logical)

dependencies.
• In probability theory

– variables are not supposed to be independent
– Independence assumptions are pieces of knowledge

The two frameworks are at odds with each other!
Next question: how to extend classical logic in an

ordinal setting so as to account for the presence
of exceptions


