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Abstract

This position paper discusses the difficulty of interpreting the iterated be-
lief revision problem. Axioms of iterated belief revision are often presented
as extensions of the AGM axioms, upon receiving a sequence of inputs,
likely to alter not only the belief set, but also the epistemic entrenchment re-
lation underlying the revision operator. Iterated belief revision presupposes
that more recent inputs have priority over less recent ones. We argue that
this view of iterated revision is at odds with the suggestion of Girdenfors
and Makinson, that belief revision and non-monotonic reasoning are two
sides of the same coin. It is not clear that non-monotonic reasoning mod-
ifies the ranking of possible worlds implicit in default rules. We lay bare
three different paradigms of revision based on specific interpretations of the
epistemic entrenchment implicitly at work and of the input information. If
the epistemic entrenchment stems from default rules and the input is con-
tingent, then AGM revision is a matter of changing plausible conclusions,
and iterated revision makes no sense. However, if the epistemic entrench-
ment encodes uncertain contingent evidence and the input information as
well, then iterated revision reduces to prioritized merging. A third problem
where iteration makes sense corresponds to the revision, by the addition of
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new default rules, of a conditional knowledge base describing background
information. The three scenarios are compared with similar problems in the
framework of probabilistic reasoning.

1 Introduction

The interest in belief revision as a topic of investigation in artificial intelligence
was triggered by the book of P. Girdenfors [31], following the approach intro-
duced with his colleagues C. Alchourrén, and D. Makinson [2] in the setting of
propositional logic. This approach assumes that the set of accepted beliefs held
by an agent is a deductively closed set of propositions. Axioms of belief change
(revision, but also contraction) formulate constraints that govern the “flux” of in-
formation, i.e. that relate one belief set to the next one upon receiving a new
piece of information. On this basis, important examples of revision operators in
the form of selection functions and partial meets are described. An important as-
sumption is that belief revision takes place in a static context, namely, that the
input information is supposed to bring insight to a case that the agent deals with,
and the beliefs of the agent do not evolve due to the change of the nature of the
case. They change due to the collection of new pieces of evidence about the case.

Giérdenfors [31] also shows that under the full set of AGM axioms, explicit re-
vision operations can be replaced by a so-called epistemic entrenchment relation
between propositions of the language, through which revision operators can be
simply expressed. This relation indeed acts like a priority assignment instrumen-
tal to determine the resulting belief set after revision. Properties of an epistemic
entrenchment make it expressible in terms of a complete plausibility ordering of
possible worlds, such that the resulting belief set, after receiving an input infor-
mation in the form of a proposition, is viewed as the set of propositions that are
true in the most plausible worlds where the input proposition holds. Since an
epistemic entrenchment is a complete preordering between propositions, it looks
like a comparative probability relation [27], even if it has different properties. It
suggests some analogy between probabilistic reasoning and belief revision.

The AGM approach is one-shot [53] and does not discuss iteration. Since then,
iterated revision has been the topic of quite a number of works [47], [59], [16],
[42], [37]. However it also seems to have created quite a number of misunder-
standings, due to the lack of insight into the nature of the problem to be solved.
This paper does not intend to dismiss existing approaches to iterated belief revi-
sion. It only tries to distinguish between several revision problems and see what



existing iterated belief revision theories have to say about these problems. Our
ambition is here to propose an informal comparative discussion of three possible
revision scenarios, with a view to help sorting out what concrete problems may lie
behind the name “‘iterated belief revision”. We emphasise the existence of similar
issues in probabilistic reasoning as in belief revision, the main difference between
these areas being the languages used (symbolic vs. numerical), that do not have
the same expressiveness.

2 Isiterated belief revision a well-defined problem?

In the scope of iterated revision, a typical question that results from studying the
AGM theory is: What becomes of the epistemic entrenchment after the belief set
has been revised by some input information? Some researchers claim it is lost,
since the AGM theory tells nothing about iteration. Others claim that it changes
along with the belief set, and they tried to state axioms governing the change of
the plausibility ordering of the worlds, viewing them as an extension of the AGM
axioms [16]. This trend led to envisaging iterated belief revision as a form of
prioritized merging where the priorities assigned to pieces of input information
reflect their recency.

However, this notion of iterated belief revision does not seem to fit with Makin-
son and Gardenfors [45] view of belief revision as the other side of non-monotonic
reasoning. For these authors, non-monotonic reasoning relies on a set of “expec-
tations that guide our beliefs without quite being part of them”. Such expectations
can be modelled by a partial order over propositions, playing the role of the epis-
temic entrenchment relation. An expectation relation may also derive from the
analysis of a set of conditionals, in the style of [43], yielding a ranking of worlds
via the so-called rational closure. The revised belief set is then the result of a
simple inference of conditionals from conditionals, whereby propositional con-
clusions tentatively drawn are altered by the arrival of new pieces of evidence.
Noticeably, in this framework, there is no reason why the conditional informa-
tion, hence the expectation ordering, should be revised. Iteration comes down to
the inference of new conclusions and the dismissal of former ones, in the spirit
of non-monotonic reasoning. Solving the clash of intuitions between iterated re-
vision and non-monotonic reasoning leads us to considering that the AGM view
of belief revision (related to non-monotonic reasoning) has more to do with infer-
ence under incomplete information than with iterated revision as studied by many
subsequent researchers (along this line, see a critical discussion of Darwiche and



Pearl[16] axioms in [22]).

Friedman and Halpern [29] also complained that iterated belief revision re-
search relies too much on the finding of new axioms justified by toy-examples
with no practical significance, and representation results, while more stress should
be put on laying bare an appropriate “ontology or scenario”, that is, “describing
carefully what it means for something to be believed by an agent and what the
status is of new information received by the agent”. It is not always clear which
scenario iterated revision is supposed to address. Friedman and Halpern suggest
two such ontologies, that basically differ by the meaning of the input information.
According to the first one, the agent possesses knowledge and beliefs about the
state of the world, knowledge being more entrenched than beliefs, and receives
inputs considered as true observations. In the other scenario, the input informa-
tion is no longer systematically held for true and competes with prior beliefs, thus
corresponding to a kind of merging bearing much similarity to the conjunctive
combination of uncertainty in the theory of evidence [54]. The difference be-
tween both scenarios lies in the strength of the input information. When the input
is a true observation, revision corresponds to a form of conditioning found in the
theory of evidence as a special case of the combination rule.

In this paper, we somewhat pursue this discussion by pointing out that there is
no unique way of understanding the epistemic entrenchment itself : sometimes, it
represents background information about the world, telling what is normal from
what it is not, in a more or less refined way. In that case, the plausibility ordering
underlying the epistemic entrenchment is similar to a statistical probability distri-
bution, except that the underlying population is ill-specified, and statistical data
are not directly accessible. For instance it may encompass the claim that flying
birds are more normal than non-flying ones, without making it precise exactly
which class of birds is concerned. In other applications, the plausibility ordering
expresses beliefs about unreliable observations concerning the solution to a prob-
lem at hand, the pieces of evidence gathered so far from witnesses on a whodunit
case, for instance. In the latter situation, the resulting epistemic entrenchment is
fully dependent on the case at hand and has no generic value. Finally, one may ar-
gue that even the background information used for inferring plausible conclusions
may evolve.

These considerations lead to lay bare three change problems that have little to
do with each other even if they may share some technical tools.

o If we take it for granted that belief revision and non-monotonic reasoning
are two sides of the same coin and if we rely on technical equivalence results



between the AGM theory and Lehmann and Magidor’s conditional logic un-
der rational closure [43], then we come up with a qualitative counterpart to
statistical reasoning, where inputs stand for incomplete but safe informa-
tion about a case at hand. We call it Belief Revision as Defeasible Inference
(BRDI).

o If we take it for granted that the epistemic entrenchment gathers uncertain
evidence about a case, integrating new uncertain pieces of evidence is a
matter of Belief Revision as Prioritized Merging (BRPM). A recent paper
[35] proposes a formal framework for the BRPM situation in full details.

e Finally, we consider the situation where our background knowledge is mod-
ified by new pieces of knowledge, whereby states of fact that we used to
think as normal turn out not to be so, or conversely. We call it Revision
of Background Knowledge by Generic Information (RBKGI). In the latter
case, inputs often take the form of conditionals.

3 Belief Revision as Defeasible Inference (BRDI)

Under this first view, the AGM theory and non-monotonic reasoning are really
regarded as two sides of the same coin (see Rott [53], chap. 4 for a detailed
comparison of belief change and nonomonotonic reasoning postulates). However,
while in the AGM approach, only a flat belief set denoted /', composed of logical
formulas p, g, . .., is explicitly available (the epistemic entrenchment is implicit
in the axioms of the theory), the nonmonotonic logic approach lays bare all the
pieces of information that allow an agent to reason from incomplete reliable ev-
idence and background knowledge. While in the AGM paradigm, the primitive
objects are the belief set and the input information, we propose in this section a
view where everything derives from the background knowledge, synthetized in
the form of a partial ordering of propositions or a conditional knowledge base,
and from the available evidence. This view, outlined in [32], is fully developed by
Dubois Fargier and Prade [19] [20] as a theory of accepted beliefs.

3.1 A semantic view of defeasible inference

In the following, we consider a classical propositional language, but we do not
distinguish between logically equivalent propositions. Hence, we consider propo-
sitions p as subsets A, B, ... of a set ) of possible worlds, in other words, events
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(to borrow from the probabilistic literature). For clarity, the set of models of a
proposition p is denoted [p]. A° denotes the complement of set A (A° = [—p],
where —p is the negation of proposition p). The influence of syntax on revision
is out of the scope of this paper. So, in the whole paper, the word “proposition”
is deliberately taken as synonymous to “event”. As a consequence, the belief set
K of an agent is understood as its set [{| = N,cx[p] of models. We see two
advantages:

e In axiomatic studies about revision, it is simpler to stick to a semantic ap-
proach than to use syntax and write an axiom of independence from syntax.

e getting rid of syntax makes it easier to lay bare the analogies between revi-
sion notions and their counterparts in uncertainty theories

Under such a proviso, it is assumed that the agent’s epistemic state consists of
three components:

1. A confidence relation, in the form of a partial ordering > onevents A, B, . ..
(induced by propositions expressed in a given language). This relation,
which should be in agreement with logical deduction, expresses that some
events are more normally expected [32] (or less surprizing) than others.
A > B means that A is more entrenched, generally more plausible [30]
(that is, less surprizing) than B. It encodes the background information of
the agent, which describes how (s)he believes the world behaves in general.
It reflects the past experience of the agent.

2. A set of contingent observations concerning a case of interest for the agent.
It takes the form of a propositional formula with models forming the set A.
The observations are evidence about this case, not general considerations
about similar cases. Such pieces of evidence are reliable facts (or at least
accepted as such), hence consistent with each other. So it is assumed that
A # (). It means that a preliminary process is capable of handling conflict-
ing observations and come up with a consistent report.

3. The belief set of the agent, what is denoted K * A in the AGM theory. It
consists of propositions tentatively accepted as true by the agent about the
case, in the face of the current observations A. Propositions in K * A are
inferred from the observations and the background knowledge (so it is not
an independent part of the epistemic state). Namely, in terms of a confidence
relation > between events K x A = {B,AN B > AN B°}.
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For instance, consider a medical doctor about to diagnose a patient. It is as-
sumed that the aim is to determine what the patient suffers from within a time-
period where the disease does not evolve. The confidence relation reflects the
domain knowledge of the physician. Before seeing the patient, (s)he may have
some idea of which diseases are more plausible than others. Observations consist
of reports from medical tests and information provided by the patient on his state
of health. The resulting belief set contains the diagnosis of the patient that will be
formulated by the doctor on the basis of the available observations. This belief set
concerns the patient, not people’s health in general.

Some remarks on the above setting are in order.

e As shown in Dubois et al.[20], if the set of inferred beliefs {B,AN B >
AN B¢} is assumed to be deductively closed, and > is well-behaved with
respect to classical inference, six AGM axioms of belief revision (restricted
to consistent inputs) can be recovered !.

e If moreover > is the strict part of a complete preordering, one recovers all
the eight AGM axioms and the setting of possibility theory [19]. In other
words, > is a comparative possibility relation in the sense of Lewis[44],
that derives from a complete plausibility preordering >, of possible worlds,
namely A > B if and only if ds; € A,Vsy, € B,s; >, sg. Under such
a plausibility ordering >, it is well-known after Grove[33] that K (resp.
K x A) is the set of propositions true in the most plausible worlds (resp.
where A is true).

e The closed set of contingent beliefs of the agent before hearing about A is
K = {B,B > B°}. Formally, under this view, the original belief set /
is inferred from the background knowledge only. The lack of input infor-
mation can be modelled by the tautology, viewed as a non-informative input
(A = Q, assuming no observations are available?). K x A is derived likewise
from input A and .

e That input information is safe explains why the success postulate (A €
K % A) makes sense. The assumption of reliable facts means that the agent
does not question the validity of the inputs. It says nothing about the actual

' Axioms 4 (if =p ¢ K then K x p contains all consequences of K U {p}), and 8 (if ~q & K *p
then K « (p A ¢) contains all consequences of K * p U {q}) cannot be derived.
2 A non-informative input should not to be confused with a certain, reliable, input.



truth of these facts. Only that the agent has no reason to doubt them. This
point implies that the input should be consistent. If a new observation is
made and it is inconsistent with the previous ones, then no inference can be
drawn, and some preprocessing of the observed facts is needed (this is the
topic of the next section, in fact).

e In the case where prior beliefs in K are consistent with the new input infor-
mation A, the revision step should reduce to an expansion. Indeed there is
no need to change our previous beliefs about the current situation when new
evidence does not contradict such beliefs. This requirement is sanctioned
by the AGM setting, and is satisfied when a possibility relation stands for
the confidence relation.

3.2 Expressing background knowledge by conditional knowl-
edge bases

A confidence relation representing generic knowledge may directly stem from a
set of conditionals A. A contains pieces of conditional knowledge of the form
A — B where — is a nonclassical implication, stating that in the context where
all that is known is A, B is generally true. Each such conditional is then encoded
as the constraint AN B > AN B¢, understood as in terms of the above confidence
relation [30]. A plausibility ordering of worlds >, can then be derived from such
constraints via some information minimization principle (like rational closure of
Lehmann and Magidor [43], or equivalently, the most compact ranking compatible
with the constraints[52], or yet the principle of minimal specificity of possibilistic
logic [7]).

In terms of conditionals, the change from K to K % A stems from the fact
that the conditionals 2 — K and A — K x A, respectively, can be inferred
from A under some inferential system. Dubois et al. [20] show that requiring the
deductive closure of K * A is enough to recover system P of Kraus et al.[41].

3.3 Belief revision and probabilistic reasoning

The BRDI framework is very similar to probabilistic reasoning as emphasized by
Pearl [51], Dubois and Prade [24]. The set of conditionals A is the qualitative
counterpart to a set of conditional probabilities of the form P(B | A) = « defin-
ing a family of probability measures. In fact, Pearl [51] indicates that each condi-
tional can be viewed as an infinitesimal conditional probability P(B | A) = 1 —e¢,
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and Lehmann and Magidor [43] provide a full-fledged account of the infinitesi-
mal probability version of non-monotonic reasoning, that comes close to Adams
conditional logic [1]. So in some sense, non-monotonic reasoning is a qualitative
form of probabilistic reasoning.

In fact, there is no need to resort to infinitesimals for bridging the gap between
nonmonotonic reasoning and probabilistic reasoning. Benferhat ef al. [8], show
that if we restrict to so-called big-stepped probabilities, conditionals interpreted
by constraints P(A N B) > P(A N B°) obey system P of Kraus Lehmann and
Magidor. A big-stepped probability on €2 defines a total order of states, whereby
each state is more probable than the disjunction of less probable states.

Recent works by Gilio and colleagues [12] also indicate that probabilistic rea-
soning with conditionals of the form P(B | A) = 1, understood in the setting of
de Finetti, behaves like a nonmonotonic logic. Namely, in de Finetti’s view, it is
possible to have that P(B | A) = 1 while P(A) = 0. It implies that the solu-
tion to a set of conditional statements interpreted as P(B | A) = 1 is a sequence
of probability measures with disjoint supports, defining an ordered partition of
the possible worlds precisely corresponding to the plausibility rankings obtained
in the rational closure approach. For instance the set of conditional probabilities
{P(B| A) =1,P(C| B) =1,P(C°| A) = 1} is interpreted as the set of
constraints

P(BNA) = P(A);
P(CNB) = P(B);
P(C°NA) = P(A).

It implies P(A) = 0, i.e any probability measure P; satisfying such equations
trivially satisfies the first and the last ones. Following De Finetti, when P(A) = 0
(hence P(A°) = 1), this is interpreted as the idea that A is one order of magnitude
less likely than A°. It is then possible to consider a second step where non-trivial
solutions P, of P(BN A) = P(A); P(C°N A) = P(A) are searched for, with
Py(A) > 0. This example (which corresponds to the famous Tweety penguin
case) suggests that this probabilistic approach singles out the rule B — C' from
the other two, just like rational closure does.

Note that extracting a minimally informative plausibility ordering of worlds
>, from a set of conditionals via rational closure is very similar to the selection,
by application of the maximal entropy principle, of a unique probability distribu-
tion satisfying a set of conditional probability constraints, an approach advocated
by Paris [50]. This similarity has been studied by Maung[46].
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Reasoning according to a plausibility ordering is also similar to probabilistic
reasoning with Bayes nets [51]. In this approach, the background knowledge is
encoded by means of a (large) joint probability distribution on the state space de-
fined by a set of (often Boolean) attributes. This probability distribution embodies
statistical data pertaining to a population (e.g. of previously diagnosed patients,
for instance) in the form of a directed acyclic graph and conditional probability
tables. The advantage of the Bayes net format is to lay bare conditional indepen-
dence assumptions and simplify the computation of inference steps accordingly.
The network is triggered by the acquisition of observations on a case. Inferring
a conclusion C' based on observing A requires the computation of a conditional
probability P(C' | A), and interpreting it as the degree of belief that C is true
for the current situation for which all that is known is A. Apart from computing
degrees of belief, one is interested in determining the most probable states upon
learning A.

It is clear that the confidence relation the above view of the AGM framework
plays the same role as a Bayes net. Especially, the plausibility ordering >, on
states is similar to a joint probability distribution and might compile a population
of cases, even if this population is ill-defined in the non-monotonic setting (the
agent knows that “Birds fly” but it is not entirely clear which population of birds
is referred to). Interestingly, plausibility orderings, encoded as possibility distri-
butions can be represented using the same graphical structures as joint probability
distributions (see [4]), and local methods for reasoning in such graphs can be de-
vised [3]. These graphical representations are equivalent to the use of possibilistic
logic, but are not necessarily more computationally efficient. In the purely ordi-
nal case, CP-nets [14] are also counterparts to Bayes nets representing preference
relations on complex spaces. It is strange they are only proposed for preference
modeling, while they could also implement plausibility orderings as background
knowledge, for qualitative reasoning under incomplete observations.

Adopting this analogy between non-monotonic and probabilistic reasoning
means that the input observations, since pertaining only to the case at hand, are
not of the same nature as the plausibility ordering, and are not supposed to alter
it, just like a Bayes net is not changed by querying it. In this framework, iterat-
ing belief change just means accumulating consistent observations and reasoning
from them using the background knowledge, so that only plausible contingent
conclusions are modified by the arrival of new observations.

Giérdenfors [31] also discusses conditional probability in the light of belief re-
vision. However, he argues that conditioning by a positive probability event is a
form of expansion rather than revision. This is because the belief set /& associated
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to a probability measure P on € is understood as K = {B, P(B) = 1}, so that
K CKxA={B,P(B|A)=1},if P(B) > 0. However this very conserva-
tive view can be challenged if we consider beliefs as propositions with sufficiently
high probabilities (P(B) = 1 — ¢ using infinitesimals, or P(B) > P(B¢), using
big-stepped probabilities). In the latter situation, since a high value of P(B) can
be consistent with a small value of P(B | A), it is more intuitively satisfying to
consider probabilistic conditioning as revision, as proposed in [22]. Indeed, the
main advantage of the probabilistic conditioning over classical inference is the
possibility to make likely conclusions unlikely by acquiring new information (see
also [19] for a comparison of nonmonotonic and probabilistic notions of defeasi-
ble acceptance). Moreover, if the knowledge of an agent is represented by a single
probability measure (as in the subjectivist Bayesian tradition), it can be argued that
such a representation extends the concept of complete belief set (the autoduality
property P(B) = 1 — P(B°) standing for the condition B € K or B¢ € K), and
it makes no sense to expand a complete belief set. From this standpoint, changing
a probability measure cannot mean anything but revising it.

4 Belief Revision as Prioritized Merging

A radically different view of belief revision considers an epistemic state as un-
certain evidence about a particular world of interest (a static world, again). It
gathers the past uncertain observations obtained so far about a single case. So
the epistemic state is modelled as a completely ordered set of propositions (K, >)
(ordered by the epistemic entrenchment >), and the underlying plausibility order-
ing >, on worlds indicates what are the most plausible solutions to the problem
at hand. The input information A is of the same nature as the epistemic state. A
is viewed as an ordering of worlds such that at least one world where A is true is
more likely than any world where A is false. Absorbing the input information is
then likely to modify the original plausibility ordering.

4.1 The framework of prioritized merging

Suppose the epistemic entrenchment > describes what should be more or less be-
lieved about the current case. Then, the plausibility ordering > is no longer like
a statistical distribution, and the new observations A are additional testimonies.
They could be unreliable, uncertain.
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This kind of belief change is particularly adapted to the robotics environment
for the fusion of unreliable sensor measurements. It also accounts for the problem
of collecting evidence, where the main issue is to validate facts relevant to a case
on the basis of unreliable and incomplete observations. As an example, consider
a criminal case where the guilty person is to be found on the basis of (more or less
unreliable) testimonies and clues. The investigator’s beliefs reflect all evidence
gathered so far about the case. The input information consists of an additional
clue or testimony.

Under this view, belief revision means changing the pair (K, ) into another
pair (K * A, > 4). The plausibility ordering of worlds > is changed into another
one >, , under the constraint expressed by the input information. Here, however,
there is no background knowledge at work. The pair (K, >) cannot be viewed
as background knowledge (as opposed to contingent belief). It is just what the
agent thinks is more likely. The new input, with its own reliability level, should
be merged with the existing information. If this level is too weak, it may be
contradicted by the original belief set.

Now, iterating the revision process makes sense, and comes down to a merging
process because the prior information and the input information are of the same
nature. The success postulate just expresses the fact that the newest information
is the most reliable. Not questioning this postulate has led to a view of iterated
belief revision where the newest piece of information is always more reliable than
the previous ones. One may argue that iterated belief revision can be more con-
vincingly considered as a form of prioritized merging (BRPM). Indeed, it seems
that assigning priorities on the sole basis of the recency of observations in a static
problem about which information accumulates is not always a reasonable assump-
tion. Sherlock Holmes would not dismiss previously established facts on the basis
of new evidence just because such evidence is new.

Clearly this discussion emphasises a crucial difference between BRDI and
BRPM: the former is a fundamentally asymmetric problem because the input in-
formation and the background knowledge do not play the same role (nor can we
exchange the prior beliefs K and the input A), while BRPM is a symmetric pro-
cess (this symmetry being possibly broken by priority assignments based on relia-
bility). This point is also discussed by Maynard-Reid II and Shoham [34] who try
to reduce belief revision to the fusion of an expert opinion with a novice opinion.

At the computational level, an epistemic state (X, >) is best encoded as an
ordered belief base using possibilistic logic [21] or kappa rankings [59]. However
the meaning of a prioritized belief base differs according to whether it is viewed
as a partial epistemic entrenchment (what Williams [60] calls an “ensconcement’)
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or as a set of constraints on a family of possible epistemic entrenchments (possi-
bilistic logic). In the former case, the priority attached to a piece of information
is fixed, and cannot change via inference processes. It means that if A and B
are present in a prioritized belief base, A logically implies B, and A is specified
as more reliable than B, this is a conflict only due to an improper allocation of
priorities. On the contrary, in possibilistic logic, only lower bounds on priority
levels are assumed and no conflicts are generated by priority assessments. But,
the certainty level of a belief can be upgraded via inference. Practical methods
for merging ordered belief bases were devised in [9], [5] and, for the special case
when the success postulate is acknowledged, see [10].

4.2 An extended framework for iterated revision

Darwiche and Pearl [16] axioms are stated in terms of iterated revision of an or-
dered belief set. Under our notations, they take the following form (where K x A
is the belief set induced from a plausible ordering of states >, ):

(C1) if AC Bthen >, ,=>,),;

(C2) if AC B°then >, ,=>(z,),;

(C3) if Be K x Athen B € (K * B) * Ainduced from >, ,;
(C4) if B°¢ K x Athen B° ¢ (K * B) x Ainduced from >(.,,.

Their representation theorem shows that these axioms embody the principle of
minimal change of the ordering when priority is always given to the new informa-
tion. Among revision operations satisfying these postulates (applied to plausibility
orderings) Boutilier’s natural revision [13] can be viewed as iterated revision of a
plausibility ordering >, with priority to the new input A (interpreted as A > A°).
In this scheme, the resulting most plausible worlds are the > -best A-worlds, all
other things remaining equal. In contrast, possibilistic conditioning eliminates
worlds not in agreement with the input information, making them equally un-
likely [23] (thus violating Darwiche-Pearl postulate C2). Papini and colleagues
[6] adopt the view that in the resulting plausibility ordering all A-worlds are more
plausible than any A°-world all things being equal. This method also satisfies the
Darwiche-Pearl postulates.

Delgrande et al. [35] reconsider these postulates for iterated revision without
making any recency assumption: there is a certain number of more less reliable or
important pieces of information to be merged, one of them being the new one. If
we postulate that all observations play the same role and have the same priority, a
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symmetric (and possibly associative) merging process can take place.

Priorities are no longer a matter of recency, but can be assigned on other
grounds. In [35], four axioms, for the prioritized merging of unreliable propo-
sitions into a supposedly accepted one are proposed. They embody the BRPM
scenario of evidence collection and sorting, that eventually produces a clearly es-
tablished fact (a propositional formula representing a belief set). Informally these
axioms express the following requirements:

e A piece of information at a given priority level should never make us disbe-
lieve something we accepted after merging pieces of information at strictly
higher priority levels.

e The result of merging should be consistent.
e Vacuous evidence does not affect merging.

e Optimism: The result of merging consistent propositions is the conjunction
thereof.

The important postulate is optimism, which suggests that if supposedly reli-
able pieces of information do not conflict, we can take them for granted. In case of
conflicts, one may then assume as many reliable pieces of information as possible
so as to maintain local consistency. It leads to optimistic assumptions on the num-
ber of truthful sources, and justifies procedures for extracting maximal consistent
subsets of items of information, see [26]. This may be viewed as an extended
view of the minimal change postulate, via the concern of keeping as many infor-
mation items as possible. A restricted form of associativity stating that merging
can be performed incrementally, from the most reliable to the least reliable pieces
of information is proposed as optional. These axioms for prioritized merging re-
cover Darwiche and Pearl postulates (except the controversial C2 dealing with two
successive contradictory inputs) as well as two other more recent postulates from
[48, 49], and from [37], when the priority ordering corresponds to recency. It also
recovers flat merging under integrity constraints after Konieczny and Pino-Perez
[40], for the fusion of equally reliable items in the face of more reliable ones. The
prioritized merging setting of [35] is tailored to the extraction of a set of preferred
models from a potentially inconsistent prioritized belief base. Extending the pos-
tulates to outputs in the form of an ordered belief set needs further research. A
related question is studied by Benferhat and Kaci [11].
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When the input information is legitimately considered as more reliable than
what has been acquired so far, the success postulate suggests considering belief
revision as a form of conditioning, in the tradition of probability kinematics [17].
Namely, conditional probability P(- | A) = P, (A) is provably equal to the clos-
est probability measure (in the sense of relative entropy) to the original measure
P, under the constraint P,.,(A) = 1. A similar view was advocated in [23] for
plausibility orderings encoded by means of a possibility distribution. The AGM
axioms were extended to possibility distributions for characterizing their revision
in terms of conditioning by the input information, and respecting the minimal
change principle. Conditioning in this setting is a particular case of the above
prioritized merging paradigm.

In the case of uncertain inputs, two situations may occur [23]. One view is
that the degree of priority attached to the input is an estimation of the reliability
of the source, and then the piece of information is absorbed or not into the belief
set. This is in line with the prioritized merging setting. According to the other
view, the degree of certainty of the new piece of information is considered as a
constraint. Then, this piece of information is to be entered into the prior ordered
belief set with precisely this degree of certainty. If this degree of certainty is low
it may result in a form of contraction (if the source reliably claims that a piece of
information cannot be known, for instance). In probability theory, this is at work
when using Jeffrey’s revision rule [36]. Darwiche and Pearl [16] propose one such
revision operation in terms of kappa-functions.

4.3 Prioritized merging in Dempster-Shafer theory

The numerical counterpart to the prioritized merging view of iterated revision
here is to be found in Shafer’s mathematical theory of evidence [54]. In this the-
ory, a body of evidence is made of propositions £; along with a mass assignment,
i.e. positive masses m(FE;) summing to 1. m(FE;) is the probability that F; is
the proposition that correctly reflects the evidence about the case at hand. It is
the probability of only knowing £, or equivalently, the probability that £; prop-
erly reflects the agent’s belief set. In particular, if the agent’s only information
is based on some unreliable testimony, it takes the form of a proposition £ and
a weight m(FE) reflecting the probability that the source providing E is reliable.
With probability m(FE) the agent’s belief set is K with [K| = E. It means that
with probability 1 — m(E), K = () (i.e [K] = Q), i.e. the input information is
equivalent to receiving no information at all. A non-dogmatic mass assignment
should always have m(£2) > 0, so as to allow for revision via any kind of input

15



information. For epistemic entrenchments, it corresponds to assuming that any
contingent proposition is less entrenched than tautologies.

The degree of belief Bel(C') of a proposition C' is the probability that C' can
be logically inferred from the agent’s body of evidence (summing the masses of
propositions £; that imply C). Revising the agent’s belief upon arrival of a fully
reliable piece of information A (m/(A) = 1) comes down to a conditioning pro-
cess ruling out all states or worlds that falsify A. If the input information is not
fully reliable, Dempster’s rule of combination, an associative and commutative
operation, carries out the merging process. Note that the symmetry of the oper-
ation is due to the fact that a new mass assignment {(A, m’(A)), A C Q} (and
not only an input A) is merged with the original body of evidence. The smaller
m/(A), the less effective is the input information A in the revision process. This
is the numerical translation of the first postulate of prioritized merging. Demspter
rule of combination obeys the other postulates: normalization ensures the con-
sistency of the result of merging non-dogmatic bodies of evidence; combining a
body of evidence with a vacuous input (m/(£2) = 1) does not create any change;
finally the combination rule generalizes set-intersection, i.e. obeys optimism.

S AGM = BRDI or BRPM ?

The AGM theory does not take sides on its potential extensions to iterated revi-
sions since it is one-shot. So how should the AGM theory be interpreted : a special
case of BRDI or of BRPM? Due to the stress put by Makinson and Gérdenfors [45]
on the similarity between non-monotonic reasoning and belief revision, it is natu-
ral to consider that BRDI is the natural framework for understanding their results.
But then it follows that iterated revision deals with a different problem, and the
above discussion suggests it can be BRPM. The existence of these two paradigms,
corresponding to two kinds of revision problems blurs the meaning of the AGM
theory, iterated revision and postulates governing them.

1. In the AGM theory, you do not need K to derive K * A, you only need the
revision operation * (in other words the plausibility ordering on (2) and A.
So the notation K * A is in a sense misleading, since it suggests an operation
combining K and A. This point was also made by Friedman and Halpern
[29], and later by Maynard-Reid II and Shoham [34]. Of course, if K and A
are consistent, it turns out that the most plausible models of A are precisely
[K] N A. This is the expansion case, where K * A can be computed from
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K and A. In case of a genuine revision, this is no longer true. In the BRPM
view, K is often viewed as an ordered belief set, i.e encoding the whole
prior epistemic state, and the resulting epistemic state is then a function of
K and the input information.

. The AGM postulates of belief revision are in a sense written from a purely
external point of view, as if an observer had access to the agent’s belief set
from outside, would notice its evolution under input information viewed as
stimuli, and describe its evolution laws. The AGM theory says: if from
the outside, an agent’s beliefs seem to evolve according to the postulates,
then it is as if there were a plausibility ordering that drives the belief flux.
In this view, the background knowledge remains hidden to the observer,
and its existence is only revealed through the postulates (as small particles
are revealed by theories of microphysics, even if not observed yet). In the
BRPM problem, the prior plausibility ordering is explicitly stated. Under
the BRDI view, for practical purposes, it also looks more natural to use
the plausibility ordering as an explicit primitive ingredient (as done in [32])
and to take an insider point of view on the agent’s knowledge, rather than
observing beliefs change from the outside.

. The belief revision step in the AGM theory leaves the ordering of states
unchanged under the BRDI view. This is because inputs and the plausible
ordering deal with different matters, resp. the particular world of interest,
and the class of worlds the plausible ordering refers to. The AGM approach,
in the BRDI view is a matter of “querying” the epistemic entrenchment re-
lation, basically, by focusing it on the available observation. In particular,
it makes no sense to “revise an ordering by a formula”. Under this point
of view, axioms for revising the plausibility ordering, as proposed by [16],
for instance, cannot be seen as additional axioms completing the AGM ax-
ioms. On the contrary, the prioritized merging view understands the AGM
axioms as relevant for the revision of full epistemic states and applies them
to the plausibility ordering. As such they prove to be insufficient for its
characterization, hence the necessity for additional axioms.

. In BRDI, while belief sets seem to evolve (from K to K *« A to (K x A) x B
...) as if iterated belief revision would take place, (K * A) x B is re-
ally obtained by gathering the available observations A and B and inferring
plausible beliefs from them. Again we do not compute (K * A) x B from

K x A. But (K * A) x B means K * (AN B) (itself not obtained from K),
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with the proviso that A and B should be consistent. And indeed, within the
BRDI view, the following reduction axiom

(KxA)xB=Kx*x(ANB)if AnNB# 1

looks natural. It is a consequence of AGM framework, if it is assumed that
after revision by A the plausibility ordering does not change (it is just re-
stricted to the A-worlds)?. Strictly speaking, the AGM axioms say that the
identity (K * A) x B = K % (AN B) holds if B is consistent with K % A
(not only with A). However, after observing A, the plausibility ordering is
restricted to A and the relative plausibility of A-worlds is not altered. The
subsequent revision step due to observation B will further restrict > to the
AN B-worlds since AN B # 1, and the corresponding belief set is thus ex-
actly K * (AN B) corresponding the most plausible among A N B-worlds.
It underlies an optimistic assumption about input information, namely that
both A and B are reliable if consistent (a postulate of prioritized merging).
This situation is similar to probabilistic conditioning whereby iterated con-
ditioning (P(C' | A | B)) comes down to simple conditioning on the con-
junction of antecedents (P(C' | AN B)). Of course this is also a restricted
view of the AGM theory, forbidding not only the revision by _L, but also by
a sequence of consistent inputs that are globally inconsistent. But we claim
that this restriction is sensible in the BRDI scenario.

. If in the AGM setting, observations A, B are inconsistent then the BRDI
scenario collapses, because it means that some of the input facts are wrong.
In this case, even if the AGM theory proposes something, the prospect it
offers is not so convincing, as this is clearly a pathological situation. Sim-
ilarly, in probabilistic reasoning, conditioning on a sequence of contradict-
ing pieces of evidence makes no sense (it is impossible to condition on the
empty set in standard probability theory). Within the BRDI view, the natural
approach is to do a merging (using BRPM) of observations so as to restore
a consistent context prior to inferring plausible beliefs. One may indeed see
BRPM as a prerequisite for BRDI: first, evidence must be sorted out using a
BRPM step (so as to establish the facts, as in a crime case), and then once a

3The assumption that the epistemic entrenchment remains the same after the revision step does
not belong to the AGM theory. Hence the reduction axiom is not stricto sensu, derivable from the
AGM axioms. However since AGM Axioms 7 and 8 are needed to derive the epistemic entrench-
ment and they involve a second input, one may argue that these axioms involve two revision steps,
and that the epistemic entrenchment thus laid bare is valid for these two steps.
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fact is validated, the agent can revise plausible conclusions about the world,
based on this fact, using BRDI (in order to suggest the plausible guilty per-
son, thus guiding further evidence collection). In the medical example, it
is clear that the physician receiving contradictory reports about the patient
will first try to sort out the correct information prior to formulating a diag-
nosis. In the BRPM view, there is nothing anomalous with the situation of
several conflicting inputs, because this conflict is expected as being of the
same nature as the possible conflict between the agent’s epistemic state and
the input information.

In summary, under the BRDI view, the problem of revising contingent beliefs
(moving from K to K * A) is totally different from the problem of revising the
epistemic entrenchment relation, while in the BRPM view both are essentially the
same problem and must be carried out conjointly.

6 Revision of Background Knowledge by Generic
Information (RBKGI)

In the BRDI view, apart from the (contingent) belief revision problem addressed
by the non-pathological part of the AGM theory and non-monotonic inference,
there remains the problem of revising the generic knowledge itself (encoded or
not as a plausibility ordering) by means of input information of the same kind.
The AGM theory tells nothing about it. This problem is also the one of revising
a set of conditionals by a new conditional [15]. Comparing again to probabilistic
reasoning, contingent belief revision is like computing a conditional probability
using observed facts instantiating some variables, while revising a plausibility
ordering is like revising a Bayes net (changing the probability tables and/or the
topology of the graph). In the medical example, the background knowledge of the
physician is altered when reading a book on medicine or attending a specialized
conference on latest developments of medical practice.

One interesting issue is the following: since background knowledge can be
either encoded as a plausibility ordering >, or as a conditional knowledge base
A, should we pose the RBKGI problem in terms of revising A or revising >, ?

Suppose A is a conditional knowledge base, which, using rational closure,
delivers a plausibility ordering > of possible worlds. Let A — B be an additional
generic rule that is learned by the agent. If AU{A — B} is consistent (in the sense
that a plausibility ordering >, can be derived from it), it is natural to consider that
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the revision of > yields the plausibility ordering >, obtained from A U {A —
B} via rational closure. In terms of the conditional knowledge base, this form of
revision is just an expansion process. The full-fledged revision would take place
when the conditional A — B contradicts A, so that no plausibility ordering is
compatible with A U {A — B} [28]. This kind of knowledge change needs
specific rationality postulates for the revision of conditional knowledge bases, in
a logic that is not classical logic, but the logic of conditional assertions of Kraus
et al.[41].

Alternatively, one may attempt to revise the plausibility ordering >, (obtained
from A via a default information minimisation principle), using a constraint of the
form ANB > AN B¢. To do so, Darwiche-Pearl postulates can be a starting point,
but they need to be extended in the context of this particular type of change. Re-
sults of Freund [28] and Kern-Isberner [39] seem to be particularly relevant in this
context. For instance, it is not clear that the change process should be symmetric.
One might adopt a principle of minimal change of the prior beliefs, accepting the
new conditional or ordering as a constraint like in probability kinematics [18]. A
set of postulates for revising a plausibility ordering (encoded by a kappa-function)
by a conditional input information of the form A N B > A N B¢ is proposed by
Kern-Isberner [39]. They extend the Darwiche-Pearl postulates and preserve the
minimal change requirement in the sense that they preserve the plausibility order-
ing >, among the examples A N B of the input conditionals, its counterexamples
AN B¢, and its irrelevant cases A°.

Some insights can also be obtained from the probabilistic literature [56] [17].
For instance Jeffrey’s rule [36] consists in revising a probability distribution P,
enforcing a piece of knowledge, of the form P(A) = «, as a constraint which the
resulting probability measure P* must satisfy. The probability measure “closest”
to P in the sense of relative entropy, and obeying P*(A) = « is of the form
P*(.)) =a.P(. | A)+ (1 — a)P(. | A°). The problem of revising a probability
distribution by means of a conditional input of the form P(A|B) = « has been
considered in the probabilistic literature in [57]. Rules for revising a plausibility
ordering can be found in [59], [58], [39] (using the kappa functions of Spohn
[55]) and [25] using possibility distributions. These formal proposals have some
relevance to the BRPM problem as well, since in the BRPM and the RBKGI
problems both prior information and inputs are at the same level of generality:
contingent evidence in BRPM, generic knowledge in RBKGI.

However it is not clear that revising the plausibility ordering >, obtained from
A by a constraint of the form ANB > ANB* has any chance to always produce the
same result as deriving the plausibility ordering >,/ from the revised conditional
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knowledge base A after enforcing a new rule A — B.

Solving this question is beyond the scope of this paper. At least, this sec-
tion claims that revising generic knowledge, whether in the form of a conditional
knowledge base or in the form of a plausibility ordering, is a problem distinct from
the one of contingent belief revision (BRDI, which is only a problem of inferring
plausible conclusions), and from the prioritized merging of uncertain information.
The RBKGI problem can be subject to iterated revision, as well. Generic knowl-
edge being the result of experience, one may conjecture it is more stable and safer
than contingent evidence. So it may be less liable to revision than to update. In-
deed, RBKGI might reflect a (slowly) evolving world, in the sense of accounting
for a global evolution of the context in which we live. In some respects, the nor-
mal course of things to-day is not the same as it used to be fifty years ago, and we
must adapt our generic knowledge accordingly. The distinction between updates
and revision should perhaps be revisited when generic knowledge is the subject of
change.

7 Conclusion

This position paper tried to lay bare three problems of belief change correspond-
ing to different scenarios with specific features summarised in Table 1 where the
similarity between symbolic and numerical frameworks is highlighted. Results in
the literature of iterated belief change should be scrutinized further in the context
of these scenarios.

It may be that other scenarios for belief change could be pointed out. For
instance, one may, by symmetry imagine a problem of revising contingent infor-
mation by generic knowledge acting as input, exchanging the roles of the two
basic items in BRDI. However it is hard to make sense of this possibility and
find a natural example for it. This situation may happen indirectly: generic input
knowledge alters prior generic knowledge that in turn leads to revising the agent’s
contingent beliefs about the current situation. Viewed as such, this fourth case
could be reduced to a sequence of RBKGI and BRDI steps.

It is also clear that addressing these problems separately is a simplification.
For instance in the BRDI approach, observations are always considered as reli-
able, but one may consider the more complex situation of inferring plausible con-
clusions from uncertain contingent information, using background knowledge.
Also the assumption that in the BRDI approach, contingent inputs never alter the
background knowledge is also an idealization: some pieces of information may
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Problem Generic Prior Input After

Knowledge Beliefs Information | Change
BRDI Conditional Propositions | Contingent | Revised

Knowledge Base | in Belief Set | Observation | Belief Set
Probabilistic | Bayes Net Prior Degrees | Variable Posterior
Reasoning of Belief Instanciation | Degrees of Belief
BRPM None Prioritized Prioritized Accepted Fact

Propositions | Propositions | (4 Revised Priorities)

Evidence None Mass Mass Merged Mass
Combination Assignment | Assignment | Assignment
RBKGI Conditional (Irrelevant) New Revised Conditional

Knowledge Base Conditional | Knowledge Base
Probability | Probability (Irrelevant) Conditional | Revised Probability
Kinematics Measure Probability | Measure

Table 1: Comparison of different change problems

destroy part of the agent’s generic knowledge, if sufficiently unexpected (think of
the destruction of the Twin Towers); moreover, an intelligent agent is capable of
inducing generic knowledge from a sufficient amount of contingent observations.
More generally, experience, viewed as collecting evidence over a long period of
time, alters generic knowledge of agents. The latter is the very purpose of learning
theory, and the question of the relationship between learning and belief revision
is a natural one even if beyond the scope of this paper (see discussions and results
by Kevin Kelly [38] on this topic).
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