
4. IMPRECISE PROBABILITY
AND UNCERTAIN EVIDENCE

1. General framework and inference
with imprecise probability

2. Random sets and  Belief functions
3. Merging uncertain information



A GENERAL SETTING FOR REPRESENTING
GRADED CERTAINTY AND PLAUSIBILITY

• 2 adjoint set-functions Pl and Cr.

• Conventions :
– Pl(A) = 0  "impossible" ;
– Cr(A) =  1   "certain"
– Pl(A) =1 ; Cr(A) = 0   "ignorance" (no information)
– Cr(A) ≤ Pl(A)  "certain implies plausible"
– Pl(A) = 1 − Cr(Ac) duality certain/plausible



Imprecise probability theory

• A state of information is represented by a
family P of probability distributions over a
set X.

• To each event A is attached a probability
interval [P*(A), P*(A)] such that
– P*(A) = inf{P(A), P∈ P}
– P*(A) = sup{P(A), P∈ P} = 1 – P*(Ac)



Subjectivist view (Peter Walley)

• Plow(A) is the highest acceptable price for
buying a bet on event A winning 1 euro if A
occurs

• Phigh(A) = 1 – Plow(Ac) is the least
acceptable price for selling this bet.

• Coherence condition
P*(A) = inf{P(A), P ≥ Plow} = Plow(A)



Imprecise probability theory
• The most general numerical approach to

uncertainty.

– Attention ! If Cr(A), Pl(A) derive from a family P
        P ≠ { P, P(A) ∈ [Cr(A), Pl(A)] for all A} ;

–  Only P  ⊂ { P, P(A) ∈ [Cr(A), Pl(A)] for all A} holds

• Equality  if  Cr(A) + Cr(B) ≤ Cr(A∪B) + Cr(A∩B)
for all A, B (super-additivity of convex capacities)



PROBABILISTIC LOGIC (de Finetti)

• A probabilistic knowledge base is a set of weighted
propositions  B = {(pi αi), i = 1, …, αI ∈ [0, 1]}

• (pi αi) means that P(Ai) = αi  where Ai= [pi]
= A constraint on an unknown probability distribution on

interpretations.
• B is not enough to isolate a single probability distribution :

it defines a probability family on interpretations
– P = {P:  P(Ai) = αi , i = 1, …}

• Inference problem: What can be said about the
probability  another proposition p ???

• All that is known is P(p) ∈ [α, β], generally.



Probabilistic extension
of propositional logic

• Finding the most narrow interval [α, β] such that
B |= P(p) ∈ [α, β] is a non-straightforward
extension of classical inference.
– More generally B may contain information of the form

P(Ai) ∈ [αi, βi]
– It cannot distinguish between contingent evidence and

generic knowledge
– It cannot model conditional probability
– Information pieces of the form (Ai αi) and (Ai⇒Bi βi),

with material implication ⇒ are not independent



CONDITIONAL PROBABILISTIC LOGIC
• A conditional probabilistic knowledge base is a

weighted set of rules  ∆ = {(pi →qi αi), i = 1, …}
where αi lies in [0, 1].
– It represents Generic knowledge
– (pi →qi αi), ∈ ∆ means that P(qi| pi) = αi

– A probability family P∆ = {P, P(qi| pi) = αi , i = 1, …}
is the semantic counterpart of ∆.

• Mathematically it is more complex than Bayesian
nets but it has the power of probability theory and
leaves room to incompleteness.



Inference with
a probabilistic conditional base

• Suppose a set of probabilistic conditionals ∆ and C  a
propositional base. Let C = [C] be the set of models.

• Two types of processing :
1. Querying : C is a set of singular facts :compute the

degree of belief of A in context  C as
Cr(A | C) = Inf{P(A | C), P ∈ P∆ , P(C) > 0 }.

2. Revision : C is a set  of universal truths;
Add P(C) = 1 to the set of conditionals P ∆ .

Now we must compute Cr(A|C) =Inf{P(B) P ∈ P∆ , P(C) = 1 }
If P(C) = 1 is incompatible with P∆ , consider
                         Cr(A|C) =Inf{P(B|C) P ∈ P∆ , P(C) maximal }



Example :  A               B               C
• P is the set of probabilities such that

– P(B|A) ≥ α Most A are B
– P(C|B) ≥ β Most B are C
– P(A|B) ≥ γ Most B are A

• Querying on context A : Find the most narrow interval for
P(C|A) (Linear programming): we find

P(C|A) ≥ β ⋅ max(0, 1 − (1 − γ)/α)
– Note : if γ = 0 ,  P(C|A) is unknown even if α = 1.

• Revision : Suppose P(A) = 1, then P(C|A) ≥ β⋅γ
–   Note : γ > max(0, 1 − (1 − γ)/α)

• Revision improves generic knowledge, querying does
not.



Imprecise probability inference extend
preferential (cautious) inference

• Infinitesimal probabilisric inference: From  set of rules ∆
of the form P(qi| pi) ≥ 1− ε, prove that P(q| p) ≥ 1− O(ε)
from ∆ where ε  is an infinitesimal number.

• This is equivalent to proving ∆* |=∀ p → q using cautious
possibilistic inference (or Lehman’s system P) where ∆* =
{pi → qi} is the set of conditionals present in ∆ (Adams’
logic of conditionals, 1975).

• It is equivalent to the logic of conditional events
• It is equivalent to inference from set of rules ∆ of the form

P(qi| pi) = 1 under De Finetti’s coherence approach (T.
Lukasiewicz, A. Gilio).



Random sets and evidence theory

•  A family  F of « focal » (disjunctive) non-empty
sets  representing
– Statistics under incomplete observations (generic)
– Unreliable testimonies (singular)
– Indirect information (induced from a probability space)

•  A positive weighting of focal sets (a random set) :
            ∑    m(E) = 1  (mass function)
     E ∈ F
• It is a randomized incomplete information



Theory of evidence

• m(E) = probability that the most precise
description of the available  information is of the
form "x ∈ E”
= probability ( only knowing  "x ∈ E" and nothing else)
– It is the portion of probability mass hanging over

elements of E without being allocated.
• DO NOT MIX UP  m(E) and P(E)
• In the view of Shafer (1976) and Smets the mass

assignment m represents uncertain singular
evidence on the solution of a problem



Theory of evidence
• degree of certainty (belief) :

• (Function Cr denoted Bel by Shafer)
– Bel(A) =          ∑           m(Ei)

Ei ⊆ A, Ei ≠ Ø
– total mass of information implying  the occurrence of A
– (probability of provability)

• degree of plausibility :
– Pl(A) = ∑         m(Ei) = 1 − Bel(Ac)  ≥ Bel(A)

      Ei ∩ A ≠ Ø
– total mass of information consistent with  A
– (probability of consistency)



Example : Bel(A) = m(E1) + m(E2)
Pl(A) = m(E1) + m(E2) + m(E3) + m(E4)

  = 1 – m(E5) = 1 – Bel(Ac)

E2

E3 E5

E1

E4

A

Ac



PARTICULAR CASES
• INCOMPLETE INFORMATION:
                                                   m(E) = 1, m(A) = 0‚ A ≠ E
• TOTAL IGNORANCE : m(S) = 1:

–  For all  A≠ S, Ø, Bel(A) = 0, Pl(A) = 1
• PROBABILITY :  if ∀i, Ei = singleton {si} (hence disjoint

focal sets )
– Then, for all A, Bel(A) =  Pl(A) = P(A)
– Hence precise + scattered information

• POSSIBILITY THEORY : the opposite case (ZADEH)
     E1 ⊆ E2 ⊆ E3… ⊆ En : imprecise and coherent information

– iff  Pl(A ∪ B) = max(Pl(A), Pl(B)), possibility measure
– iff  Bel(A ∩ B) = min(Bel(A), Bel(B)), necessity measure



Plausible states  induced
by a belief function

• A random set  (F, m) expressing available
information on x induces a fuzzy set F of plausible
values  of x, summing for each value s, masses of
all focal sets containing s.
•  µF(s) = Pl({s}) =       ∑ {m(Ei), Ei∈ F, s ∈ Ei }

–  ∃ s, µF(s) = 1 iff s ∈ Ei  for all i
– ∩i Ei ≠ Ø (no conflict in information).

• The mass function cannot be reconstructed from
function µF, except  if
– All Ei are disjoint : m(Ei) = µF(s) if s ∈ Ei
– Ei are all nested : Pl({s}) is a possibility distribution



Example of uncertain evidence : Unreliable
testimony (SHAFER-SMETS VIEW)

• « John tells me the president is between 60 and 70
years old, but there is some chance (subjective
probability p) he does not know and makes  it up».
– E =[60, 70];  Prob(Knowing “x∈ E =[60, 70]”) = 1 − p.
– With probability p, John invents the info, so we know

nothing (Note that this is different from  a lie).
•  We get a simple support belief function :

m(E) = 1 – p and m(S) = p
• Equivalent to a possibility distribution

–   π(s) = 1 if x ∈ E       and  π(s) = p otherwise.



CONDITIONING UNCERTAIN SINGULAR
EVIDENCE

• A mass function m on S, represents uncertain evidence
• A new sure piece of evidence is viewed as a conditioning

event C
1.   Mass transfer : for all E ∈ F, m(E) moves to C ∩ E ⊆ C

– The mass function after the  transfer is mt(B) = Σ E : C ∩ E = B m(E)
– But the mass transferred to the empty set may not be zero!
– mt(∅) =  Bel(Cc) = Σ E : C ∩ E = Ø m(E) is the degree of conflict

with evidence C
2. Normalisation : mt(B) should be divided by
        Pl(C) = 1 - Bel(Cc) =  Σ E : C ∩ E ≠ Ø m(E)
• This is revision of an unreliable testimony by a sure fact



DEMPSTER RULE OF CONDITIONING =
PRIORITIZED MERGING

The conditional plausibility function Pl(.|E) is
                          Pl(A ∩ E)

• Pl(A|E) =                         ; Bel(A|E) = 1−  Pl(Ac|E)
                                   Pl(E)

• E surely contains the value of the unknown
quantity described by m. So Pl(Ec) = 0
– The new information is interpreted as asserting the

impossibility of Ec: Since Ec is impossible you can
change  x ∈ C into x ∈ C ∩ E and transfer  the mass of
focal set C to C ∩ E.

• The new information improves the precision of
the evidence



EXAMPLE OF REVISION OF EVIDENCE :
The criminal case

• Evidence 1 : three suspects : Peter Paul Mary
• Evidence 2 : The killer was randomly selected

man vs.woman by coin tossing.
– So, S = { Peter, Paul, Mary}

• TBM modeling : The masses are m({ Peter, Paul})
= 1/2 ; m({ Mary}) = 1/2
– Bel(Paul) = Bel(Peter) = 0. Pl(Paul) = Pl(Peter) = 1/2
– Bel(Mary) = Pl(Mary) = 1/2

• Bayesian Modeling: A prior probability
– P(Paul) = P(Peter) = 1/4; P(Mary) = 1/2



• Evidence 3 : Peter was seen elsewhere at the time
of the killing.

• TBM: So Pl(Peter) = 0.
– m({Peter, Paul}) = 1/2;       mt({Paul}) = 1/2 
– A uniform  probability on {Paul, Mary} results.

• Bayesian Modeling:
– P(Paul | not Peter) = 1/3; P(Mary | not Peter) = 2/3.
– A very debatable result that depends on where the story

starts.
• Starting with i males and j females:

– P(Paul | Paul OR Mary) = j/(i + j);
– P(Mary | Paul OR Mary) = i/(i + j))



THE IMPRECISE PROBABILITY VIEW
(Dempster, 1967)

• A belief function on S is induced by a probability space (Ω,
P) via a point to set-mapping G: m(Ei) = p(wi) if G(wi) = Ei.

• Consider a selection function φ: Ω → S from G.  For each
focal set Ei assign mass m(Ei) to element φ(wi) ∈ Ei : We
get a  probability Pφ  such that

                     Pφ({s}) = ∑ {p(wi) , φ(wi) = s}
–  ∀A, Bel(A) ≤ Pφ(A)  and (equivalently) Pφ(A)  ≤ Pl(A)
–  P = {P, ∀A, Bel(A) ≤ P(A)} = convex hull of

probabilities Pφ.
– Cr = P* : lower probability;  Pl = P* : upper probability

• P ∈ P is of the form :    P(A) = ∑ Pi(A| Ei) ⋅m(Ei) (where
Pi is any probability measure on support Ei)



Theory of evidence vs. imprecise
probabilities

• The set Pbel = {P ≥ Bel} is coherent: Bel is a
special case of lower probability

• Bel is ∞-monotone (super-additive at any order)
• The solution m to the set of equations ∀ A ⊆ X

g(A) =  ∑  m(Ei)
     Ei ⊆ A, Ei ≠ Ø

is unique (Moebius transform)
– It is positive iff g is a belief function



Indirect information: The unreliable watch
• States of the watch: Ω = {OK, KO} ;
• Space of interest for the agent : S = {day

hours}
• Available information: 

1. on the watch state: p = Prob(KO) (small)
2. Logical relation between Ω and S:

• G(OK) = {Actual hour up to 2 mn} = H ⊆ S.
• G(KO ) = S (ignorance) (broken watches may give the right

time)

• There is a probability p that agent ignores the
right time : m(H) = 1 – p and m(S) = p



Example of generic belief function:
imprecise observations in an opinion poll

• Question : who is your preferred candidate
                   in C = {a, b, c, d, e, f} ???

– To a population Ω = {1, …, i, …, n} of n persons.
– Imprecise responses r = « x(i) ∈ Ei » are allowed
– No opinion (r =C) ; « left wing » r = {a, b, c} ;
– « right wing » r = {d, e, f} ; a moderate candidate : r =

{c, d}
• Definition of mass function:

– m(E) = card({i, Ei = E})/n
– = Proportion of imprecise responses « x(i) ∈ E »



• The probability that a candidate in subset A
⊆ C is elected is imprecise :

                    Bel(A) ≤ P(A) ≤ Pl(A)
• There is a fuzzy set F of potential winners:

µF(x) = ∑ x ∈ E m(E) = Pl({x})
•  µF(x) is an upper bound of the probability

that x is elected. It  gathers  responses of
those who did not give up voting  for x

• Bel({x}) gathers  responses of those who
claim they will vote for x and no one else.



CONDITIONING IMPRECISE
PROBABILISTIC INFORMATION

• A disjunctive random set (F, m) representing
background knowledge is  equivalent to a set of
probabilities  P = {P :  ∀A, Pl(A) ≥ P(A) ≥ Bel(A)}
(NOT conversely).

• Querying this information based on evidence E
comes down to performing a sensitivity analysis
on the conditional probability P(·|E)
– BelE(A) = inf {P(A|E) : P ∈ P, P(A) >0}
– PlE(A) = sup {P(A|E) : P ∈ P, P(A) >0}

• This conditioning is different from Dempster
conditioning



• Theorem: functions BelE(A) and PlE(A) are
belief and plausibility functions  of the form

• BelE(A) = BelE(E∩A)/(BelE(E∩A) + PlE(E∩Ac))
• PlE(A) = PlE(E∩A)/(PlE(E∩A) + BelE(E∩Ac))
• BelE(A) = 1 − PlE(Ac)
• They are less informative than Dempster

conditioning: If E∩C ≠ Ø and E∩Cc ≠ Ø for all
C∈ F,  then mE(E) = 1 (total ignorance on E)
– Example: If opinion poll yields :    m({a, b}) = α,

m({c, d}) = 1− α,  the proportion of voters for a
candidate in E = {b, c} is unknown.

– However if we hear a and d resign (Pl({a, d} = 0) then
m({b}) = α, m({c}) = 1− α (Dempster conditioning)



Quantitative possibility theory
• Membership functions of fuzzy sets

– Natural language descriptions pertaining to numerical universes
(fuzzy numbers)

– Results of fuzzy clustering
    Semantics: metrics, proximity to prototypes
• Imprecise probability

– Random experiments with imprecise outcomes
– Special convex probability sets

Semantics: frequentist,  or  subjectivist (gambles)...
• Order of magnitude of extreme probabilities (Spohn

functions with values on integers)



Quantitative possibility theory

• Likelihood functions λ(x) = P(A| x) behave like possibility
distributions when there is no prior on x, and λ(x) is used as
the likekihood of x.

• It holds that λ(B) = P(A| B) ≤ maxx ∈ B P(A| x)
• If P(A| B) = λ(B) then λ should be set-monotonic:

{x} ⊆ B implies λ(x) ≤ λ(B)
 
              It implies λ(B) = maxx ∈ B λ(x)



POSSIBILITY AS UPPER PROBABILITY

• Given a numerical possibility distribution π, define
    P(π) = {P |  P(A) ≤ Π(A) for all A}

• Then, generally it holds that
           Π(A) = sup {P(A) | P ∈ P(π)};
           N(A) = inf {P(A) | P ∈ P(π)}

• So π is a faithful representation of a family of probability
measures



Random set view

• Let mi = αi – αi+1       then m1 +… + mn = 1,
with focal sets = cuts

          A basic probability assignment (SHAFER)
• π(s) = ∑i: s∈Fi mi (one point-coverage function) = Pl({s}).
• Only in the consonant case can m be recalculated from π
• Bel(A) = ∑Fi⊆A  mi = N(A); Pl(A) = Π(A)

1

F

α3

possibility levels
1 > α2 > α3 >… > αn

α2
α4



LANDSCAPE OF UNCERTAINTY
THEORIES

BAYESIAN/STATISTICAL PROBABILITY
Randomized points

  (extreme probabilities)
UPPER-LOWER PROBABILITIES

Disjunctive sets of probabilities       
                           KAPPA FUNCTIONS

DEMPSTER UPPER-LOWER PROBABILITIES                 (SPOHN)
SHAFER-SMETS BELIEF FUNCTIONS
Random disjunctive sets                         PLAUSIBIBILITY RANKING

Quantitative Possibility theory Classical logic
Fuzzy (nested disjunctive) sets Disjunctive sets



UNCERTAIN INFORMATION MERGING
• Contexts :

–  experts;  sensors;  images;
– belief sets;   databases;    sets of propositions.

•  Neither classical logic nor probability theory explain
how to combine conflicting information.

•  Merging beliefs differs from preference aggregation,
revision.

•  Theories (probability, possibility, random sets, etc...)
supply connectives without explaining how to use them

• The problem is  independent from the chosen
representation.



WORKING ASSUMPTIONS
• Parallel information sources
• Sources are identified, heterogeneous, dependent (humans,

sensors.)
• A range of problems : informing about the value of some

ill-known quantity to the identification of a scenario
• Information can be poor (intervals, linguistic), incomplete,

ordinal
• No prior knowledge must be available
• Reliability of sources possibly unknown, or not quantified
• Sources supposedly refer to the same problem (non-trivial

issue)



BASIC MERGING MODES

source 1 : x ∈ A
           x ∈ ? 3 basic possibilities

source 2 : x ∈ B

1. Conjunctive merging: x ∈ A ∩ B
– Assumption : sources are totally reliable
– Usual in  logic if no contradiction (A ∩ B ≠ Ø)

2. Disjunctive merging:  x ∈ A ∪ B
– Assumption :  one of the two sources is reliable
– Imprecise but sure response : A ∩ B ≠ Ø is allowed



BASIC MERGING MODES

3. Merging by counting:
        build the random set : m(A) = m(B) = 1/2.
• AMB (x) = Pl(x) = ∑ x ∈ E m(E) = 1 if x ∈ A ∩ B

                 = 1/2 if x ∈ (Ac ∩ B) ∪ (A ∩ Bc)
      = 0 otherwise
– It lies between conjunctive and   disjunctive (but AMB

is a fuzzy set) : A ∩ B ⊆ AMB ⊆ A ∪ B
– Assumption  : Pieces of information stem from

identical independent  sources: confirmation effect.
– Usual assumption in statistics with many sources and

precise observations



Extension to n sources : conflict management
with incomplete information

• A set S of n sources i : xi ∈ Ai, i = 1, …, n
– Generally inconsistent so conjunctive merging fails
– Significant dispersion so disjunctive merging is

uninformative
– (there is often more than one reliable source among n)

• Method 1 :  Find maximal consistent subsets of
sourcesTk: ∩ i∈T Ai ≠ ∅ but ∩ i∈T∪{j} Ai = ∅
– Conjunctive merging of information in Tk

– Disjunctive merging of partial  results obtained
                           X = ∪k(∩ i∈Tk Ai )



• Method 2 : Make an assumption on the number of
reliable sources

• Suppose k reliable sources
• Then  pick k sources at random for conjunctive

merging and  then disjunctively merge obtained
results

X = ∪K ⊆ S : card(K) = k ∩ i∈K Ai

– Must choose k  ≤  max {card(K), ∩ i∈K Ai ≠ ∅}

• Method 3 : statistical : m(Ai) = 1/n for all i. 

then Pl(x) = ∑ i = 1, …, n Ai(x)/n.



MERGING IN POSSIBILITY THEORY:
• Fuzzy set-theoretic operations are instrumental.
• General case :
• source 1 →  π1 = µF1         source 2 → π 2 = µF2

1.  Conjunctive merging   F1
 ∩ F2

– Assumption 1 : Nothing is assumed about dependence
of sources

– Then, Idempotence: no accumulation effect :
• π∩  = min(π1 , π2) (minimum rule)
•   In agreement with the logical view of

information as constraints



Normalized conjunctive merging
• Degree of conflict : 1 − max π∩  if π∩ is not

normalized
– Renormalizing : Assumption 2: sources are reliable

even if conflict.
• Assumptions 1 and  2 : π∩* = min(π1 , π2)/ max π∩

– But then Associativity is lost
• Assumption 3: Independent sources: π* =  π1·π2

–  product instead of min.
– Renormalizing : π  =  π1·π2/ max π*
– in agreement with  the Bayesian approach.
– Associativity is preserved



•  Possibilistic disjunctive merging
– Assumption 4: one of the sources is reliable

      F1 ∪ F2 : π∪ = max(π1,π2)   (max  rule)
– Idempotent: sources can be redundant.
– Adapted for inconsistent sources ( F1

 ∩ F2 = Ø)

• Statistical Merging        vertical average
π+ =(π1+ π2)/2

– Assumption 5: Numerous identical independent
sources

– Generally it gives a random fuzzy set.



MERGING PROBABILITY DISTRIBUTIONS

• The basic connective is the convex  combination :
a counting scheme
– P1 … Pn probability distributions
– Information sources with weights αi such that ∑ αi = 1

P = ∑ αiPi
• The only possible one with

– P(A) = f(P1(A),…,Pn(A))  ∀A ⊆ S
– f(0, 0…0) = 0 ; f(1, 1…1) = 1
– (invariant via projections)

• Information items  come from a random source ;
weights express repetition of sources:  Information
items are independent from each other



Bayesian Merging
• Idea : there is a unique probability distribution

capturing the behaviour of sources.
• Data:

– xi : observation of the value of quantity x by source i.
– P(x1 and x2 | x)  information about  source behaviour
– P(x) prior information about the value of x

                 P( x1 and  x2 | x). P(x)
• P(x | x1 and  x2) =            _________________________

                     ∑x' P(x1 and  x2 | x') · P(x')

• (requires a lot of data )



« Idiot Bayes »
• Usual assumption:  precise observations x1 and  x2

are conditionally independent with respect to x.
         P(x1 | x) · P(x2 | x ) · P(x)
•  P(x | x1 and  x2) =    _________________________

                                 ∑x' P(x1 | x') · P(x2 | x' ) · P(x')
– Independence assumption often  unrealistic
– Conjunctive product-based combination rule similar to

possibilistic merging, if we let P(xi | x) = πi (x)
• A likelihood function is an example of a possibility

distribution



• What if no prior information?  Bayesians use
Laplace principle: A uniform prior

P(x1 | x). P(x2 | x )
•  P(x | x1 and  x2) =         _____________________

∑x' P(x1 | x'). P(x2 | x' )
• Too strong : merging likelihood functions should

yield a likelihood function.
                 P(x1 | x). P(x2 | x )
• π(x) =     _____________________  possibilistic merging
               supx' P(x1 | x'). P(x2 | x' )



Possibilistic merging  with prior information

• Bayes theorem : 
        π(u1, u2|u) * πx(u) = πx(u |u1, u2) * π(u1, u2).

–  πx(u) a priori information about x (uniform =
ignorance)

–  π(u1, u2|u): results from a merging operation F
–  π(u1, u2) = sup u∈U π(u1, u2|u) · πx(u).

• If operation F is product:
                π(u1 | u). π(u2 | u ) . πx(u).
   π(u) =     ___________________________________  

               supu' π(u1 | u'). π(x2 | u' ) . πx(u)
•  Similar to probabilistic Bayes  but more degrees

of freedom



MERGING BELIEF FUNCTIONS
• Problem :
• source i → (Fi,mi) with  ∑ A ∈ Fi mi(A) = 1

• Demspter rule of combination : an  associative
scheme generalising Dempster conditioning
– Step 1 :        m∩(C) =       ∑      m1(A).m2(B)

               A ∩ B = C

                      Independent random set intersection
Step 2 :     m*(C) =     m∩(C)/(1 − m∩(Ø))
                                 renormalisation
          m∩(Ø) evaluates conflict ; it is eliminated.



Example : S = {a, b, c, d}

S
0.02

{b, c, d}
0.14

{c}
0.04

S
0.2

{a, b, c}
0.05

{b, c}
0.35

{c}
0.1

  {a, b, c}
0.5

{b}
0.03

{b}
0.21

Ø
0.06

{b}
0.3

S
0.1

{b, c, d}
0.7

{c}
0.2

m2

m1

m
∩
({b})  = 0.21 + 0.03 = 0.24 ;  m

∩
({c})  = 0.1 + 0.04 = 0.15

m
∩
(S)  = 0.02 ; m

∩
(Ø)  = 0.06



Disjunctive merging of belief functions
               m∪(C) =      ∑      m1(A).m2(B) 

          C : A ∪ B = C

– Union of independent random sets.
–  More imprecise than conjunctive merging, ever

normalised.
• Moreover Bel∪(A) = Bel1(A).Bel2(A)

–  Disjunctively combining two probability distributions
yields a random set.

–   Belief functions are closed via product and convex
sum.

– If conflict is too strong, normalized conjunctive
merging provides arbitrary results and should be
avoided: use another scheme like disjunctive merging.



Conjunctive merging with disjunctive
conflict management

1. Conflict is ignorance
– m∩δ(C) =      ∑      m1(A).m2(B) if C ≠ Ø, S

                            A ∩ B = C

– m∩δ(S) = ∑      m1(A).m2(B)  + m1(S).m2(S)
                             A ∩ B = Ø

                                 = m∩(Ø) + m∩(S)
2. Adaptive rule: for C ≠ Ø
m∩δ(C) =      ∑      m1(A).m2(B) + ∑  m1(A).m2(B)

               A ∩ B = C                     A ∪ B = C

                                                                          A ∩ B = Ø

These rules are not associative.



Compromise merging

• Convex combination: generalisation of the
probabilistic merging rule

• mα(A) =   α·m1(A) +(1 − α) m2(A)
–  α = relative reliability of source 1 versus source 2

• Example : discounting an unreliable belief
function with reliability α close to 1:  combine m1
with the void belief function m2 (S) = 1 : then
– mα(A) = α·m1(A)  if A ≠ S
– mα(A) = α·m1(S) + (1 − α)



CONCLUSION: Belief construction for an agent
1.  Perception : collecting evidence tainted with

uncertainty
2. Merging : Combining new evidence with current one

so as to lay bare an (incomplete) description of the
current situation considered as true.

3. Plausible inference :Forming beliefs by applying
background knowledge to current evidence

• This scheme can be applied in various settings
encompassed by imprecise probability, but

• classical logic is too poor : need conditional events. Non-
monotonic reasoning a la Lehmann (or qualitative
possibilistic logic) is minimal requirement for step 3.

• Bayesian probability is too rich : ever complete and
consistent.

• Shafer-Smets or possibility theory is useful for merging
uncertain evidence(step 2)


