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Ignorance is precious, for once lost it can never be regained.

Abstract

This paper advocates the use of non-purely probabilistic approaches to higher-order
uncertainty. One of the major arguments of Bayesian probability proponents is that representing
uncertainty is always decision-driven and as a consequence, uncertainty should be represented
by probability. Here we argue that representing partial ignorance is not always decision-driven.
Other reasoning tasks such as belief revision for instance are more naturally carried out at the
purely cognitive level. Conceiving knowledge representation and decision-making as separate
concerns opens the way to non-purely probabilistic representations of incomplete knowledge. It
is pointed out that within a numerical framework, two numbers are needed to account for partial
ignorance about events, because on top of truth and falsity, the state of total ignorance must be
encoded independently of the number of underlying alternatives. The paper also points out that
it is consistent to accept a Bayesian view of decision-making and a non-Bayesian view of
knowledge representation because it is possible to map non-probabilistic degrees of belief to
betting probabilities when needed. Conditioning rules in non-Bayesian settings are reviewed,
and the difference between focusing on a reference class and revising due to the arrival of new
information is pointed out. A comparison of Bayesian and non-Bayesian revision modes is
discussed on a classical example.

1 - Introduction

Should degrees of belief be represented by probabilities, and more precisely by point-
valued Bayesian probabilities? This question is recurrently debated in the community of
                                                
1 This work has been partially funded by the CEC-ESPRIT III Basic Research Project 6156

(DRUMS II).
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Uncertainty in Artificial Intelligence, and the controversy has sometimes led to the publication of
very strong opinions about who is right and who is wrong. In this position paper we suggest
that the controversy is due to a basic misunderstanding of each camp about the background and
basic motivations of the theory advocated by the other camp. Theories are always developed with
certain purposes, and these purposes delimit what is to be a problem and what is not to be a
problem. Our aim is thus to try and suggest that the problems addressed by non-additive
uncertainty models, that is, the representation of and reasoning with incomplete knowledge and
partial belief, differ from the problem addressed by subjective Bayesians, that is, decision-
making.

The marriage of Artificial Intelligence (AI) with subjective Bayesian probability is
quarrelsome (to quote Garbolino [24]) because they have been initially concerned with very
different purposes. Bayesian probability in its subjective form has been developed by Ramsey,
De Finetti and Savage (see, e.g., Kyburg and Smokler [39]), with a view to explain what is a
rational decision under uncertainty. To quote Ramsey, "the kind of measurement of belief with
which probability is concerned is a measurement of belief qua basis of action". Since then, all
authors contributing to the subjective probability literature have emphasized this role of
probability, and the betting situation serves as a prototype of action under uncertainty.

On the contrary, the question of making decisions has been almost absent from a large
part of the AI literature, although the situation is changing to-date. The claimed purpose of AI is
knowledge representation and inference rather than decision. Moreover AI contributors have
greatly insisted that knowledge should be represented by symbols, not numbers, hence the role
played by classical logic and computer languages like LISP in the development of AI. It is
striking to notice that even when numbers, such as certainty factors have been empirically
introduced in pattern-directed inference systems, there has been a deliberate caution not to use
probability theory. Besides, it is also striking that an expert system like MYCIN [3], whose aim
was both to diagnose diseases and advise on medical prescriptions did not use utility theory for
the latter task. More generally, the eighties have witnessed the emergence of so-called decision-
support systems that were developed rather independently from decision theory.

It is only recently that AI seems to have realized that making decisions is a particular
human activity that is worth considering as a particular subfield of interest, and that more than
50 years of decision theory might be relevant in that respect (e.g., Langlotz and Shortliffe, [40]).
Moreover the reluctance of AI with respect to numbers seems to be alleviated, if not vanishing.
This reluctance was apparently due to two causes, at least: first the inadequacy of early computer
languages like FORTRAN to represent and process knowledge, because these languages aimed
at encoding algorithms that solve numerical problems; second, the ad hoc use of numbers in the
expert system literature that may have cast some discredit on the very idea of using numbers in
AI. It seems that many AI advocates of the symbolic approach have misinterpreted the role of
numbers and their nature. Namely, measurement theory [34] explains that numbers are a useful
tool for representing and exploiting qualitative structures such as orderings. Utility theory, after
Savage [45], completely adopts this point of view that reconciles the use of numbers with the
symbolic description of preference. The last 10 years have led to the recognition of preference
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relations as a basic tool for modeling plausible reasoning by means of nonmonotonic logics
[49]. It can be imagined that the next step will be to consider numerical representations for these
orderings.

Despite its apparent misunderstanding of numbers, AI has promoted the idea of
modeling various human activities that differ from decision, and especially various types of
reasoning tasks. The problem of knowledge representation is at the core of reasoning models. In
this position paper, we claim that the way knowledge should be represented depends upon the
reasoning task under concern. Knowledge is almost never perfect, accurate, complete. It is
pervaded with imprecision, vagueness and uncertainty. Hence it is natural to introduce these
aspects inside the various paradigms of knowledge representation. However, whether or not we
should adhere to Bayesian subjective probability for these many purposes is open to debate. By
closely relating probabilistic modeling to decisional tasks, and promoting this view inside AI,
Bayesian subjectivists implicitly ignore the existence of other kinds of human mental activities
that deserve scientific investigations. Our thesis here, is that such tasks as deductive reasoning,
plausible reasoning and belief revision under uncertainty require a framework for the
representation of incomplete knowledge that is broader than the one offered by Kolmogorov
axioms and their betting behavior interpretations. Far from rejecting the existing results on
Bayesian decision theory, we suggest that the acceptance of non-additive representations of
belief by Bayesian subjectivists is conditioned on their accepting the existence of knowledge
representation problems not directly aiming at decision-making.

Section 2 develops this point of view. Section 3 shows that a single probability
distribution cannot model total ignorance. Section 4 discusses various uncertainty models
including second-order probability in relation to this thesis and Section 5 shows that they all
agree with respect to the decision problem. Section 6 envisages belief revision as opposed to the
idea of focusing on a particular reference class. Section 7 reviews various conditioning rules,
trying to lay bare their role in specific belief change problems. Section 8 points out a
counterintuitive behavior of Bayes rule when it is used to revise betting rates induced by degrees
of belief that express a state of partial ignorance.

This position paper elaborates on ideas already advocated by the authors in particular
settings such as possibility theory and belief functions (e.g., [12], [13], [15], [17], [52], [56],
[59]).

2 - Partial Ignorance Versus Uncertainty about Decision

The basic claim that motivates the relevance of non-additive representations of belief is
summarized by the following postulate:

Postulate 1: Modeling incomplete knowledge differs from modeling a state of uncertainty
about how to act.
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Very early Ramsey [44] touched upon this issue when he distinguished between belief as
"intensity of feeling, …, of conviction" and belief "qua basis of action". Although he then
focuses on the latter, his dismissal of the first point of view is rather unconvincing. Keeping this
distinction in mind we claim that there are at least two kinds of uncertainty that mirror Ramsey's
distinction: uncertainty about what is true or false, and uncertainty about how to act. The first
kind pertains to a state of (possible absence of) knowledge; the second kind refers to a situation
of risk. Especially, in the latter not only are there degrees of belief in the occurrence of events,
but there is also the possibility of losing or gaining something, depending on a choice (as patent
in the betting behavior setting).

Deductive inference and plausible reasoning differ from decision-making. Deductive
inference aims at deriving what can be said about a certain domain of investigation, given what is
known. Plausible reasoning aims at deriving what is the normal course of things, given what is
known. Decision-making aims at knowing what to do in the front of a given situation when the
state of the world is unknown. Deductive inference and plausible reasoning are question-
answering tasks, and should be at work in information systems such as deductive databases. On
the contrary, a decision-support system supplies advice.

Deductive inference tells us whether a given proposition is true, false or whether its truth
status is unknown, given the current state of knowledge. Plausible inference tells us if a given
proposition is normally expected to be true. If knowledge were complete in a certain area of
investigation, answering a question of the form "is a given proposition true (in that area)?"
would be easy on a pure yes-no basis, provided that the proposition is clearly articulated. In the
absence of complete knowledge, not all questions can be answered in this simple way. However
beliefs can be entertained about propositions whose truth or falsity cannot be firmly established.
Here belief is understood according to Cohen [5] as "a disposition, when attending to issues
raised, or items referred to, by the proposition that p, normally to feel it true that p and false that
not-p, whether or not one is willing to act or argue accordingly" (italics are ours). In the scope
of information systems, beliefs will be encoded as a preference relation (that is quantified or not)
among propositions of interest, and this preference relation enhances the capability of the
systems when answering questions. We shall assume that beliefs depend upon how much
knowledge is available and provide guidance about truth-values in deductive or plausible
inference.

On the contrary, decision theory helps prescribe what to do not to lose “money”, and is
not concerned with computing truth-values.We do not argue against the expected utility theory
[8] for decision-making here. Whenever decision must be made, we accept here that the decider
must assess the probability of the various states of affairs and the utility of the consequence of
each act in each state of affairs. We also take it for granted that the probabilities used in
computing expected probabilities are genuine probabilities reflecting a betting behavior and that
Savage [45]'s postulates are plausible.We do not consider here questionable aspects of decision
theory that are embodied in the Allais, Ellsberg and Newcomb paradoxes (e.g. [49]).
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Some Bayesians defend that even deductive inference is a form of decision [42].
Accordingly 'to deduce that a proposition is true' is equivalent to 'deciding that a proposition is
true'. A decision is usually understood as the free choice of a course of action. Clearly, the truth
of a proposition is not the result of a decision, it is a property of the proposition in a given state
of the world, and partial belief is not a voluntary act [5]. In practice, we shall assume that partial
belief in the truth of a proposition mirrors a given state of knowledge about the world.

Let us focus on deductive inference in an information system. Such a system contains
the description of a state of affairs ("the world"). A proposition p will be called "true" if the
system can establish that p holds in the state of affairs under concern. It will be called "false" if
the system can establish that p does not hold. The case when the system is not capable of telling
whether a proposition is true or not is due to incomplete information about the world, what can
be called partial ignorance1. Hence there are three extreme situations regarding the truth status
of a given proposition p: its truth-value t(p) can be true (T), false (F), or unknown (U). The latter
is not a truth-value strictly speaking since it only expresses that the value of t(p) cannot be
determined. Ultimately this truth-value cannot be but T or F if p is a classical proposition,an
assumption which is made in the paper.

Note that if a decision is to be made on the basis of the truth-status of p (e.g., if p is true
then choose d1, if p is false choose d2) then ignorance about p results in uncertainty about how
to act. But we may be far from a lack of information while still being in a state of total
uncertainty concerning the choice of an action. For instance, after 1000 000 throws of a new die,
we are still uncertain about the outcome of the next throw (hence about how to make a decision
whose reward depends on this outcome) but we know much more about the die than before the
first throw (we -almost- know the values of the probabilities of the possible outcomes). Before
the first throw, we had not only uncertainty on the outcome but also on the probability of these
outcomes. After the throws, we are still uncertain about the outcome, but no more on the
probability of these outcomes. The clear distinction between these two states of knowledge
supports the validity of postulate 1, despite the fact that distinct states of knowledge may lead to
the same probability distribution. In the scope of decision-making, it means that distinguishing
between these states of knowledge is irrelevant (one should bet in the same way whether one
knows that the die is fair or if nothing is known about the die). But if the aim is to represent
knowledge for other purposes (for instance, answer queries as in information systems), it might
be useful to adopt a theory which is capable of accounting for such a distinction between
randomness and ignorance.

3 - Numerical Representations of Total Ignorance

In this section, it is suggested that Bayesian probability is partially inadequate to
represent a state of total ignorance. Bayesian probability insists that any epistemic state be
represented by a single probability distribution on a suitable set, and that Bayes rule can be
                                                
1 Here, the situation where one cannot establish the truth or the falsity of p due to limited
computational capabilities is ruled out.
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systematically relied upon to integrate new information. The suggested failure is directly related
to the assumption of a unique probability distribution for representing a state of knowledge.

How to represent ignorance ? There are two issues. The first one is how to express the
contents of a piece of incomplete information. The crudest model is a disjunctive set namely a
collection of mutually exclusive objects, or situations, or worlds, one of which is the actual one.
For instance if we do not know the precise age of the President, we can say that his age x is
between 70 and 80 considering the referential set of ages in years. The set {70, 71, …, 80} is
disjunctive in the sense that it really means 70 OR 71… OR 80 where an exclusive OR is used;
these values are mutually exclusive, since x has a unique value at a given date. Hence incomplete
knowledge in its crudest form can be modeled by a disjunction between possible states of the
world.

Now the second issue is how to describe what is known about the truth-status of a
proposition p, on the basis of incomplete information, by means of some number g(p).
Probabilistic tradition suggests the unit interval as a valuation set and the following conventions:
g(p) = 0 means that p is certainly false and g(p) = 1 means that p is certainly true. Note that g(p)
is not a truth-value but models certainty of truth. Indeed we only have that g(p) =0 implies t(p) =
F and g(p) =1 implies t(p) = T. Now what about "unknown" ? how to model total ignorance ?
Consider a finite set P of propositions that form a Boolean algebra, built from the language used
in the information system. As usually done in logic, we identify tautologies to T and
contradictory propositions to F, such that for any truth-assignment function t, t(T) = T and t(F)
= F. In a given state of knowledge the set P can be partitioned in three subsets T = {p, t(p) = T},
F = {p, t(p) = F}, U gathering the other propositions and being called the uncertainty set. They
are respectively the sets of true, false and unknown propositions. A state of knowledge will be
called total ignorance if and only if ∀ p ∉ {T, F}, p ∈ U. The certainty function gø that models
this state of knowledge is called a total ignorance function. By convention, gø should attach the
same number α to all propositions p in U so as not to discriminate among propositions in U.
Let Ω be the (finite) set of possible worlds one of which is the actual world. Any proposition p
can be mapped to the subset M(p) of Ω of worlds in which p is true so that M(T) = Ω, M(F) =
Ø, and P is equated to the set of events 2Ω. Events will be denoted A, B, C,... while propositions
are denoted p, q, r...; a proposition p is thus interpreted as a statement of the form "x ∈  A",
where x is a parameter whose value is ill-known. Negation of p is denoted ¬p and, if A= M(p),
M(¬p) is the complement of A, denoted Ac. Total ignorance means T = {T} and corresponds to
viewing Ω as the disjunctive set of possible states of affairs or worlds. By convention the
following postulate for the representation of total ignorance looks natural insofar as it expresses
that all propositions in U are equally uncertain:

Postulate 2: The total ignorance function gø should be such that
∃ α ≠ 0,1, ∀p ≠ F, Τ, gø(p) = α .

The following consequence of postulate 2 is noticeable:
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Corollary: The total ignorance function gø cannot be represented by a probability measure, as
soon as |Ω| > 2.

Proof: Assume |Ω| > 2. ∀ ω ∈ Ω, ∃ A, B, Ø ⊂  A ⊂  B ⊂  Ω such that B – A = {ω}. The
existence of distinct non empty proper subsets such as A and B is ensured by the assumption
that |Ω| > 2. Assume there is a probability measure P that is a total ignorance function gø. Then
P({ω}) = P(B) – P(A) = α – α = 0. Hence ∀ ω ∈ Ω, P({ω}) = 0. Thus P is not a probability
measure. Q.E.D.

Actually ignorance can take a much more drastic form, namely one can ignore what are the
possible states of the world, i.e., Ω may fail to be exhaustive. Knowledge is expressed by means
of a language in which propositions p can be uttered. The language determines the states of the
world that are discernible and those which are not. The set of possible worlds where p is true or
false need not be precisely known when the truth-status of p is unknown. And Postulate 2
claims that, if nothing is known about the age of somebody, the way to express it should not
depend upon whether the considered age scale is [0,100], [0,150] or [0,200] nor on the choice of
an epistemically meaningful partition of the scale. Representing ignorance about die throws
must include the fact that the number of facets of the die can be unknown as well. Clearly this is
hardly the case with a probabilistic representation. In probability theory, one always starts with a
set Ω on which an algebra is built, algebra endowed which a probability measure. Probability
theory does not consider a permanently changing algebra.

In Bayesian theory, uninformed priors are usually represented by uniform probability
distributions. For instance, in the die case P({i}) = 1/6 for i ∈ {1, 2, …, 6}. Clearly with this
representation P({1}) < P({2, 3, 4, 5, 6}) hence it is not genuine ignorance, but a default fair die
assumption. However uniform probabilities look natural as representing total uncertainty about
how to act with a (6-facet) die in a betting situation. When making a decision we must know
what is the set of possible decisions and what is the set of possible situations. As pointed out by
Cohen [5] this is a matter of acceptance, not a requirement that the decision-maker be
omniscient. The uniform probability represents the fact that we are not ready, due to ignorance,
to put more money on one outcome than on another one, given that the bet is on guessing which
facet will be revealed by the throw. Clearly, if the betting situation is described in terms of two
alternatives {win, lose} driven by an unknown device producing numbers between 1 and 6, such
that you win if the outcome is 1, and loose otherwise, the uninformed prior is P(win) = P(lose) =
1/2. If the decision-maker does not know that this unknown device is a fair die, he has implicitly
assumed that P({1}) = P({2, 3, 4, 5, 6}) = 1/2. In another situation, you might hear that the
procedure for getting the numbers is the throw of an octaedron, with the following decision rule
for the output: outcome i is reported if the obtained facet is i < 6, and output 6 is produced if the
obtained facet is 6, 7, 8. The uninformed prior should then be P({i}) = 1/8 if i < 6 and P({6})
=3/8. The uninformed prior P({1}) = 1/2, P{{2, 3, 4, 5, 6}) = 1/2 is neither consistent with the
uninformed prior where it is known that a regular die is used, nor with the case where it is
known that the octaedron is used with the above output. This inconsistency makes no difficulty
with the betting problems since in a given betting problem the situation is clearly defined.
However this inconsistency is not permitted in a knowledge representation problem where
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several partitions of the world correspond to different points of view that must coexist in an
information system. The deduction of the truth of a proposition and the belief allocated to it
should not depend on the way worlds are defined. The representation of total ignorance should
not depend on the existence of the die or the octaedron, and should leave room for these
possibilities as they become known. Bayesian probability was never tailored for taking into
account this situation. It can cope with the canceling of possibilities (through renormalization of
the probability distribution function) but it has not been made for the case when a new
possibility emerges (e.g., suddenly the die breaks), or when the granularity of the representation
changes (what was thought as a single outcome is made of several distinct mutually exclusive
situations).

4 - Various Models of Partial Ignorance

In this section several non-Bayesian approaches to uncertainty are reviewed so as to
assess their capability at representing partial ignorance.

4.1. Two numbers are needed for the quantification of partial ignorance

The previous section has modeled partial ignorance in a very crude way by attaching to
any proposition p representing a subset M(p) ⊆ Ω of possible worlds a tag mentioning "true"
(T), "false" (F) or "unknown" (U), and defined the corresponding sets T, F, U of propositions
that partition P . It is easy to check that if p ∈  T  then ¬p ∉  T , otherwise we face an
inconsistency; more specifically t(p) = T ⇔  t(¬p) = F and p ∈ U  ⇔
¬p ∈  U . Now T can be viewed as the set of certainly true propositions. Similarly F =
{p | t(p) = F} = {¬p | p ∈ T } can be viewed as the set of certainly false propositions. The set T
∪ U contains the propositions which are either certainly true or unknown, i.e., the propositions
which are possibly true. Let E ⊆ Ω be the set of worlds where all propositions in T are true, also
called the information set; then partial ignorance is expressed by the disjunction of worlds in E
since the actual world lies in E. Complete knowledge is then when E reduces to a singleton of Ω.
It corresponds to the case where the set U is empty (no uncertainty).

For representing the certainty of propositions in a state of partial ignorance, one might
try to keep the convention based on mapping T to 1, F to 0, and U to some α ∈ [0,1], and use a
single function g, called a partial ignorance function. In order to obtain some nicely behaved
function, one would like it to be compositional with respect to classical logic connectives, that is,
g should ideally behave as a truth assignment function. This means especially that g(p ∨ q), g(p
∧ q) are determined by g(p) and g(q) only, and g(¬p) is determined by g(p) only. This is maybe
too ambitious. Indeed this is not true for probability measures, since while P(¬p) is indeed
determined by P(p) only, P(p ∨ q) is the sum of P(p) and P(q) only if p ∧ q = F. Hence a partial
ignorance function g that satisfies g(p ∨ q) = D(g(p), g(q)) whenever p ∧ q = F, and g(p) =
ν(g(¬p)), might be searched for. Unfortunately, the following result indicates that this quest is
hopeless:
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Proposition: A partial ignorance function g cannot be compositional with respect to
conjunction nor disjunction, but is compositional with respect to negation only. Moreover g is
not decomposable with respect to union, i.e., g(p ∨ q) is not a function of g(p), g(q) even if
p ∧ q = F, whenever the information set E has more than two elements.

Proof: Function ν such that g(p) = ν(g(¬p)) can be defined by: g(p) = 0 ⇔ g(¬p) = 1, and g(p)
= α ⇔ g(¬p) = α, i.e., ν(0) = 1; ν(1) = 0; ν(α) = α; g is compositional for negation. Let p be
such that g(p) = α and some operation I be such that g(p ∧ q) = I(g(p),g(q)), ∀p,q, assuming
that g is compositional for conjunction. Then if q = p with g(p) = α we have I(α,α) = α and if q
= ¬p with g(p) = α we have I(α,α) = g(¬p ∧ p) = 0. Hence I(α,α) = 0. This is a contradiction
since α ≠ 0. The compositionality assumption is thus untenable. A similar reasoning applies to
disjunction. Namely, let q = ¬p, then g(p ∨ ¬p) = 1 even if g(p) = α = g(¬p), while g(p ∨ p) = α,
hence there is no way to find a function D such that g(p ∨ q) = D(g(p),g(q)). The last statement
of the proposition is obtained as follows: let r such that M(r) = E, so that g(r) = 1. There exists
noncontradictory propositions p1, p2, p3, such that p1 ∧ p2 = F, p1 ∧ p3 = F, p1 ∨ p2 = r,
M(p3) ⊂ M(p2), since | E | > 2. Clearly g(p1) = g(p2) = g(p3) = α  = g(p1 ∨ p3) and the
function D such that g(p ∨ q) = D(g(p),g(q)) if p ∧ q = F should again satisfy g(p1 ∨ p2) =
D(α,α) = 1 and g(p1 ∨ p3) = D(α,α) = α < 1. And this is impossible.

Q.E.D.

A consequence of the lack of compositionality and even decomposability of function g is that it
will be very cumbersome to use. Especially the strength of probability theory is that a
probability assignment to elements of Ω is enough to represent a probability measure on 2Ω.
The above result states that this is not possible for partial ignorance functions that attach a single
number to each proposition.

For the sake of numerically representing partial ignorance in a more efficient way one
might be tempted to use one numerical scale for certainty of truth (testing whether p ∈ T or not)
and another one for possibility of truth (testing whether p ∈ T∪U or not).The idea is that since
we have three distinct alternatives, we need two bits to encode them. Let us consider the
following convention, involving a function SN describing the amount of necessary support and a
function SΠ describing potential support, both mapping P = 2Ω to the set {0,1} and defined by

SN(p) = 1 if p ∈ T and 0 otherwise
SΠ(p) = 1 if p ∈ T∪U and 0 otherwise1.

SN(p) = 1 means that p is fully supported by the available information, i.e., p is necessarily or
certainly true. SΠ(p) = 1 only means that p might prove to become true if further information is

                                                
1 By convention, the notation SN and SΠ is used for the binary concepts of necessary and
potential support as well as their generalization. So SN (resp.: SΠ) will denote necessity
(possibility) in modal logic, necessity (resp.: possibility) measures, lower (resp.: upper)
probabilities functions, belief (resp.: plausibility) functions... depending on the context. We
keep the same notation in order to stress the coherence between the concepts underlying the
particular measures.
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obtained (but it might turn out to be false as well). SN(p) and SΠ(p) are special cases of degrees
of necessity and possibility respectively and denoted N and Π in possibility theory [12]. It is
easy to check that SN(p) = 1 ⇒ SΠ(p) = 1, and that p ∈ U if and only if SN(p) = 0 and SΠ(p)
= 1. Hence the truth-status about p is expressed by the pair (SN(p),SΠ(p)); (1,1) represents
(certainty of) truth, (0,0) (certainty of) falsity and (0,1) ignorance. Clearly these conventions do
not depend on the number of elements in Ω.

We can carry the compositionality of truth assignments over to the pair (SN,SΠ) as a
whole in the presence of incomplete information. Indeed it is easy to check that:

SN(p ∧ q) = min(SN(p),SN(q)) ; SΠ(p ∨ q) = max(SΠ(p),SΠ(q)) ; SN(p) = 1 – SΠ(¬p). (1)

Note that SN is not compositional for the disjunction nor is SΠ  compositional for the
conjunction. The disjunctive encoding of the state of incomplete knowledge by means of the set
E = {ω | p is true in ω, ∀ p ∈ T} is sufficient to derive both SΠ and SN functions since:

SΠ(p) = 1 ⇔ M(p) ∩ E ≠ Ø
SN(p) = 1 ⇔ E ⊆ M(p).

where M(p) is the set of worlds of Ω in which p is true. The membership function of the
disjunctive set E is called a possibility distribution. The above encoding of partial ignorance is in
agreement with Zadeh's possibility theory ([67], [12]). It is easy to show that SN = SΠ if and
only if E reduces to a singleton of Ω and that in this situation (where the uncertainty set is
empty), SN coincides with a truth assignment. This is the state of complete knowledge.

Note that one way of recovering a partial ignorance function g is to let g(p) = (SΠ(p) +
SN(p)/ 2) (then α = 1/2). The certainty factor of MYCIN [3] is also a partial ignorance function
on [–1,+1] such that F maps to –1, T to 1, and U to 0. Such a certainty factor is obtained if we
let CF(p) = SΠ(p) – SΠ(¬p) (see [13]).

4.2 Ordinal representations of partial ignorance.

The above model of partial ignorance, based on (SN,SΠ) functions is not very expressive
compared to probability theory since the ordering of propositions is crude. The model can be
enriched first by distinguishing propositions which are more or less certain and more or less
possible. This can be done by introducing intermediary levels between 0 and 1, the extreme case
being to turn {0,1} into [0,1]. In that case we recover, insofar as we keep equations (1), Zadeh's
possibility theory [67]. The membership function π of the set E becomes the one of a fuzzy set,
albeit a disjunctive one since π(ω) expresses to what extent it is possible that ω be the actual
world, π(ω) = 0 corresponding to complete impossibility.

At that point the model is not genuinely numerical since (1) only requires a linearly
ordered scale {π0 < π1 <… < πn} as the range of SΠ (with π0 = 0, πn = 1) and another one {η0,
…, ηn} as the range of SN, the duality between possibility and certainty being expressed by
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SN(p) = ηi ⇔ SΠ(¬p) = ν(SN(p)) = πn–i. [0,1] is thus used as an ordinal scale and function ν
is an involutive order-reversing map. Possibility theory is the basic tool for uncertainty modeling
based on ordinal preference on what is possible and what is not. Starting with a set E ⊆  Ω
containing the actual world, and a partitioning E1 ∪… ∪ En of E such that ∀ω,ω'∈Ω, ω ∈ Ei,
ω ' ∈ Ej, i > j means that ω is considered more possible than ω', we can build a possibility
distribution π on Ω such that π(ω) = πi if ω ∈ Ei, π(ω) = π0 if ω ∉ E and build possibility and
necessity functions SΠ  and SN describing our knowledge about any proposition p as
follows[12]:

SΠ(p) = max{π(ω), ω ∈ M(p)}; SN(p) = min {ν(π(ω)), ω ∉ M(p)}. (2)

for instance we may refine our knowledge about the age of the President by rank-ordering the
set {70, 71, …, 80} in terms of values that are unsurprizing and values that are more surprizing
(using the terminology of Shackle [47]), thus determining a possibility distribution π. Note that
this ordinal setting is not only the one of possibility theory but also belongs to a class of
nonmonotonic logics that are called "preferential" by Shoham [49] and "rational" by Lehmann
and Magidor [41], who carefully study the notion of "ranked models". It is also closely related
to so-called well ordered partitions considered by Spohn [58] and to the theory of potential
surprize of Shackle[47].

4.3 Belief functions

A higher level of sophistication is obtained when the propositions are quantitatively
ordered by means of numerical (SN, SΠ) pairs, for which the concepts of addition and
multiplication are meaningful, but only the duality property SN(p) = 1 – SΠ(¬p) holds in
equations (1). For instance, we may consider a probabilistic structure on top of a disjunctive
representation of partial ignorance, like in the so-called Dempster-Shafer theory [9]. Suppose
we know that the available knowledge can be described as a disjunctive set E which is itself
unknown. E can be any one of the family {E1, …, Ek} of non-empty subsets of Ω. Let m(Ei) =
mi be the probability that indeed our partial ignorance is represented by Ei, so that ∑i=1,k mi =
1. We leave it open whether m(Ei) is a frequency-driven probability, a subjective probability or
whatever. We just assume that a probability distribution on {E1, …, Ek} exists. Computation of
functions of potential and necessary support can then be based on expectations (Zadeh [68]),
namely:

SΠ(p) = Exp(SΠE(p)) = ∑i=1,k mi.SΠi(p) (3)
SN(p) = Exp(SNE(p)) = ∑i=1,k mi.SNi(p) (4)

where SΠE and SNE are the random possibility and necessity functions that depend on E and
SΠi, SNi are the {0,1}-valued possibility and certainty functions based on Ei. It is easy to verify
that SΠ and SN are exactly plausibility and belief functions [48] respectively, and that they obey
the duality axiom SN(p) = 1 – SΠ(¬p). SN is usually denoted Bel and SP is denoted Pl by
Shafer and his followers. These set-functions satisfy all the properties in (1) if and only if the
family {E1, …, Ek} of focal elements is nested (consonance case). Moreover if we rule out
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partial ignorance, i.e., the sets E1, …, Ek never contain more than one possible world, the
probability structure is located right on Ω and SN(p) = SΠ(p) = P(p), ∀p. Potential and
necessary support evaluations collapse to probability functions in that case. The mathematical
property stating that the sets E1, …, Ek never contain more than one possible world in a
probabilistic model, gives a precise meaning to the claim that probability measures do not
account for partial ignorance, since each Ei then expresses complete knowledge.

Other interpretations of the Dempster-Shafer model exist. For instance, the transferable
belief model [57] corresponds to assuming that degrees of certainty SN are quantified right
away by Shafer's belief functions [48]. Bayesians claim that beliefs should be additive, their
arguments being essentially based on rational decision-making behavior. The transferable belief
model exists without reference to any decision and therefore does not postulate the additivity
axiom. Owing to its flexibility, it copes easily with partial ignorance. However it does not rule
out the case of purely probabilistic frequency-based beliefs.

4.4 Upper and lower probabilities and beyond.

It is interesting to consider the converse situation where partial ignorance is put on top of
a probability structure, namely a partially unknown probability structure. Let P be a probability
measure that is partially unknown, i.e., P is one of the probability measures in a set P  of
mutually exclusive ones. Hence we have an all-or-nothing possibility distribution π on P such
that π(P) = 1 if P ∈ P and 0 if P ∉ P. Now P(A) is usually ill-known and can be any number in
{P'(A), P' ∈  P }, and we can define upper and lower probabilities SΠ (A) =
sup {P'(A), P ∈ P }, SN(A) = inf {P'(A), P ∈ P }, which are set functions more general than
plausibility and belief functions [37].

We may also introduce some preferential ordering, encoded by a fuzzy set membership
function, each time we have incomplete information expressed by means of a subset. Thus, we
can extend Dempster-Shafer theory to a probability distribution on disjunctive fuzzy sets (see
Yager [65]; Yen [66]). Another worth mentioning extension is when we have some preference
ordering among the probability measures in the set p introduced above. A fuzzy set `p can
naturally be induced by considering the family of probability measures obeying some elastic
constraints such that, "the more or less possible values of P(A) are represented by the fuzzy
subset M of the real line", i.e., µM(r) is the possibility that P(A) = r. This captures the idea of ill-
known probability values (Zadeh [69]).

A still more elaborate uncertainty model can be obtained by considering the existence of
a probability measure on p, therefore a probability of probability, what leads to higher order
probabilities. Such a meta-probability theory suffers nevertheless from some weaknesses when
P is a family of objective probability functions.1 The subjective probability P(A) of an event A is
usually defined as the price an agent is willing to pay to play a game where he/she receives $1
from the banker if the event A occurs and nothing if the event A does not occur. Furthermore the

                                                
1 De Finetti solved that problem by claiming that objective probabilities do not exist.
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bet is fair if the agent is indifferent between being the player or the banker once the price has
been fixed. Such a procedure leads to the construction of probabilities that satisfy
Kolmogoroff's axioms for probability measures and provides a nice semantics to the concept of
subjective probability. This definition is based on the decidability of the underlying bet. When it
comes to meta-subjective-probabilities over objective probabilities, such decidability cannot be
achieved if the objective probability is defined as the limit of a proportion. Thus the semantics
based on fair bets cannot be used to define meta-probabilities, a concept that therefore becomes
'undefined'. Other authors suggest that meta-probabilities are nothing but conditional
probabilities (see [38] for a detailed discussion), so that in some sense the higher level
disappears.

Assumption Type of construction Theory

incomplete information on the
set of situations

Disjunctive sets of situations

error intervals
propositional calculus

ordinal knowledge on the set
of situations

disjunctive sets of situations
equipped with a complete

preorder

possibility theory

preferential logics

numerical betting rates or
frequencies on the set of

situations

a probability distribution over
the set of situations probability theory

probabilities on a set
which is related

with the set of situations

a probability distribution on
disjunctive sets Dempster-Shafer theory

numerical non-additive
degrees of belief on the set of

situations
a belief function transferable belief model

imprecisely known probability
distribution on the set of

situations
convex set of probabilities upper and lower probabilities

numerical additive degrees of
belief on the set of possible

probabilities

probability over a set of
probabilities higher order probabilities

Table 1. Uncertainty and partial ignorance models.

Metaprobability might also be suggested to quantify introspective probabilities about
one’s own subjective probabilities. It would quantify our doubts about our own beliefs.The
existence of introspective metaprobabilities about one’s own probabilities can be questionned. It
surely contradicts the idea that an agent has always a belief about every event. Classical modal
logics for beliefs (the KD45 model; see Chellas[4]) reject such metabeliefs. In these theories,
for instance Hintikka [28]'s epistemic logic, the functions SN and SP are represented by modal
symbols for necessity and possibility.
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The above review, also pictured in Table 1, covers most of the non-additive probability
models available to-date. Especially, second order probabilities appear to formally contrast with
these models since they are probability structures on top of probability structures (see Table 1).

5 Decision Under Partial Ignorance

How to make a decision in the face of partial ignorance ? If we follow the Bayesian
approach, and we start from a set of possible worlds Ω, we must

A) Partition Ω into a family of subsets θ1, …, θn that forms a frame of discernment for the
decision problem (the betting frame), i.e., one accepts to bet on some element of Θ  =
{θ1, …, θn}.

B) Define a probability function P on Θ  that agrees with our representation of partial
ignorance.

C) Compute the expected utility of any act a depending on Θ as U(a) = ∑P(θi)ui(a) where
ui(a) is the utility of the act a when the actual world is in θi.

This procedure corresponds to the expected utility theory for decision-making and is applicable
whenever the frame, the probability P and the utility function ui(a) are given. Alternative
schemes that refrain from selecting a probability function P but use the Choquet integral applied
to the lower probability function SN (Schmeidler [46]) or generalize the De Finetti consistency
argument [7] to belief functions (e.g., Jaffray [30]) will not be discussed here insofar as they
violate Savage postulates of decision. The above selection procedure of a betting probability that
agrees with a given state of partial ignorance does not apply to qualitative, ordinal
representations such as possibility theory where only a plausibility ordering of worlds is
available. Nevertheless, Boutilier [2] recently suggested to put probabilities on top of
possibilities. Namely given the available knowledge, select the most plausible worlds according
to our (non-probabilistic) beliefs, and build a betting probability on this set.

Suppose now that we do not know exactly the values of P(θi), but that we accept to
describe our knowledge by a second order probability on Θ. Let PP denotes this second order
probability. It is well-known (e.g.,[38]) that the resulting utility function is:

U(a) = 
∑

i
  E(P(θi)) ui(a) (5)

where E(P(θi)) is the expected probability of P(θi) with respect to the second order probability
PP. This result is well accepted among Bayesians.

 Now assume we start with partial ignorance, and we have chosen the betting frame Θ. In
the most general case we have partial ignorance about the probability distribution. We only
know that the actual probability measure P belongs to a set P of possible probabilities. The
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requirement that the chosen probability measure agrees with our representation of ignorance
means that we should select P in P so that P ≤ SΠ, which is here equal to the upper probability.
This is a version of Zadeh's consistency principle that claims that what is probable must be
possible (e.g., [21]).

Starting with a set P and no special knowledge on which elements of P corresponds to
the actual probability measure, the Bayesian approach usually leads to considering a uniform
second order probability distribution over P and to applying the second order utility formula
(5). In other words, P is represented by its center of gravity P.

Note that the maximum entropy method for selecting P in P is not suitable here and
would fail to select P. For instance consider a coin problem where {head, tail} is the referential
set and assume that it is known that SN(head) = 0.2, SN(tail) = 0.4. It indicates that "tail" is
rather preferred to "head" as the most plausible outcome. The set of probabilities corresponding
to this information can be represented by x = P(head) ∈  [0.2,0.6] and 1 – x = P(tail) ∈
[0.4,0.8]. The probability measure with maximal entropy in this set is the uniform probability on
{head, tail}, which throws away the information on the preference for tail. However the center of
gravity P (head) = 0.4, P (tail) = 0.6 preserves this information.

In the case of belief functions, we have a probability distribution over pieces of
incomplete evidence Ei . They induce upper and lower probabilities on Θ . Smets [51] has
advocated and justified by some rationality requirements the use of a "pignistic transformation",
a transformation that had already been intuitively suggested by Williams [63], and Dubois and
Prade [11]. Namely if the belief function is represented by {(Ej,mj), j = 1,k} where the Ej’s are
the focal elements and the mj’s are the basic belief masses (basic probability masses), the
selected probability P', called the pignistic probability, is such that:

∀i,  P' (θi) = ∑θi∈Fj 
mj
|Fj|

.

If SΠ is the plausibility (expected potential support) function induced by {(Ej,mj), j = 1,k} and
defining P = {P: P ≤ SΠ} then it can be proved (see, e.g., [36]; [21]) that the pignistic
probability coincides with the center of gravity of P. Note that the pignistic transformation, even
though justified by rationality requirements outside any probabilistic context, comes down to
being mathematically equivalent to changing each piece of partial ignorance Ei into a uniform
probability Pi on Ei representing a Bayesian uninformed prior, and P' is then the convex mixture
of the Pi's with weights mi. Hence the pignistic transformation approach to decision with belief
functions is consistent with the higher-order probability approach, viewing the weights mi as
meta-probabilities. It is thus a generalized indifference Laplacean principle. Note that the same
approach still applies when the belief function is consonant, and satisfies the decomposability
property (1). Hence numerical versions of possibility theory are liable of the same treatment of
the decision problem, although the axiomatic justification of the pignistic transformation
proposed by Smets and Kennes [57] does not apply to the subclass of consonant belief
functions alone.
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The property P' = P should not be misunderstood when applied to the transferable belief
model. In that case, the initial concept is the belief function that quantifies our beliefs over Ω.
When a decision must be made on the betting frame Θ, one computes the pignistic probability P'
and uses it to compute expected utilities. It turns out that SN(A) = Bel(A) ≤ P'(A) ≤ Pl(A) =
SΠ(A) ∀A, subset of  Θ. If one then considers all possible betting frames Θi derived from Ω
and the set of the pignistic probabilities P'i derived on each frame Θi, one has (Wilson [64]):

SN(p) = mini P'i(p) and SΠ(p) = maxi P'i(p) ∀p ∈ P

In the transferable belief model, SN = Bel is not the lower bound of a family of probability
measures on Ω that satisfy some particular constraints (as in Dempster-Shafer theory [9]). SN
directly quantifies the degrees of belief and turns out to be the lower bound of the pignistic
probabilities that can be built on the betting frames related to Ω. The lower bound concept is a
derived property in the transferable belief model, not an essential one as in Dempster-Shafer
theory.

Nonadditive theories of uncertainty are not in total disagreement with probability theory.
Owing to the pignistic transformation, they can even remain coherent with Bayesian decision
theory. It is important to stress that the pignistic probability measure does not represent our state
of partial ignorance; it only results from it. It is the representation of uncertainty needed for
rational decision-making and justified by Savage's axioms. More specifically the use of an
additive measure at the pignistic (betting) level protects the user from a synchronic Dutch Book.
The avoidance of diachronic Dutch Book ([59], [32]) is also obtained with the pignistic
probability generated in the transferable belief model, but the procedure is more tricky than the
one described here, since the information about a relevant forthcoming but yet unknown
experimental result must be included in the model [55]. The above results also indicate that all
numerical representations of partial ignorance are completely compatible with the Bayesian
second order probability approach in the decision problem. This fact may be used as an
argument against non-Bayesian formalisms, as being useless, if it is the case that there is no
uncertainty management problem but decision. But the Bayesian representation of ignorance
leads to results that differ from those obtained by other, less biased representations, for
problems such as belief revision, as seen in the next sections.

Additional remarks
1) The pignistic transformation can also be generalized to the case when the Ej's are disjunctive

fuzzy sets, that is, to belief functions with fuzzy focal elements. Then we turn each numerical
possibility distribution πj = µEj into a probability measure Pj such that pij is the probability of

θi induced by distribution πj, and the pignistic transformation is then generalized to fuzzy focal

elements using

∀i, P'(θi) = ∑θj∈Support(Ej) pij · mj.

2) In the case of fuzzily-known or interval-valued probabilities we can also compute the
possibility distribution restricting the possible values of an expected utility given the fuzzy set of
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possible values of the P(θi)'s and/or of the ui(a)'s [14]. In this case, the acts a cannot be linearly
ordered in general (because we only have interval or fuzzy interval values for the U(a)'s) and we
cannot always decide what is the best act to perform, but it enables the user to see if the partial
ignorance pervading the probability and/or utility values prevents or not from safely isolating a
best act.

6. Focusing versus Revision.

There are two kinds of information that may convey some form of partial ignorance:
factual evidence and generic knowledge. Factual evidence consists of information gathered on a
case at hand, or the description of the actual world in a given situation. This information can be
more or less precise and more or less reliable. Generic knowledge pertains to a class of
situations considered as a whole, but does not refer to a particular case. Sometimes this class of
situations is well defined (it is a population in the sense of statistics) and the generic knowledge
is of a frequentist nature. Sometimes the relevant class of population is much more vaguely
described (as in the famous "birds fly" example), and the generic knowledge describes rules of
plausible inference of the form "if all I know is p then plausibly conclude q". The levels of
confidence expressed by the rules can be numerically modelled via a conditional probability, or
be handled in a purely ordinal setting (as in default reasoning). The difference between generic
knowledge and factual evidence can be illustrated by a diagnosis problem. The generic
knowledge of a clinician consists in his knowledge about the links between the diseases and the
symptoms and the distribution of the diseases in the population (in practice, the likelihoods and
the prior probabilities). The factual evidence consists in the symptoms collected from the patient
under consideration.

Focusing and revison are two ways of using partial information and correspond to
distinct forms of conditioning. Focusing consists in conditioning the generic knowledge by the
factual evidence, i.e., in the example, changing the reference class in order to focus on those
cases that share the same symptoms as those of the patient. In probability theory, focusing is
achieved by applying the Bayes rule of conditioning. Revision consists in either modifying the
generic knowledge by enforcing another piece of generic knowledge (G-revision, in the
following), or the factual evidence by enforcing another piece of factual evidence (F-revision).
G-revision consists in revising the clinician knowledge about the relation on the disease-
symptom space by learning new medical knowledge. F-revision consists in conditioning the
clinician’s beliefs about which symptoms prevail for the patient by learning new information
about the symptoms. The difference between focusing and revision is most clear in settings
where generic knowledge is represented and processed as distinct from factual evidence. Such a
distinction is not relevant in propositional logic for instance, since every piece of information
takes the form of a propositional sentence.

In the setting of Bayesian probability the distinction is conceptually meaningful but
focusing and revising are both expressed by the same conditioning rule, that is Bayes rule.
Hence some disputes among probabilists as to the meaning of conditioning. The most widely
found view [7] is that Bayes rule operates a change of reference class, namely going from a
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prior to a posterior probability is not a revision process. Posterior probabilities are precalculated
and the input information just prompts the selection of a particular posterior. With this view, the
prior probability together with the likelihoods determine a unique joint probability over a space
of interest, construed as a body of generic knowledge (the clinician’s experience on a certain
disease), and conditioning means integrating factual evidence so as to configurate the generic
knowledge properly with respect to the reference class of the object on which this factual
evidence bears (test results on the patient). This point of view, which is shared by the expert
system literature, culminates with the advent of Bayesian networks.

 The revision view of conditioning is typically advocated by people working in
probability kinematics. Philosophers like Jeffrey [32], Domotor [10] , Williams [62], and
Gärdenfors [25], understand Bayes rule as a revision process, by which a prior probability P is
changed into a new one P' due to the input information A. This latter view is supported by
maximal cross-entropy arguments whereby it is established that Bayes rule obeys a minimal
change requirement. This school of thought is called probability kinematics: the input
information A is understood as the discovery that P'(A) = 1 while the prior is P(A) < 1, and must
be modified. The possibility that the input information is itself probabilistic is commonly
envisaged in probability kinematics: the input information enforces the probability of some event
to take on a value which differs from the prior value. In this view the input information is at the
same level as the prior information: both are (possibly uncertain) factual evidence or pieces of
generic knowledge. For instance the "observation by candlelight" example proposed by Jeffrey
involves prior factual beliefs about a particular piece of cloth which are changed upon observing
again the cloth with a candle, i.e., a new piece of uncertain factual evidence; this is F-revision.
Revision of generic knowledge would correspond to the following case: a probability
distribution over sizes of adults in a given country is available, and some input information
comes in that nobody in the population is more than 6ft tall.

7 Implementing Revision and Focusing under Partial Ignorance

Suppose we happen to learn that the variable x the actual value of which is partially
ignored in Ω has been observed to belong to some subset A. How do we change our belief
about x ?

7.1 Propositional and ordinal settings

If the state of partial ignorance is described by a disjunctive set E ⊆ Ω containing x then
the resulting state of knowledge is simply x ∈ A ∩ E. Note that this revision does not work if A
∩ E = Ø, which should not happen insofar as the piece of information x ∈ E is absolutely sure.
The language used here, namely the one of propositional logic, is not rich enough to express the
concept of focusing as distinct from revision. Namely the treatment necessary to handle a query
pertaining to x, to a database containing the piece of information x ∈ E, given that x ∈ A, is the
same as when the statement x ∈ A is to be added to the database: one must compute A ∩ E
when not empty. This is what Gardenförs [25] calls "expansion".
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The revision problem in the ordinal approach to possibility theory is treated in [18].
Namely, each subset B of Ω is changed into B ∩ A, and the level of possibility Π(B) is carried
over to B ∩ A if B ∩ A ≠ Ø. Finally, all subsets C ⊆ Ω such that SΠ(C) = max{SΠ(B ∩ A), B
⊆ Ω} are assigned a maximal level of possibility 1. It corresponds to a notion of conditional
possibility SΠ(B | A) defined in [12] as:

SΠ(B | A) = sup {a ∈ [0,1], SΠ(A ∩ B) = min(a, SΠ(A))}.

This type of ordinal conditioning has been also recently studied by Williams [61] under
the name "adjustment". Recalling that in the ordinal case, the partial ignorance function pair (SN,
SΠ) is equivalent to a subset E of possible worlds equipped with a complete ordering relation
expressing plausibility, revision by subset A comes down to restricting (without changing) this
ordering to A ∩ E. Just as in the case of Bayes conditioning the ordering of elements in A ∩ E
is left unchanged. This revision satisfies all of so-called AGM revision postulates[25], and the
SN function coincides with what Gärdenfors calls an "epistemic entrenchment" [16]. Again, as
in the case of propositional logic, the language of possibility theory is not capable, when a single
possibility distribution is used and fixed, of accounting for the notion of focusing as distinct
from revision.

The question of representing generic knowledge in possibility theory can be addressed if
possibility theory is related to conditional theories of default reasoning [35], [41]. A body of
generic knowledge Δ is encoded as a set of default rules p →  q, each being interpreted as a
nonmonotonic inference rule " if p is true then it is normal that q be true". The arrow  → is
nonclassical. Δ is also called a conditional knowledge base. As proved in [1], it is natural to
interpret a default rule p → q, as a constraint on possibility measures of the form SΠ(p ∧ q) >
SΠ(p ∧ ¬q), i.e., such a default rule can be viewed as expressing that p ∧ q is more normal than
p ∧ ¬q. A set of default rules Δ = {pi → qi, i = 1,n} with noncontradictory condition parts can

be viewed as a family of constraints

C(Δ) = {SΠ(pi ∧ qi) > SΠ(pi ∧ ¬qi), i = 1,n}

 restricting a family ∏∏(Δ) = {SΠ, SΠ ∈ C(Δ),SΠ(pi) > 0, i = 1,n} of possibility distributions
over the interpretations of a language. Given a piece of evidence encoded as a propositional
sentence p and the conditional knowledge base Δ, the sentence q is a plausible consequence of
(Δ,p) iff the rule p → q can be deduced from Δ. This inference has a precise meaning in the
framework of possibility theory namely the (classical) inference of the strict inequality
SΠ(p ∧ q) > SΠ(p ∧ ¬q) for all SΠ in ∏∏(Δ) derived from the set of constraints C(Δ) [20]. This
inference also perfectly fits with the so-called "preferential inference system" of Kraus et al.[35]
and with the logic of conditional objects [19, 20]. Another more productive type of inference is
the so-called "rational closure" [41]. It can be captured in the possibilistic setting by selecting a
particular possibility measure SP* in ∏∏(Δ) (the least informed one, see [1]) and checking the
condition SΠ*(p ∧ q) > SΠ*(p ∧ ¬q). These methods of inference of a default rule p → q from
a body of generic knowledge Δ can be viewed as a focusing on the reference class pointed at by
p, for the purpose of plausibly inferring q. On the contrary, a revision process consists in
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modifying the set of rules Δ by adding or deleting rules, of by restricting the set of possible
worlds.

7.2. Numerical settings.

If the state of partial ignorance is represented by a probability distribution P then, in the
scope of revision, P is changed into P(· | A) such that:

P(B | A) = P(B ∩ A)
P(A)      (Bayes rule).

The assumption behind Bayes rule is that the resulting probabilities of subsets of A should not
change in relative value ([59], see also Gärdenfors [25]). The same difficulty as above occurs if
A is such that P(A) = 0. This case is usually ruled out by assumption. Bayesians often object to
interpreting conditioning as the result of a revision of P by the new information
P'(A) = 1 into P' = P(· | A). They rather interpret the probability distribution as describing
generic knowledge and P(B | A) as the result of changing the reference class of P from Ω to A, a
process that we have called "focusing" [17], in which we compute what can be deduced from P
for elements in A. Furthermore the Bayesian justification of probabilistic conditioning depends
on a temporal coherence principle that is arguable ([59], [60], pp.546-547; [55]).

We now consider the case of belief functions and upper and lower probabilities. It can
be pointed out that while revision and focusing do coincide in probability theory, they no longer
coincide in more general settings [17].

Revision in belief function theory is defined by Dempster rule of conditioning that
combines the conjunctive revision mode of the crude partial ignorance model, with Bayes rule
normalization underlying a stability of the degrees of uncertainty in relative value. Indeed
Dempster rule of conditioning can be described as follows:

• Given the new piece of information A, turn each focal element Ei into Ei ∩ A, and attach the
mass mi to it, adding the masses mi and mj if Ei ∩ A = Ej ∩ A.

• Renormalize the masses allocated to non-empty subsets Ei ∩ A ≠ Ø as with Bayes rule, so as
to reallocate the masses mi such that Ei ∩ A = Ø proportionally (note that the renormalization
is not required in the transferable belief model in which case the mass given to Ø represents
the incoherence underlying the pieces of evidence that induce the beliefs, see Smets[54].

This is the most classical form of conditioning, but other cases can be described that reflect
other conditioning events ([53], [56], [58]). It is well-known [48] that it comes down to compute
the expected degree of potential support:

SΠ(B | A) = SΠ(A ∩ B)
SΠ(A)
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Interestingly, Dempster's rule of conditioning can also be derived in a pure upper and lower
probability context. If the belief function is viewed as characterizing a set of probabilities P =
{P ≤ SΠ}, then it can be proved that:

SΠ(B | A) = SΠ(A ∩ B)
SΠ(A)

 = sup P(A ∩ B)
P(A) , P ≤ SΠ,  P(A) = SΠ(A)

(6)

This result is due to the fact that the constraint P(A) = SΠ(A) never forbids sup{P(A ∩ B),
P ≤ SΠ, P(A) = SΠ(A)} to be equal to SΠ(A ∩ B), i.e., we can always have P(A) = SΠ(A) and
P(A ∩ B) = SΠ(A ∩ B) for the same probability measure P, if SΠ is a plausibility function.
Equation (6) makes it clear the kind of revision at work with Dempster rule in the upper and
lower probabilities context: the constraint P(A) = SΠ(A) corresponds to the selection of a
maximum likelihood probability, which is very usual in statistics. As a generalization of this
principle, Moral and De Campos [6] have suggested that the magnitude of P(A) reflects the
possibility of accepting the corresponding conditional probability P(· | A) in the updated set of
probabilities.

Gilboa and Schmeidler [27] have given a decision-theoretic interpretation of SΠ(B| A) in
the setting of upper and lower probabilities, i.e., when the set P does not necessarily represent a
belief function. Indeed equation (6) does hold when Π satisfies order-2 subadditivity only, that
is SΠ(A ∪ B) ≤ SΠ(A) +SΠ(B) – SΠ(A ∩ B). The reason is that the property stating that we
can always have P(A) = SΠ(A) and P(B) = SΠ(B) for a subset B of A for the same probability
measure P is characteristic of order-2 subadditivity (see Huber,[29]). However equation (6) does
not hold for upper probabilities deriving from any set of probabilities P.

The alternative conditioning rule, already suggested by Dempster [9], De Campos and
Moral [6], Fagin and Halpern [23] and Jaffray [31] and here referred to as focusing, is defined
in the setting of upper and lower probabilities as:

SΠA(B) = sup P(A ∩ B)
P(A) , P ≤ SΠ  = SΠ(A ∩ B)

SΠ(A ∩ B) + SN(A ∩ B� ) (7)

The idea of focusing is to compute the probability of B in the state when A is supposed to be
true without making any assumption about how the set of probabilities should be revised if A
were actually true, especially without considering any probability measure in the set {P ≤ SΠ}
as impossible except those such that P(A) = 0. It leads to performing a sensitivity analysis on
Bayes rule, when the probability function ranges over the set {P ≤ SΠ}. Interestingly, if SΠ is a
plausibility function (resp.: a possibility measure) then SΠA is still a plausibility function (resp.:
a possibility measure). Note that while Dempster rule of conditioning (6) can easily be iterated,
this is not so with the focusing rule, because the set {P(.|A), P ≤ SΠ} is generally a proper
subset of the set {P, P ≤ SΠΑ}induced by the upper probability bounds obtained via focusing
(see Jaffray [31]) even SΠ is a plausibility measure. But iterating the focusing operation by
"conditioning again" SΠΑ on a new event C makes no sense. What must be done is to start
from the original function SΠ and focus on the new reference class A ∩ C.
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SΠA is generally much less informative than SΠ(· | A) and even sometimes less
informative than SΠ itself. For instance if A ∩ Ei ≠ Ø, and Ei ⊄ A ∀i, then SΠA(B) = 1 and
SΠA(Bc) = 1, ∀ B ≠ A; B ⊆ A, i.e., we get a total ignorance function on the referential set A.
This is surprising in a learning process where A is a new piece of information and revision
should improve our knowledge. The reason is that focusing is not made for revision and
achieves no learning. To make it clear, suppose that the set of probabilities P represents
knowledge stored in a database. Then SΠA(B) is part of the response of a query asking for the
probability of being in B for an individual in A (focusing rule). The response should give
SNA(B) = 1 - SΠA(Bc) as well. On the other hand SΠ(B | A) is the result of modifying the
database by enforcing P(A) = 1 (revision).

This distinction is in good agreement with the one arising in the ordinal (and logical)
setting in the previous section. Instead of a set of default rules Δ = {pi → qi, i = 1,n}, consider a
set p(Δ) of probabilities induced by conditional probability bounds Δ = {P(Bi | Ai) ≥ ai, i =
1,n}, where Bi (resp.: Ai) is the set of models of qi (resp.: pi) . Then focusing on a reference
class A gathering the models of the proposition P leads to compute bounds of P(B | A) induced
by p(Δ) for some B of interest. Let B be the set of models of q. If the coefficients ai are
infinitesimally close to 1, that is, of the form 1- ε, finding that P(B | A) ≥1- ε in  p(Δ) is strictly
equivalent to inferring the rule p → q from Δ in the possibilistic setting (or equivalently, in the
preferential system of Kraus et al. [35]). See details in Lehmann and Magidor [41]. This is not
surprizing because the rule p → q can be viewed as a conditional event B | A, in the sense of De
Finetti [7], such that P(B | A) is the probability of p → q , and the logic of conditional events
[19] is a model of the preferential system of Kraus et al.[35] .

Focusing can be justified in terms of belief functions only, namely SΠA(B), as obtained
in (7), can be viewed as the upper limit of a family of belief functions obtained by transferring
for all focal elements such that Ej ∩ A ≠ Ø, Ej ∩ Ac ≠ Ø only one part of the mass mj to the set
Ej ∩ A (see [6]). Each possible partial mass transfer from each focal element Ej to Ej ∩ A
determines a possible way of changing the belief function into another one. The focusing
process refrains from selecting among these potentially resulting belief functions and rather
considers their lower envelope .

However the focusing rule, understood as conditioning generic knowledge by factual
evidence, is not part of the belief function theory as introduced by Shafer [48] in his book and
further developed by Smets ([50], [51]), and Smets and Kennes [59]. If we consider belief
functions as such, it must be remembered that Shafer [48] presents it as a theory of evidence, as
does Smets in the transferable belief model. All uncertain pieces of information are factual, deal
with a particular situation. Generic knowledge valid for a class of situations is never envisaged.
In such a state of affairs, Dempster rule of conditioning is justified as a F-revision rule that
integrates a new piece of evidence into an already existing body thereof. Dempster rule of
combination is essentially the extension of Dempster rule of conditioning to uncertain pieces of
new evidence, considered on equal grounds with respect to former evidence and assumed to be
distinct of it.
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On the contrary Dempster's view of belief functions as he originally produced it
corresponds to a probability structure on top of partial ignorance, that produces a particular
family of upper and lower probabilities. Dempster-like belief functions can then be viewed as
modelling generic knowledge with higher order uncertainty, and the focusing rule really makes
sense in order to assess the impact of new evidence on plausible conclusions to be derived on a
case at hand. But the very rule Dempster laid bare in his paper [9] is then not warranted, since it
is a F-revision rule.

It is somewhat unexpected that, while a belief function is more general that a probability
function, and Dempster rule of conditioning mathematically subsumes the Bayesian
conditioning, Bayesian probability and belief functions (after Shafer's book [48] and the TBM
model of Smets [50, 57]) seem to apply to rather different fields of investigation: Bayesian
probability is tailored to focusing generic knowledge on proper reference classes described by
pieces of factual evidence; belief function theory is construed as a tool for pooling pieces of
uncertain evidence, and captures the notion of F-revision. On the contrary, Bayes rule of
conditioning appears debatable in the scope of F-revision, and belief function theory proper (i.e.
outside the framework of upper and lower probabilities) has never proposed anything to address
the representation of generic knowledge about a population. This state of facts has been the
cause of many a misunderstanding between Bayesians and advocates of belief functions.

On the contrary the setting of upper and lower probability generalizes the Bayesian
theory to higher order uncertainty of the disjunctive type. Then, focusing and revision
correspond to different forms of conditioning. If a set P of probability distributions encodes
generic knowledge involving partial ignorance, accounting for a piece of factual evidence A leads
to compute the focusing rule (7) and obtain for some conclusion B of interest the probability
bounds SΠA(B) and SNA(B) = 1 – SΠA(Bc). This is quite different if a G-revision must be
performed by enforcing the constraint P(A) = 1 in p , that is, add a new piece of generic
knowledge (it leads to the conditioning rule of equation (6)).

7.3 Example
In order to tell focusing from revision let us consider a case where an assumption h is to

be confirmed on the basis of an observation e. If we know the a priori probability P(h) and the
conditional probabilities P(e | h), P(e | ¬h), the computation of the posterior probability comes
down to the well-known formula:

P(h | e) = P(e | h) ·  P(h)
P(e | h) ·  P(h) + P(e | ¬ h) ·  P(¬ h).

At this point, the computation has an ambiguous meaning: what does the data set {P(h), P(e | h),
P(e | ¬h)} really encode? It may express what we know about the presence of a disease h in a
population, and the probability of observing symptom e when h is present or absent.
Observation e is made on an individual, supposed to be a typical element of class e. P(h | e) is
the generic probability of h in class e that is applied to the individual. This is focusing. But
nothing prevents us alternatively to imagine a situation where "observing e" means discovering
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that after all P(¬e) = 0 in all cases so that P(h) must be changed accordingly. Then the above
computation is a G-revision.

On the contrary the data set {P(h), P(e | h), P(e | ¬h)}may encode uncertain evidence
about a particular patient one is very familar with, P(h) being the probability that disease h is
present now, P(e) the probability that symtom e will eventually show up. By assumption, this
data set encodes a probability judgment that stems from preliminary investigation on the patient,
not by using base rate disease statistics. Observing e is a new piece of evidence whereby P(e) =
1 is enforced. This is again revision, namely F-revision however.

What to do when no prior probability P(h) is known but only total ignorance is present?
It is well-known that from P(e | h) = α < 1, P(e | ¬h) = α  < 1 and no prior, from sensitivity
analysis on Bayes rule formula, we reach total ignorance, namely

P(h | e) = xα
xα + α(1 – x)

, x ∈ [0, 1]  = [0, 1]. (8)

Here we have used a focusing rule and we find SΠe(h) = 1 and SΠe(¬h) = 1. It makes sense to
use this conditioning rule in the first scenario whereby {P(e | h) = α, P(e | ¬h) = α } is generic
knowledge and e a piece of evidence. It proves that the knowledge of likelihoods tells nothing
about the individuals in class e (except in the degenerated case when one of α or α  is 0) .

In the two other scenarios (revision), we must enforce P(e) = 1. The set {P(e | h) = α,
P(e | ¬h) = α , P(e) = 1} is considered as new data from which we should compute new bounds
for P(h); but here the identity P(e) = αP(h) + α (1 – P(h)) ≤ max(α, α ) < 1 shows that the new
data set is inconsistent. If we apply a maximum likelihood strategy, maximizing P(e) in (8), we
find, if α > α , x = 1 in (8), SΠ(h | e) = 1 and SΠ(¬h | e) = 0. This very strong result is clearly
debatable. The maximum likelihood probability Pe(h) = 1 is not sensible, and it casts doubts on
this strategy in such a situation. It turns out that conditioning on this maximum likelihood set
{P, P(e | h) = α, P(e | ¬h) = α , P(e) maximal} is not equivalent to computing SΠ(h ∧ e)/ SΠ(e)
where SΠ(h ∧ e) and SΠ(e) are upper probabilities computed from {P, P(e | h) = α, P(e | ¬h) =
α }. So, a Dempster-rule-like computation does not apply since equation (6) fails.

More generally the use of Bayes rule (which is a particular case of (6) anyway) is
debatable for the purpose of revision while it is quite reasonable for focusing. Indeed the
postulates for justifying Bayes rule are more difficult to advocate for (F- or G-) revision. Bayes
rule is debatable for the purpose of revision especially when, as it is the case here, the input
information conflicts with the prior information. It might be interesting to investigate the results
that minimal change principles of probability kinematics would produce in the above example.
Indeed the maximum likelihood rule is clearly not a minimal change rule here.

8 Revising Degrees of Belief Versus Revising Betting Probabilities
   

Insofar as we admit the presence of non-purely probabilistic representations of higher
order uncertainty and particularly of partial ignorance, we are faced with a dilemma in a
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decision-making situation where we are provisionally prevented from betting due to the arrival of
some new information. How should we assign betting probabilities so as to account for the new
information? Indeed we are in a setting where beliefs are entertained at the credal level (encoded
in some higher-order uncertainty model) and betting probabilities are derived from degrees of
belief for decision purposes. Two strategies offer themselves: we can revise the old betting
probabilities with Bayes rule applied to the input information or revise the knowledge at the
credal level and recompute new betting probabilities. The problem is that the two strategies do
not lead to the same final betting rates generally.

Let us consider a typical example where this phenomenon occurs. Namely, the mode of
representation of prior knowledge affects the result of the revision process, and especially the
enforced use of uniform betting probabilistic priors lead to debatable results under Bayes rule,
for the purpose of revision. We shall reconsider the "Peter, Paul and Mary saga" [57].

Big Boss has decided that Mr. Jones must be murdered by one of the three people
present in his waiting room and whose names are Peter, Paul and Mary. Big Boss has decided
that the killer on duty will be selected by the throw of a die: if it is an even number, the killer will
be female; if it is an odd number, the killer will be male. You, the judge, know that Mr. Jones has
been murdered and who was in the waiting room. You know about the die throwing, but You do
not know what the outcome was and who was actually selected. You are also ignorant as to
how Big Boss would have decided between Peter and Paul in the case of an odd number being
observed.

Then You learn that if Big Boss had not selected Peter, then Peter would necessarily have
gone to the police station at the time of the killing in order to have a perfect alibi. Peter indeed
went to the police station, so he is not the killer. Note that the alibi evidence makes 'Peter is not
the killer' and 'Peter has a perfect alibi' equivalent. Now the case is summarized by the following
items of information:

Item 1: The killer is only Peter, Paul or Mary (one of them)
Item 2: The facts that the killer is a male or a female are equally probable.
Item 3: Peter produces an alibi
Question: Who is most likely to have been the killer ?

If we model this case in the crudest way by means of propositional logic we get that Item 1 is
the disjunction Peter ∨ Paul ∨ Mary, Item 2 is interpreted as total ignorance and Item 3 to
¬Peter. The F-revision leads to (Peter ∨ Paul ∨ Mary) ∧ ¬Peter = Paul ∨ Mary, i.e., Paul and
Mary with equal possibility. Note that all items of information are considered of the same nature
here: they are pieces of evidence on the case at hand, and are not generic. They do not pertain to
a population.

It can be noticed that the Bayesian analysis based on Item 2 (P(female) = P(male) = 1/2)
implies P(Paul ∨ Peter) = P(Mary) = 1/2. Then we compute the effect of Item 3 as
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P(Mary | ¬Peter) = 
P(¬Peter | Mary) . P(Mary)

 P(¬Peter | Mary) . P(Mary) + P(¬Peter | ¬Mary) . P(¬Mary)  .

One has: P(¬Peter | Mary) = 1
but, P(¬Peter | ¬Mary) = P(Paul | Paul ∨ Peter) is unknown.

Hence using a Bayesian postulate (the Principle of Insufficient Reason, an arguable postulate
but nevertheless quite reasonable in the present case) one can assume that given that the killer is
either Paul or Peter, both are equipossible. Then Paul and Peter are equally probable, i.e., P(Paul
| Paul ∨ Peter) = 1/2. And it is obtained:

P(Mary | ¬ Peter) = 1/2
1/2 + 1/4 = 23

P(Paul | ¬Peter) = 1/3

Hence contrary to the analysis based on propositional logic, a Bayesian policeman discovering
Peter's alibi should be tempted to put Mary in jail, or at least to become suspicious towards her.
In order to make any sense out of this result, a frequentist interpretation will help: assume Peter,
Paul and Mary are prototypes of a group of people say Peter-like and Paul-like, and Mary-like.
What the result says is that, given that killers are as often found to be male as female in the
union of these three groups (because of the die experiment in the saga, but it could also be
obtained by assuming the prior knowledge that there are as many male as female killers), and
given that the proportion of killers in Paul-like group is the same as in Peter-like group, then
Mary-like killers are found twice more often than Paul-like killers. This result is applied to the
particular characters of the saga. But this is focusing, not F-revision since Item 1 and Item 2 are
interpreted as two pieces of generic knowledge, namely that killers are as often found to be male
as female, and that killers in Paul-like group are as numerous as in Peter-like group; this
knowledge is further applied to the particular murder case, considering Item 3 (Peter has an
alibi) as factual evidence indeed. The reference class on which the focusing takes place is Paul
∨ Mary. This is not exactly our original problem which only involves pieces of uncertain
evidence.

The Bayesian result should not be surprising at the mathematical level since using the
so-called Bayesian postulate for ignorance representation we can compute a unique distribution
on the whole space:

P(Paul) = P(Paul | Paul ∨ Peter) · P(Paul ∨ Peter) + P(Paul | Mary) · P(Mary)
= 1/2 · 1/2 = 1/4 = P(Peter) = 1/2 · P(Mary).

In some sense, Bayesian analysis comes down to claim that we know from the start that Mary is
more likely to be the killer than any of the males. This piece of information is much stronger
than what evidence suggests us but derives right away from the generic knowledge about killers
(namely : P(Mary) = P(Paul ∨ Peter); P(Paul | Paul ∨ Peter) = 1/2). However from the available
evidence, the dice experiment does not allow us to conclude that 'Mary is the killer' is more
probable than that 'Paul is the killer'. We only know that the probability that Mary is the killer is
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equal to the probability that the killer is 'Peter or Paul'. And nobody told, in the case at hand, that
Peter, Paul and Mary were typical representatives of distinct populations relevant to the case
(maybe Peter and Paul are typical elements of the same population).

A belief function analysis of the case might consider a stronger interpretation of Item 2
than the one of propositional logic, and admit m(Peter ∨ Paul) = 1/2 = m(Mary). The latter is
viewed as an uncertain piece of evidence pertaining to the Peter Paul and Mary case. But such an
analysis would certainly refrain from splitting forever the weight on Peter and Paul into equal
parts (nor in any other way), as the latter is not at all suggested by the pieces of evidence. Then
Dempster rule of conditioning would simply transfer the mass 1/2 over to Paul, given that Peter
has an alibi. Finally one would get P(Paul) = P(Mary) = 1/2 consistently with the propositional
logic solution. Here we have performed a genuine F-revision of Item 1 and 2 by Item 3, not a
focusing operation.

The present example is typical of the counter-intuitive results one can obtain if Bayesian
uninformed priors are used as substitute to partial ignorance functions before a revision process
takes place, although the results obtained by Bayesians can be interpreted as sensible if an
interpretation is given to the uniform probabilities in terms of generic knowledge (e.g.,
frequentist). Note that if we have to bet on who is the killer before Peter's alibi is known, we
would clearly use P(Mary) = 1/2, P(Paul) = P(Peter) = 1/4 for the bet. But after Peter's alibi is
known using P(Mary) = 2/3 sounds strange. This should be a new bet involving only Paul and
Mary, with equal chance on male and female, i.e., this is another betting problem.

To further advocate our thesis, notice that the story might have started before it was
established that the killer was Peter, Paul or Mary only. Suppose originally, Sue and Deborah
were suspected as well but they produced their alibi quite a long time before Peter. Then, the
Bayesian method would start with

P(Paul) = P(Peter) = 1/4 and P(Mary) = P(Sue) = P(Deborah) = 1/6

(since P(male) = P(female) from Item 2 and using the indifference principle). But then

P(Mary | Mary ∨ Paul) = 
1/6

1/6 + 1/4  = 
2
5  < P(Paul | Mary ∨ Paul) = 

3
5 

Hence the results of Bayesian conditioning depend on where the story starts from. Especially if
it starts with n females and m males then

P(Mary | Mary ∨ Paul) = 
1/n

1/n + 1/m  = 
m

m + n 

i.e., anything between 0 and 1 according to the n and m. Such a conclusion is reasonable in a
frequentist perspective, as the result of a focusing process from a population of m + n persons,
on which a typical piece of generic knowledge is available. It is much less convincing in a
subjectivist belief revision perspective (F-revision), when the end of the story seems to depend
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on which page the reader starts reading the novel. What we claim here is that a sequence of
focusing steps exploiting generic knowledge does not produce the same results as a sequence of
F-revision steps modifying an uncertain body of evidence. Indeed, posterior probabilities
computed from a previous episode usually do not agree with the prior probabilities which would
be given to the same remaining alternative if we ignore this episode. Moreover, although the
distribution we start with in the above example seems to correctly encode Item 2 about the equal
probability of male and female, it leads to results which are intuitively unexpected, like the
following:

P(¬Deborah ∧ ¬Sue | ¬Mary) = P(Paul ∨ Peter | Paul ∨ Peter ∨ Deborah ∨ Sue)

= 
1/4 + 1/4

1/4 + 1/4 + 1/6 + 1/6   = 
3
5 .

Item 2 seems to suggest the value 1/2. Conversely if P(Mary) = 1/6 and P(Paul ∨ Peter|Paul
∨ Peter ∨ Deborah ∨ Sue) = 1/2 are assumed from indifference principles, it would lead to
strange priors on the set of 5 persons.

The above example does not question the value of the Bayesian approach that exploits
generic knowledge in order to explain a particular situation via focusing on the proper reference
class. It just confirms that if all uncertain information on a case is factual, and a F-revision
process must take place, a Bayesian representation of partial ignorance can hardly be defended.
How to represent total ignorance within classical probability theory is in fact an open question
(and maybe an impossible one), often answered by strict Bayesians as being a non-existing
problem. As they claim, total ignorance does not exist, one always has a state of knowledge
quantifiable by a single probability measure on ANY and EVERY space. Total ignorance is a
state where every proposition that is neither a tautology nor a contradiction is believed with the
same strength. It cannot be represented by means of a single probability measure, as shown in
Section 3. Total ignorance is therefore often considered as non-existing, a quite Procustean
attitude. Other theories often cope easily with partial ignorance, usually because they are tailored
for it, like possibility theory, or because of their higher expressive power, like belief functions
that may account for any intermediary state between total ignorance, full probabilistic knowledge
and complete (plain deterministic) knowledge. On the contrary possibility theory covers a more
restricted range of epistemic states between total ignorance and complete (deterministic)
knowledge almost without overlap with Bayesian representations.

9 - Conclusion

The main messages that this paper conveys are as follows:

-) The representation of partial ignorance is not necessarily related to the problem of making
decisions. The Bayesian probability approach is tailored for decision but not necessarily for
other kinds of reasoning (e.g., not always for belief revision).
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-) A single number is not enough to quantify belief as expressing partial ignorance. As a
consequence, frameworks that explicitly encode higher-order uncertainty must be used for that
purpose, such as possibility theory, belief functions or upper and lower probabilities.

-) The extension of conditioning to partial ignorance formalisms reveals that this notion is two-
sided. Conditioning can account for the idea of a shift of reference class (that is named focusing
here), as well as for belief revision. In formalisms involving higher-order uncertainty, these two
tasks are not necessarily implemented in the same way.

Our analysis strongly suggests a distinction between two mental levels where beliefs are
involved [57]: a credal level where beliefs are entertained, combined and revised, and a so-called
pignistic level where beliefs are used in a decision process. Deduction, plausible reasoning and
belief change are processed at that credal level. The important point is that decision is not
explicitly involved in those tasks and that beliefs can be maintained regardless of any
subsequent decision. The absence of any forced link to any underlying decision process
explains why the Bayesian probability setting is not compulsory, and other alternative models
can be advocated.

A good coherence between most theories of partial ignorance (possibility theory, belief
functions, upper lower probabilities) can be observed. All of them insist on the use of two
functions (a certainly-like lower function, a possibility-like upper function) in order to model the
state of belief in a proposition. These theories basically differ by their relative power of
expressiveness which is dictated by their basic interpretive settings (specified by canonical
examples, for instance) or by a modeling assumption, e.g., ordinal levels instead of numerical
ones in the case of possibility theory. Qualitative possibility theory represents belief in a purely
ordinal setting by ranking propositions in terms of their certainty of being true and their
possibility of being true in a separate manner. Possibility theory then comes close to mainstream
approaches in nonmonotonic reasoning.The transferable belief model suggests that beliefs
should be quantified by belief functions, but other alternatives might be considered, such as
probability intervals. The latter approaches differ from Bayesian probability theory because they
are more general. All non-purely probabilistic settings have in common, contrary to the Bayesian
approach, the idea of leaving room for partial ignorance.

Of course beliefs are governing our acts. So when a decision must be made and insofar
as the paradigm of fair bets applies, there must be a transformation between the beliefs held at
the credal level into some additive measure to be used at the so-called pignistic level, i.e., the level
where beliefs induce some probability measures used to compute the expected utilities needed in
order to make rational optimal decisions. At the pignistic level, the probability measure does not
quantify our beliefs but only reflects our propensity to choose among prescribed acts. It is
induced by our beliefs held at the credal level.

The paper has also pointed out that two ways of envisaging conditioning exist, and that
they can only be told apart in frameworks that deal with generic knowledge and factual evidence
separately. This distinction is especially clear in frameworks accounting for higher order
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uncertainty. Most of the debates that took place in the past concerning the relevance of
Dempster rule of conditioning seem to have their origin in the lack of distinction between belief
revision, that involve pieces of information at the same level, and focusing, that consists of
projecting generic knowledge on a particular reference class pointed out by factual evidence.

On the whole, it is claimed here that a proper treatment of knowledge-based systems that
can accommodate partial ignorance requires specific tools for representing uncertainty that
somewhat contradict a significant part of the probabilistic tradition. To enforce each and every
problem involving partial ignorance into the Bayesian jacket sounds much too restrictive, if not
blatantly erroneous.
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