2. CONDITIONALS AND
PROBABILITY

* Representing uncertainty: basic settings
* Conditionals without probability

e Inference with conditionals : a three-
valued logic.

e Bayesian probability: strengths and
limitation



UNCERTAINTY :
representing graded belief.

e AN AGENT IS UNCERTAIN ABOUT A
PROPOSITION IF (S)HE DOES NOT KNOW
I'TS TRUTH VALUE

— Examples
e The probability that the trip is more than one hour long is 0.7.

e [t is quite possible it snows to-morrow.

e The agent has no certainty that Jean comes to the meeting

 HOW TO EVALUATE
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UNCERTAINTY THEORIES

Set-based representations: Reasoning about belief in terms
of possibility and certainty

— Propositional logic: Believing = proving from a belief base.
— Interval analysis : Propagation of incomplete information.

Probability theory: statistical, subjective
Possibility Theory ordinal or numerical:
— Tells plausible states from less plausible ones
— use fuzzy sets of mutually exclusive values

Disjunctive random sets (Dempster-Shafer-Smets):
probability on set-representations

Imprecise Probabilities : the most general setting, with
probability intervals.



SINGULAR vs. GENERIC INFORMATION

e PIECES OF EVIDENCE refer to a particular situation
(measurement data, testimonies) and are singular.

— E.g. results of medical tests on a patient
— Observations about the current state of facts

— May be imprecise, incomplete, unreliable, irrelevant,
wrong, etc.

e BACKGROUND KNOWLEDGE refers to a class of
situations and summarizes a set of trends

— Laws of physics, commonsense knowledge (birds fly)

— Professional knowledge (of medical doctor), Statistical
knowledge

— Not absolutely true knowledge in the mathematical sense:
tainted with exceptions, incompleteness, variability



Warning about the word
« knowledge »

e The term may refer to two notions

— True belief: Knowing p => p is true in the real world (while beliefs
need not be true)

— Generic information: background knowledge, that summarizes the
agent ‘s experience across a collection of situations (while belief
refers to a singular situation)

* In this tutorial we adopt the second point of view



GENERIC KNOWLEDGE, EVIDENCE,

BELIEFS

An agent usually possesses three kinds of
information on the world

1.

Generic information (background knowledge) : it
pertains to a range of situations the agent 1s aware of.

 Examples : statistics on a well-defined population
commonsense knowledge (often ill-defined population)

Singular information on the current situation
(evidence)

e Observed facts (results of tests, sensor measurement,
testimonies)

Beliefs about the current situation

— Derived from observed facts and singular observations



 Generic knowledge may be tainted with
exceptions

— It all comes down to considering some propositions are
generally more often the case than other ones.

— Generic knowledge induces a normality or plausibility
relation on the states of the world.

— numerical (frequentist) or ordinal (plausibility ranking):

* Observed evidence 1s often made of propositions
known as true about the current world.
— Can be encoded as disjunctive sets, or wif in
propositional logic.
— It delimits a reference class of situations for the case
under study.

— Can be uncertain (subjective probability, Shafer)



A first problem : PLAUSIBLE REASONING

e Inferring beliefs (plausible conclusions) on the
current situation from observed evidence, using
generic knowledge

— Example : medical diagnosis Medical knowledge +
test results = believed disease of the patient.

o This mode of inference makes sense regardless of
the representation, but

* in a purely propositional setting, one cannot tell generic
knowledge from contingent evidence

* in the first order logic setting there is no exception.

— Need more expressive settings for representing
background knowledge



A second problem :
MERGING UNCERTAIN EVIDENCE

e (Observations about the current world may be
unreliable, uncertain, inconsistent:

— Sensor failures, dubious testimonies

— Propositional logic cannot account for unreliable
evidence

— Probability theory alone cannot account for incomplete
evidence
e A proper account of uncertain evidence needs to
cope with uncertainty and the necessity for
merging unreliable evidence in a flexible way,
before even inferring beliefs



Belief construction

e Beliefs of an agent about a situation are derived from
generic knowledge and observed singular evidence about
the case at hand.

e Example :Statistical beliefs = Hacking principle

— Generic knowledge = probability distribution P built
from statistics

— Singular observed fact = a set A

— Computing the conditional probability P(BIA) for the
reference class A

— Bel,,(B) = P(BIA): equating degree of belief and
frequency



Belief construction

e Beliefs of an agent about a situation are inferred from
generic knowledge AND observed singular evidence about
the case at hand.

 Example :Commonsense inference

— Generic knowledge = birds fly, penguin are birds,
penguins don’t fly.

— Singular observed fact = Tweety 1s a bird

— Inferred belief = Tweety flies

— Additional evidence = Tweety 1s a penguin
— Inferred revised belief = Tweety does not fly



The Conditional:
A naturally 3-valued proposition

WHAT IS THE LOGICAL or MATHEMATICAL STATUS OF A
"RULE" IN A RULE-BASED SYSTEM ?

— Not a logical clause (material conditional -p v q) nor a classical
inference rule «if p, always deduce q» BECAUSE THEY
CANNOT HANDLE EXCEPTIONS

— A RULE IS OFTEN A DEFAULT RULE: IF ALL I KNOW IS p
THEN DEDUCE q »

A CONDITIONAL PROBABILITY ATTACHES A
"CERTAINTY FACTOR » to a rule and copes with
exceptions (« Most p’s are q’s » quantified by P(qlp)).

But the probability of a material conditional is not a
conditional probability! What is the entity whose
probability is a conditional probability???

A conditional event!!!!



Material implication : the raven
paradox

e Testing the rule « all ravens are black »
viewed as Vx, “Raven(x) v Black(x)

e Confirming the rule by finding situations
where the rule 1s true.
— Seeing a black raven confirms the rule

— Seeing a white swan also confirms the rule.

— But only the former is an example of the rule.



3-Valued Semantics of
conditionals

A rule « if p then q » shares the world in 3
— Examples : interpretations where pAq is true
— Counterexamples: interpretations where pA—q is true
— Irrelevant cases: interpretations where p is false
Truth-table of p — q
— Truth(p —= q) =T if truth(p)= truth(q) =T
— Truth(p — q) = F if truth(p)=T and truth(q) = F
— Truth(p — q) =1 1f truth(p)=F
This truth-table 1s the solution X of paq = X Ap.

Rules « all ravens are black » and « all non-black birds are
not ravens » have the same exceptions (white ravens), but
different examples (black ravens and white swans resp.)



A conditional event is
a pair of nested sets

The models of a conditional p — q can be
represented by the pair (AMNB, A°UB) if A and B
are the sets of models of p and q respectively.

The set of models A°UB of material implication
—pvq excludes exceptions to the rule p — q.

(AMB, A°UB) 1s an interval 1n the Boolean
algebra of subsets of interpretations.

It calls for a three-valued logic.



Inferring a rule from a rule

e A rule p — g implies another rule r — s, if the
latter has more examples and less exceptions than
the former

 Equivalent formulations:
— p—=ql=r—=siff paql=ras and -pvq |=-rvs
(This 1s the canonical extenstion of the semantic inference
relation |= to intervals in the Boolean algebra)

— Equipping the truth-set {T, F, I} with the logical
ordering T > 1> F:

p—>ql=r—=sifft(p—=q) <t(r =)



Validity of a rule base

Let A be a set of rules p. = ¢q,,i=1..N.

— A 1s verified by an interpretation if it verifies at least
one rule and does not falsify any other.

— The rule base A is falsified by an interpretation if it
falsifies one rule.

The validity of A 1s the one of the quasi-conjunction
of its rules

&_inPi—=aq)=(Vio NP AN TPV G

Equipping the truth-set {T, F, I} with the g-c ordering
[>T:=>F:

— t(A) = min{t(p, = q,),i=1.N}



Inferring a rule from a rule base:
semantic entailment

e Let A be a set of rules, and QC(A) be 1ts
quasi-conjunction.

 The rule base A 1s consistent 1ff
V = C A, X has one example
e Definition:
Al=p—=q iff IZTCA QCX) I=p—q



Valid patterns of inference for conditionals

Left logical equivalence:
ifq=ll=rthenq—=p=ll=r—p

Right weakening: if ql=rthenp = ql=p —1

Cautious monotony: {p = q,p —=>r} l=pAq—T1

Cut: {p—=q,pAq—r1}l=p—1

AND: {p —=q,p—=r}l=p—=qnar

OR:{p—=>q,r = p}l=pvr—q

Half deduction theorem: pAq = rl=p—=-qvr



Invalid patterns of inference for
conditionals

e Monotony: p — ql#pAaq —r
— Indeed paq — r has less examples than p — ¢
e Transitivity {p = q,q—=r1}l#p —=r

— An example to q — r that falsifies p verifies the
quasi-conjunction of the two premises.

e Half deduction theorem p = ~q v rl#paq —r

—  p A—q verifies the premise, not the conclusion



Syntactic inference
with conditional knowledge

 Definition : A |- p — q iff p — q can be produced
from {r —r, Vr# 1} U A using Left logical

equivalence, Right weakening, Cautious monotony, AND,
OR

e This 1s basically « system P » of Kraus, Lehmann and
Magidor.

 Soundness + Completeness (Dubois &Prade 1994):
Al-p—=q iff Al=p—q

So we can reason in system P in a 3-valued logic with truth
set {T, F, I} equipped with 2 orderings.



Belief construction in the logic of
conditionals

Observed singular evidence on a situation = propositional formula p
Generic knowledge = a conditional knowledge base A

Proposition q is believed about the situation after observing p and
under generic knowledge A iff p — q can be inferred from A.

Example : Commonsense inference
— Knowledge : A= {b(x) = f (X), p(X) = b(X), p(x) = ~f(x)}
— Singular observed fact = b(Tweety)
— Inferred belief = f(Tweety)
— Additional evidence = p(Tweety)
— Inferred belief = =f(Tweety) (p(x) — f(x) fails as no transitivity)

But this system is notoriously too weak
— from b(Tweety) red(Tweety) , f(Tweety) is unknown



GRADUAL REPRESENTATIONS OF
UNCERTAINTY

Belief is a matter of degree !

* Family of propositions or events T forming a
Boolean Algebra

— S, @ are events that are certain and ever impossible
respectively.

* A confidence measure g : a function from T in
[0,1] such that

- 89)=0 ;  g(S)=1
— 1f A 1implies (= included in) B then g(A) < g(B)
(monotony)

e g(A) quantifies the confidence of an agent in
proposition A.



BASIC PROPERTIES OF CONFIDENCE
MEASURES

* g(AUB) 2 max(g(A), g(B));

* g(ANB) < min(g(A), g(B))

e It includes :

— probability measures : P(AUB) = P(A) + P(B) - P(ANB)
— possibility measures  II(AUB) = max(II(A), I1(B))
— necessity measures N(ANB) = min(N(A),N(B))

e The two latter functions do not require a
numerical setting



Probability Representations (on finite sets)

e A finite set S with n elements: A probability measure is
characterized by a set of non negative weights p,, ..., p,,

such that >;_, p;=1.
— p, = probability of state s,

e Possible meanings of a degree of probability :

— Counting favourable cases for s, over the number of
possible cases assuming uniform distribution (coins,
dice, cards,...)

— Frequencies from statistical information: p, = limit
frequency of occurrence of s, (Objective probabilities)

— Money involved in a betting scheme (Subjective
probabilities)



SUBJECTIVE PROBABILITIES
(Bruno de Finetti, 1935)

p; = belief degree of an agent on the occurrence of s,

measured as the price of a lottery ticket with reward 1 € if
state 1S s; in a betting game

Rules of the game:
— gambler proposes a price p;

— banker and gambler exchange roles if price p; 1S too
low

Why a belief state is a single distribution:
— Assume player buys all lottery tickets 1 =1, m.
— If state s; 1s observed, the gambler gaimnis 1 — 2. p,
— and X, p;— | for the gambler
— if Xp; > 1 gambler always loses money ;
— if 2'p; < I banker exchanges roles with gambler



Probabilistic belief from statistical
probabilities

Subjective probability of the particular occurrence of an
event may derive from its statistical probability.

Probabilistic beliefs: Hacking principle
— Generic knowledge = probability distribution P
— BetP(A) = FreqP(A): equating belief and frequency

Beliefs can be directly elicited as subjective probabilities
with no frequentist flavor if frequencies are not available
or for non repeatable events.



Remarks on the representation of belief by
a single probability distribution

e Computationally simple : P(A) =X < A p(s)

e P(A) =0 1iff A impossible; P(A) =1 1ff A 1s

certain; usually P(A) = 1/2 for ignorance

e Meaning :

— Objective probability is generic knowledge (statistics
from a population)

— Subjective probability is contingent (degrees of belief)

 The counterpart of a conditional knowledge base
1s a Bayesian network: a set of conditional
probability assessments that represent a unique
distribution



Conditional Probability

 Two definitions:
— derived (Kolmogorov): P(A1C)= PANC)
requires P(C) # 0 PO)

— primitive: P(AIC) 1s assigned a value and P is
derived such that P(ANC) = P(AIC)-P(C).

Makes sense even 1s P(C)=0

The probability of A if C represents all that is known
on the situation.



THE MEANING OF CONDITIONAL
PROBABILITY

P(AIC) : probability of a conditional event « A in epistemic
context C» (when C 1s all that 1s known about the
situation).

It is NOT the probability of A, if B is true.

Counter-example :
— Uniform Probability on {1, 2, 3,4, 5}
_ P(Even I{1,2,3}) = P(Even I{3,4,5}) = 1/3

— Under a classical logic interpretation :
e From « ifresult € {1, 2,3} then P(Even) =1/3 »
e And«ifresult & {3,4,5} then P(Even) =1/3 »

— But of course : P(Even) = 2/5.



Probability of conditionals
e Let[q]=A,[p]=C,PAIC) =P(p —= q) where p
— ( 1s a 3-valued conditional.
e Indeed P(AIC) 1s totally determined by
— P(ANC) (proportion of examples)
— P(A°NC) =1 - P(AUCY®) (proportion of
examples)

P(AIC) = P(ANC)
P(ANC) + 1 - P(AUC®)

 P(AIC) 1s increasing with P(AMNC) and decreasing
with P(A¢NC)

* If p— ql=r —> s then P([q]l[p]) < P([s]i[r])




JOINT PROBABILITY and GRAPHICAL
REPRESENTATIONS

e If the finite domain i1s a Cartesian product S =
S,xS,x...xS, with variables : x,, ... X, a joint probability
1s a big table containing p(s,, ...,8,), forall (s;,...,s.) €S

e Claim : Any positive joint probability can be represented
by a set of conditional probabilities forming a directed

graph:
— rank variables in arbitrary order x,, ... X
— express p(Xy, ...,X,) as

p(X{l X5....X,) PXol X5....%) ... PX, (| X)) P(X,)

— simplify the expression if conditional independence
relations hold (e.g p(x,l X,....x,) =pX,l X,))

n



Examples

* P(Xy, Xy, X3) = P(Xyl X5, X3) "P(Xo] X3) -p(X3)

1. If x, and x5 are independent : %2 \
p(x5l X,) = p(x;), then

p(Xla X2, X3) p(Xll X27 X3) p(XZ) p(XS) /

2. If x, 1s independent from x4 given x2
P(x; | x,, x;) = P(x; | x,), then:

(x5, X5, x3) = p(x;l x5) Pp(x,lx3) plx3)
X3 X2 " X3




PLAUSIBLE REASONING WITH BAYES NETS

e A Bayes net represents generic knowledge (especially
frequentist) in the form of a probability measure P.

 Querying a Bayes net comes down to instantiating the
values of some variables and computing the conditional
probability of a proposition A of interest in the context C
described by all instantiated variables.
— E is contingent evidence on a case (it is not true that P(C) = 1,
generally)

— P(AIC) is the probability (frequency) that in general A occurs in
context C.

— P(AIC) is then interpreted as the degree of belief Bel(A) that A
holds for the case at hand about which all that is known is that C
Is true.

— This framework handles non-monotonicity: one may have P(AIC)
high and P(A IC NB) low.



LIMITATIONS OF BAYESIAN PROBABILITY
FOR THE REPRESENTATION OF BELIEF

* A single probability cannot represent
ignorance

e Subjective specification of a Bayes net
imposes unnatural conditions on conditional
probabilities to be assessed: complete and
consistent conditional probability
assessments are requested



Why the unique distribution
assumption?

e Laplace principle of insufficient reason : What is
EQUIPOSSIBLE must be EQUIPROBABLE

— It postulates the identity between IGNORANCE and
RANDOMNESS

— like the principle of maximal entropy

* The exchangeable betting framework enforces the
elementary probability assessments to sum to 1.

— It enforces uniform probability when there is no reason to believe
one outcome is more likely than another

— Betting rates are induced by belief states, but are not in one-to-one
correspondence with them : ignorance and knowledge of
randomness justify uniform betting rates.



THE PARADOX OF IGNORANCE

Case 1: life outside earth/ no life
— 1gnorant's response 1/2 1/2
Case 2 : Animal life / vegetal only/ no life

— 1gnorant's response 1/3 /3 1/3

They are inconsistent answers :
— case 1 from case 2 : P(life) = 2/3 > P(no life)
— case 2 from case 1 : P(Animal life) = 1/4 < P(no life)

ignorance produces information

Conclusion : a probability distribution cannot
model incompleteness



Single distributions do not distinguish
between incompleteness and variability

VARIABILITY: Precisely observed random
observations

INCOMPLETENESS: Missing information

Example: probability of facets of a die

— A fair die tested many times : Values are known to be
equiprobable

— A new die never tested: No argument in favour of an
hypothesis nor its contrary, but frequencies are
unknown.

BOTH NOTIONS LEAD TO TOTAL INDETERMINACY BUT THEY
DIFFER AS TO THE QUANTITY OF INFORMATION



Example

e Variability: daily quantity of rain in Toulouse
— May change every day
— It is objective: can be estimated through statistical data

* Incomplete information : Birth date of Brazilian
President
— It 1s not a variable: it 1s a constant!

— Information is subjective: Most may have a rough idea
(an interval), a few know precisely, some have no idea.

— Statistics on birth dates of other presidents do not help
much.



Instability of prior probabilities

. A uniform prior on x induces a non-
uniform prior on f(x) if f 1s non-affine :
again Laplacean ignorance produces
information

. When information is missing, decision-
makers do not always choose according to
a single subjective probability (Ellsberg
paradox).



Ellsberg Paradox

Savage claims that rational decision-makers
choose according to expected utility with respect
to a subjective probability.

Counterexample :An Urn containing
—  1/3redballs (pg = 1/3)
—  2/3 black or white balls (pw + pg =2/3)

For the 1gnorant subjectivist: pg = pw =pg = 1/3

But this 1s contrary to overwhelming empirical
evidence



1.

Ellsberg Paradox

Choose between two bets
B1 : Win 19 if red (1/3) and 0$ otherwise (2/3)
B2 : Win 1% if white (< 1/3) and 0$ otherwise
Most people prefer B1 to B2

Choose between two bets (just add 1$ on Black)
B3 : Win 1§ if red or black (= 1/3) and 0% if white

B4 : Win 1 § if black or white (2/3) and 0% if red (1/3)
Most people prefer B4 to B3



Ellsberg Paradox

Let 0 < u(0) < u(1) be the utilities of gain.

If decision 1s made according to a subjective probability
assessment for red black and white: (1/3, pg, pw):
— B1>B2:
EU(B1) = u(1)/3 + 2u(0)/3 > EU(B2) = u(0)/3 +u(1)p,+u(0)p,
— B4 > B3:
EU(B4) = u(0)/3 + 2u(1)/3 > EU(G) = u(1) (1/3 + py) +u(0)py
— (summing, as pg+py= 2/3) 2(u(0) + u(1))/3 > 2(u(0) + u(1))/3:
CONTRADICTION!
Such an agent cannot reason with a unique probability
distribution: Violation of the sure thing principle.



Ellsberg Paradox

Plausible Explanation: In the face of ignorance, the
decision maker is pessimistic:

In the first choice, agent supposes p,, = 0: no white ball
EUB1) = u(1)/3 + 2u(0)/3 > EU(B2) = u(0)

In the second choice, agent supposes pg = 0: no black ball
EU(B4) = u(0)/3 + 2u(1)/3 > EU(B3) = 2u(0)/3 + u(1)/3

The agent does not use the same probability in both
cases (because of pessimism): the subjective probability
depends on the proposed game.



Beyond classical logic and probability

e C(lassical logic

— 1s not expressive enough to grasp the difference between singular
and generic information

— Does not express shades of belief
— Cannot account for non-monotonic feature of plausible reasoning
with incomplete knowledge
e Bayesian Probability
— Cannot account for incomplete knowledge
— Does not tell the difference between variability and ignorance

— Is too information-demanding when only subjective sources are
available

— Handles exceptions and non-monotonicity of inference

e The way out: ordinal uncertainty theories and imprecise
probabilities (strengthening the logic of conditional events).



Probability vs. Classical logic: a basic difference

e In classical logic,
— all variables are supposed to be independent.

— All pieces of knowledge express (logical)
dependencies.

e In probability theory

— variables are not supposed to be independent

— Independence assumptions are pieces of knowledge
The two frameworks are at odds with each other!

Next question: how to extend classical logic in an
ordinal setting so as to account for the presence
of exceptions



