4. IMPRECISE PROBABILITY
AND UNCERTAIN EVIDENCE

1. General framework and inference
with imprecise probability
2. Random sets and Belief functions

3. Merging uncertain information



A GENERAL SETTING FOR REPRESENTING
GRADED CERTAINTY AND PLAUSIBILITY

e 2 adjoint set-functions P1 and Cr.

e Conventions :
— PI(A) =0 "impossible" ;
— Cr(A)=1 "certain"
— PI(A) =1;Cr(A) =0 "ignorance" (no information)
— Cr(A) £ PI(A) "certain implies plausible"
— PI(A) =1 - Cr(A°) duality certain/plausible



Imprecise probability theory

e A state of information 1s represented by a

family P of probability distributions over a
set X.

 To each event A is attached a probability
interval [P.(A), P"(A)] such that

_ P.(A) = inf{P(A), PE P
_ P*(A) = sup{P(A), PE P} = | — P,(A°)



Subjectivist view (Peter Walley)

* P,__(A) 1s the highest acceptable price tor
buying a bet on event A winning 1 euro if A
occurs

o Phigh(A)=1-P, (A is the least
acceptable price for selling this bet.

e Coherence condition

P.(A) = inf{P(A),P=P, } =P _ (A)

low low



Imprecise probability theory

e The most general numerical approach to
uncertainty.

— Attention ! If Cr(A), PI(A) derive from a family P
P={P,P(A) € [Cr(A), Pl(A)] for all A} ;

— Only PC{P,P(A) €[Cr(A), PI(A)] for all A} holds

e Equality if Cr(A)+ Cr(B) < Cr(AUB) + Cr(AMB)
for all A, B (super-additivity of convex capacities)



PROBABILISTIC LOGIC (de Finetti)

A probabilistic knowledge base 1s a set of weighted
propositions B = {(p, a.),i=1,...,0,E€ [0, 1]}
(p; 0,) means that P(A,) = a, where A= [p]
= A constraint on an unknown probability distribution on
interpretations.

- B is not enough to isolate a single probability distribution :

it defines a probability family on interpretations
- P={P: PA)=q.,i=1,...}

Inference problem: What can be said about the

probability another propositionp ???

All that is known is P(p) € [, 3], generally.



Probabilistic extension
of propositional logic

e Finding the most narrow interval [o., ] such that
B /= P(p) € [a, B] is a non-straightforward
extension of classical inference.

— More generally B may contain information of the form
P(A) € [a, Bi]

— It cannot distinguish between contingent evidence and
generic knowledge

— It cannot model conditional probability

— Information pieces of the form (A, o.) and (A.=B. f3,),
with material implication = are not independent



CONDITIONAL PROBABILISTIC LOGIC

* A conditional probabilistic knowledge base 1s a
weighted set of rules A= {(p, =q, o), 1=1, ...}
where o lies in [0, 1].

— It represents Generic knowledge
— (p; —q; 0), € Ameans that P(q,l p,) = o
— A probability family P, ={P,P(qlp)=0a,,i=1,...}
1s the semantic counterpart of A.
 Mathematically it is more complex than Bayesian

nets but it has the power of probability theory and
leaves room to incompleteness.



Inference with
a probabilistic conditional base

e  Suppose a set of probabilistic conditionals A and C a
propositional base. Let C = [ (] be the set of models.

e Two types of processing :

1. Querying : Cis a set of singular facts :compute the
degree of belief of A in context C as

Cr(A 1C)=Inf{P(A1C),PE £, ,P(C) >0 }.
2. Revision : Cis a set of universal truths;
Add P(C) = 1 to the set of conditionals P , .
Now we must compute Cr(AIC) =Inf{P(B)PE€ £, ,P(C)=1}
If P(C) = 1 is incompatible with #, , consider
Cr(AIC) =Inf{P(BIC) P € P, , P(C) maximal }



Example : A < "B —» C

- Pis the set of probabilities such that
— P(BIA)=a  Most AareB
— P(CIB)=f  MostBare C
— P(AIB)=y  MostBare A

Querying on context A : Find the most narrow interval for
P(CIA) (Linear programming): we find
P(CIA) = 8 - max(0, 1 - (1 -y)a)
— Note : if y=0, P(CIA) is unknown even if o = 1.
Revision : Suppose P(A) = 1, then P(CIA) = -y
— Note : y>max(0, 1 - (1-y)a)

Revision improves generic knowledge, querying does
not.



Imprecise probability inference extend
preferential (cautious) inference

Infinitesimal probabilisric inference: From set of rules A
of the form P(q,| p,) = 1- ¢, prove that P(ql p) = 1- O(¢)
from A where € is an infinitesimal number.

This 1s equivalent to proving A* |=y p — q using cautious
possibilistic inference (or Lehman’s system P) where A* =
{p; — q;} 18 the set of conditionals present in A (Adams’
logic of conditionals, 1975).

It 1s equivalent to the logic of conditional events

It 1s equivalent to inference from set of rules A of the form
P(q;! p;,) = 1 under De Finetti’s coherence approach (T.
Lukasiewicz, A. Gilio).



Random sets and evidence theory

e A family ‘F of « focal » (disjunctive) non-empty
sets representing
— Statistics under incomplete observations (generic)
— Unreliable testimonies (singular)
— Indirect information (induced from a probability space)

* A positive weighting of focal sets (a random set) :
> m(E)=1 (mass function)

EET

e It1s arandomized incomplete information



Theory of evidence

* m(E) = probability that the most precise
description of the available information is of the
form "x € E”

= probability ( only knowing "x € E" and nothing else)

— It 1s the portion of probability mass hanging over
elements of E without being allocated.

- DO NOT MIX UP m(E) and P(E)

e In the view of Shafer (1976) and Smets the mass
assignment m represents uncertain singular
evidence on the solution of a problem



Theory of evidence

e degree of certainty (belief) :
e (Function Cr denoted Bel by Shafer)
— Bel(A) = > m(E,)
ECAE=0
— total mass of information implying the occurrence of A
— (probability of provability)
e degree of plausibility :
- Pl(A)= ) m(E,) =1 - Bel(A®) 2 Bel(A)
ENA=0Q
— total mass of information consistent with A

— (probability of consistency)



Example : Bel(A) = m(E1) + m(E2)
PI(A) = m(E1) + m(E2) + m(E3) + m(E4)
= 1 —m(E5) = 1 — Bel(A¢)

"o (=

E4

2 [ s




PARTICULAR CASES

INCOMPLETE INFORMATION:
mE)=1,m(A)=0, A#E
TOTAL IGNORANCE : m(S) = 1:
— Forall A=S,0, Bel(A) =0, PI(A) = 1

PROBABILITY : if Vi, E, = singleton {s.} (hence disjoint
focal sets )

— Then, for all A, Bel(A) = PI(A) =P(A)

— Hence precise + scattered information

POSSIBILITY THEORY : the opposite case (ZADEH)
E,CE,CE,... CE_:imprecise and coherent information
— iff PI(A U B) = max(P1(A), P1(B)), possibility measure
— iff Bel(A M B) = min(Bel(A), Bel(B)), necessity measure



Plausible states induced

by a belief function

e A random set (f, m) expressing available
information on x induces a fuzzy set F of plausible
values of x, summing for each value s, masses of
all focal sets containing s.

* ug(s) =PI({s}) = > {m(E),E€ F,s€E,}
— ds,up(s)=11iff s€E, foralli
— N, E.# O (no conflict in information).
e The mass function cannot be reconstructed from
function ug, except if
— All E, are disjoint : m(E,) = ug(s) if s € E,
— E. are all nested : PI({s}) 1s a possibility distribution



Example of uncertain evidence : Unreliable
testimony (SHAFER-SMETS VIEW)

e « John tells me the president i1s between 60 and 70
years old, but there i1s some chance (subjective
probability p) he does not know and makes it up».

— E =[60, 70]; Prob(Knowing “x& E =[60, 70]”) =1 - p.

— With probability p, John invents the info, so we know
nothing (Note that this is different from a lie).

e We get a simple support belief function :
mE)=1-p and m(S)=p

 Equivalent to a possibility distribution
- ms)=11fx€EE and 7(s) = p otherwise.



CONDITIONING UNCERTAIN SINGULAR
EVIDENCE

e A mass function m on S, represents uncertain evidence

e A new sure piece of evidence 1s viewed as a conditioning
event C

1.  Mass transfer : for all E € F, m(E) movesto CNE C C

—  The mass function after the transferism(B) =2 .. M(E)

—  But the mass transferred to the empty set may not be zero!
- m(J) = Bel(C) =2 . np-g M(E) is the degree of conflict
with evidence C

2. Normalisation : m(B) should be divided by
PI(C)=1-Bel(C)= 2 .cng.g ME)
e This is revision of an unreliable testimony by a sure fact



DEMPSTER RULE OF CONDITIONING =
PRIORITIZED MERGING

The conditional plausibility function PI(.IE) 1s

PI(ANE
e PI(AIE) = (PI(E)) . Bel(AIE) = 1- PI(ACIE)

e E surely contains the value of the unknown
quantity described by m. So PI(E€) =0

— The new information is interpreted as asserting the
impossibility of E°: Since E° is impossible you can
change x € Cinto x € C ') E and transfer the mass of
focal set Cto C NE.

e The new information improves the precision of
the evidence



EXAMPLE OF REVISION OF EVIDENCE :
The criminal case

Evidence 1 : three suspects : Peter Paul Mary

Evidence 2: The killer was randomly selected
man vs.woman by coin tossing.

— So, S = { Peter, Paul, Mary}
TBM modeling : The masses are m({ Peter, Paul})
=1/2 ; m({ Mary}) = 1/2

— Bel(Paul) = Bel(Peter) = 0. Pl(Paul) = Pl(Peter) = 1/2

— Bel(Mary) = Pl(Mary) = 1/2
Bayesian Modeling: A prior probability

— P(Paul) = P(Peter) = 1/4; P(Mary) = 1/2



Evidence 3 : Peter was seen elsewhere at the time
of the killing.

TBM: So Pl(Peter) =0.

— m({Peter, Paul}) = 1/2; m({Paul}) = 1/2

— A uniform probability on {Paul, Mary} results.
Bayesian Modeling:

— P(Paul | not Peter) = 1/3; P(Mary | not Peter) = 2/3.

— A very debatable result that depends on where the story
starts.

Starting with i males and j females:
— P(Paul | Paul OR Mary) = j/(i + J);
— P(Mary | Paul OR Mary) =1/(1 +)))



THE IMPRECISE PROBABILITY VIEW
(Dempster, 1967)

* A belief function on S 1s induced by a probability space (€2,
P) via a point to set-mapping G: m(E.) = p(w,) if G(w,) = E..

e Consider a selection function ¢: € — S from G. For each
focal set E. assign mass m(E.) to element ¢(w,) EE. : We
get a probability P® such that

Pe({s}) =2 {p(w;) , d(W;) =s}
— VA, Bel(A) <P?(A) and (equivalently) P?(A) < PI(A)
— P={P,VA,Bel(A) <P(A)} = convex hull of
probabilities P?.
— Cr =P, : lower probability; Pl =P" : upper probability

e Pe Pisofthe form: P(A)=) P.(AIE,) -m(E.) (where
P. is any probability measure on support E.)



Theory of evidence vs. imprecise
probabilities

e The set P, = {P = Bel} is coherent: Bel is a
special case of lower probability

e Bel 1s o-monotone (super-additive at any order)
e The solution m to the set of equations V A C X
g(A)= ) m(E)
ECAE=0
1s unique (Moebius transform)
— It is positive iff g is a belief function



Indirect information: The unreliable watch

e States of the watch: Q = {OK, KO} ;

e Space of interest for the agent: S = {day
hours}

e Available information:
1. on the watch state: p = Prob(KO) (small)

2. Logical relation between 2 and S:
e G(OK)={Actual hourupto2mn} =HCS,

e G(KO ) = S (ignorance) (broken watches may give the right
time)

 There 1s a probability p that agent ignores the
righttime : m(H)=1-p and m(S)=p



Example of generic belief function:
imprecise observations in an opinion poll

e Question : who is your preferred candidate
in C={a,b,c,d,e, f} 777

— To a population Q= {1, ...,1, ..., n} of n persons.
— Imprecise responses r = « x(1) € E. » are allowed
— No opinion (r =C) ; « left wing » r={a, b, ¢} ;
— «right wing » r = {d, e, {} ; a moderate candidate : r =
{c,d}
e Definition of mass function:
— m(E) =card{1,E,=E})n
— = Proportion of imprecise responses « x(1) € E »



The probability that a candidate in subset A
C C'is elected is imprecise :
Bel(A) < P(A) < PI(A)
There is a fuzzy set F of potential winners:
E(X) =3 ¢ m(E) = PI({x})

Ug(X) 1s an upper bound of the probability
that x 1s elected. It gathers responses of
those who did not give up voting for x

Bel({x}) gathers responses of those who
claim they will vote for x and no one else.



CONDITIONING IMPRECISE
PROBABILISTIC INFORMATION

e A disjunctive random set (F, m) representing
background knowledge 1s equivalent to a set of
probabilities P={P: VA, PlI(A) =P(A) = Bel(A)}
(NOT conversely).

* Querying this information based on evidence E
comes down to performing a sensitivity analysis
on the conditional probability P(:|E)

— Belg(A) =inf {P(AIE) : P € P, P(A) >0}
— PI.(A) =sup {P(AIE) : P € P,P(A) >0}

e This conditioning is different from Dempster
conditioning



Theorem: functions Belg(A) and Pl (A) are
belief and plausibility functions of the form

Belg(A) = Belg(ENA)/(Belg(ENA) + PIz(ENA®))
PIL(A) = PIL(ENA)/(PIL(ENA) + Belg(ENAY®))
Belg(A) =1 - Pl (A°)

They are less informative than Dempster
conditioning: If ENC # @ and ENC¢ # O for all

Ce f, then mg(E) =1 (total ignorance on E)
— Example: If opinion poll yields : m({a, b}) = q.,
m({c,d}) = 1- a, the proportion of voters for a

candidate in E = {b, ¢} 1s unknown.

— However if we hear a and d resign (Pl({a, d} = 0) then
m({b}) = a, m({c}) = 1- o (Dempster conditioning)



Quantitative possibility theory

e Membership functions of fuzzy sets

— Natural language descriptions pertaining to numerical universes
(fuzzy numbers)

— Results of fuzzy clustering
Semantics: metrics, proximity to prototypes
e Imprecise probability
— Random experiments with imprecise outcomes
— Special convex probability sets

Semantics: frequentist, or subjectivist (gambles)...

e Order of magnitude of extreme probabilities (Spohn
functions with values on integers)



Quantitative possibility theory

e Likelihood functions A(x) = P(Al x) behave like possibility
distributions when there is no prior on x, and A(x) is used as
the likekihood of x.

e It holds that A(B) = P(Al B) < max, - P(Al x)
e If P(Al B) = A(B) then A should be set-monotonic:
{x} € B implies A(x) < A(B)

It implies AM(B) = max, g MX)



POSSIBILITY AS UPPER PROBABILITY

Given a numerical possibility distribution s, define
P(r) ={P| P(A) <II(A) for all A}

Then, generally it holds that
IT1(A) = sup {P(A) I P € P(n)};
N(A) =inf {P(A) | P € P()}

So m 1s a faithful representation of a family of probability
measures



Random set view

possibility levels
I>0r>03>...> 0y,

Letm =q, —a thenm; +... +m_ =1,

n

1+1

with focal sets = cuts
A basic probability assignment (SHAFER)
TU(s) = 2. g M, (One point-coverage function) = P1({s}).
Only in the consonant case can m be recalculated from 7

Bel(A) = X cn m, = N(A); PI(A) = IT(A)



LANDSCAPE OF UNCERTAINTY

THEORIES
BAYESIAN/STATISTICAL PROBABILITY

/ Randomized points
extreme probabilities)

UPPER-LOWER PROBABILITIES
Disjunctive sets of probabilities
! KAPPA FUNCTIONS

DEMPSTER UPPER-LOWER PROBABILITIES (SPOHN)

SHAFER-SMETS BELIEF FUNCTIONS

Random disjunctive sets PLAUSIBIBILITY RANKING
!

Quantitative Possibility theory _————— Classical logic
Fuzzy (nested disjunctive) sets Disjunctive sets



UNCERTAIN INFORMATION MERGING

e Contexts :
—  experts; SEeNnsors; images;
— belief sets; databases; sets of propositions.

®* Neither classical logic nor probability theory explain
how to combine conflicting information.

e  Merging beliefs differs from preference aggregation,
revision.

e Theories (probability, possibility, random sets, etc...)
supply connectives without explaining how to use them

e The problem is independent from the chosen
representation.



WORKING ASSUMPTIONS

Parallel information sources

Sources are 1dentified, heterogeneous, dependent (humans,
Sensors.)

A range of problems : informing about the value of some
ill-known quantity to the identification of a scenario

Information can be poor (intervals, linguistic), incomplete,
ordinal

No prior knowledge must be available
Reliability of sources possibly unknown, or not quantified

Sources supposedly refer to the same problem (non-trivial
1ssue)



BASIC MERGING MODES

source 1l : x € A
X E? 3 basic possibilities
source 2 : XxEB

1. Conjunctive merging: XEANB

— Assumption : sources are totally reliable

— Usual in logic if no contradiction (A N B = Q)
2. Disjunctive merging: x©€ A UB

— Assumption : one of the two sources 1s reliable

— Imprecise but sure response : A M B = @ is allowed



BASIC MERGING MODES

3. Merging by counting:
build the random set : m(A) = m(B) = 1/2.
e« AMB(x)=PIx)=Y , c.p,m(E)=1ifx&€ANB
=1/,if x € (A°N B) U (A N B°)
= 0 otherwise

— It lies between conjunctive and disjunctive (but AMB
is a fuzzy set) :ANBCAMBCAUB

— Assumption : Pieces of information stem from
identical independent sources: confirmation effect.

— Usual assumption in statistics with many sources and
precise observations



Extension to n sources : conflict management
with incomplete information

e Aset Sofnsourcesi:x €EA,i=1,...,n
— Generally inconsistent so conjunctive merging fails

— Significant dispersion so disjunctive merging is
uninformative

— (there 1s often more than one reliable source among n)
e Method 1 : Find maximal consistent subsets of

sourcesT,: N .orA. # J but N .o, q A=9D

— Conjunctive merging of information in 7T,

— Disjunctive merging of partial results obtained

X=UN ez Ay)



Method 2 : Make an assumption on the number of
reliable sources

Suppose k reliable sources

Then pick k sources at random for conjunctive
merging and then disjunctively merge obtained
results

X = UKg S:card(K):km iechi

— Must choose k < max {card(K), N o4 A = I}

Method 3 : statistical : m(A;) = 1/n for all 1.

then PI(x) = ) . _, A.

U | Bl



1.

MERGING IN POSSIBILITY THEORY:

Fuzzy set-theoretic operations are instrumental.
General case :

source 1| — m; = Up1 source 2 — T, = U2
Conjunctive merging F, NF,

— Assumption 1 : Nothing is assumed about dependence
of sources

— Then, Idempotence: no accumulation effect :
T~ = min(7, , 7T,) (minimum rule)

In agreement with the logical view of
information as constraints



Normalized conjunctive merging

* Degree of conflict : 1 — max m, if 7 1s not
normalized

— Renormalizing : Assumption 2: sources are reliable
even 1f conflict.

e Assumptions 1 and 2 : m~" = min(sw, ,T,)/ max T,
— But then Associativity is lost
* Assumption 3: Independent sources: 7. = ;"7

— product instead of min.
— Renormalizing : w = 5,7,/ max m,

— 1n agreement with the Bayesian approach.
— Associativity is preserved



e Possibilistic disjunctive merging
— Assumption 4: one of the sources is reliable
F, UF, : m, = max(w,,7,) (max rule)
— Idempotent: sources can be redundant.
— Adapted for inconsistent sources ( F, N F, = @)

e Statistical Merging vertical average
7, =(7,+ 10,)/2

— Assumption 5: Numerous identical independent
sources

— Generally it gives a random fuzzy set.



MERGING PROBABILITY DISTRIBUTIONS

e The basic connective 1s the convex combination :

a counting scheme
- P,...P probability distributions

n

— Information sources with weights o, such that } o, =1
P=) aP,
e The only possible one with
— P(A) ={(P,(A),...,P.(A) VACS
- 1(0,0...0)=0;f(1,1...1)=1
— (Invariant via projections)
e Information items come from a random source ;

weilghts express repetition of sources: Information
items are independent from each other



Bayesian Merging

 Idea : there 1s a unique probability distribution
capturing the behaviour of sources.

e Data:

— X, : observation of the value of quantity x by source 1.
— P(x,and X, | X) information about source behaviour
— P(x) prior information about the value of x

P( x, and Xx, | x). P(x)

e P(x|x;and Xx,) =
>, P(x; and Xx, | Xx') - P(x")

e (requires a lot of data )



« Idiot Bayes »

e Usual assumption: precise observations x; and X,
are conditionally independent with respect to x.

P(x; 1 x) - P(x, | x) - P(X)

e P(xIlx;and x,) =
> P(x; X)) P(x, [ x") - P(X")
— Independence assumption often unrealistic
— Conjunctive product-based combination rule similar to
possibilistic merging, if we let P(x. | X) =™ (x)

e A likelihood function is an example of a possibility
distribution



What if no prior information? Bayesians use
Laplace principle: A uniform prior

P(x | x; and Xx,) =

P(x; 1 x). P(x, | X))

> P(x; I x"). P(x, [ x")

Too strong : merging likelihood functions should
yield a likelihood function.

TU(X) =

P(x, 1 X). P(x, [ x)

possibilistic merging
sup, P(x; | X'). P(x, | X")



Possibilistic merging with prior information

* Bayes theorem :
t(uy, u,lu) *m (u) =m (ulu,,u,) *m(u,,uw,).

— . (u) a priori information about X (uniform =
ignorance)

— m(uy,u,lu): results from a merging operation F
— 7w(uy,u,) =sup ,cy U, u,lu) - T (u).
e If operation F1s product:
m(u, lu). w(u, lu) . (v).

(u) =
sup, 7w(u, lu'). w(x, lu') . ;T (u)
e Similar to probabilistic Bayes but more degrees
of freedom



MERGING BELIEF FUNCTIONS

e Problem :

* sourcei— (Flm)  with ) ,c4mi(A)=1

* Demspter rule of combination : an associative
scheme generalising Dempster conditioning

— Step 1 : m~(C) = R KZB _ énl(A) .m,(B)
Independent random set intersection
Step 2 : m'(C)= m~(C)/(1 - m(9D))
renormalisation

mA(0) evaluates conflict ; it is eliminated.



Example : S ={a,b,c,d}

m, {c} {b,c,d} S
m, 0.2 0.7 0.1
{b} % {b} b}
0.3 0.06 0.21 0.03
{a, b, c} {c} {b,c} {a,b,c}
0.5 0.1 0.35 0.05
S {c} {b,c,d} S
0.2 0.04 0.14 0.02

m_({b}) =021+0.03=0.24; m_({c}) =0.1 +0.04=0.15

m_(S) =0.02; m_(@) =0.06




Disjunctive merging of belief functions
m,(C)= ) m(A).m,B)

C:AUB=C

— Union of independent random sets.

— More imprecise than conjunctive merging, ever
normalised.

* Moreover Bel ,(A) = Bel,(A).Bel,(A)
— Disjunctively combining two probability distributions
yields a random set.

— Belief functions are closed via product and convex
sSum.

— If contflict is too strong, normalized conjunctive
merging provides arbitrary results and should be
avolded: use another scheme like disjunctive merging.



Conjunctive merging with disjunctive
conflict management

1. Contflict is ignorance
- me©O)= gB _m(A)myB)if C .S

— mm,(SI)A=m % _ @ml(A) .m,(B) + m,(S).m,(S)

=mn(0) + m(S)
2. Adaptive rule: for C # @
m~(C) = ) m(A).myB) + ) m;(A).myB)

ANB=C AUB=C
ANB=0

These rules are not associative.



Compromise merging

 Convex combination: generalisation of the
probabilistic merging rule

e m(A)= a-m(A)+(1 - o) my(A)
— o = relative reliability of source 1 versus source 2

 Example : discounting an unreliable belief

function with reliability o close to 1: combine m,
with the void belief function m, (S) =1 : then

- m,(A)=0o-m(A) if A£S
- m,(A)=0-m©S)+(1-ow)



CONCLUSION: Belief construction for an agent

1. Perception : collecting evidence tainted with
uncertainty

2. Merging : Combining new evidence with current one
so as to lay bare an (incomplete) description of the
current situation considered as true.

3. Plausible inference :Forming beliefs by applying
background knowledge to current evidence

e This scheme can be applied 1n various settings

encompassed by imprecise probability, but

e classical logic is too poor : need conditional events. Non-
monotonic reasoning a la Lehmann (or qualitative
possibilistic logic) 1s minimal requirement for step 3.

e Bayesian probability is too rich : ever complete and
consistent.

* Shafer-Smets or possibility theory is useful for merging
uncertain evidence(step 2)



