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Markov chains:

Lumpability

Labelled Markov processes: Bisimulation

Markov decision processes: Bisimulation

Labelled Concurrent Markov Chains with τ transitions:
Weak Bisimulation
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But...

In the context of probability is exact equivalence
reasonable?

We say “no”. A small change in the probability distributions
may result in bisimilar processes no longer being bisimilar
though they may be very “close” in behaviour.

Instead one should have a (pseudo)metric for probabilistic
processes.
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Bisimulation

Let R be an equivalence relation. R is a bisimulation if:
s R t if (∀ a):

(s a
→ P) ⇒ [t a

→ Q, P =R Q]

(t a
→ Q) ⇒ [s a

→ P, P =R Q]

s, t are bisimilar if there is a bisimulation relating them.

There is a maximum bisimulation relation.
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Properties of Bisimulation

Establishing equality of states: Coinduction. Establish a
bisimulation R that relates states s, t .

Distinguishing states: Simple logic is complete for
bisimulation.

φ ::= true | φ1 ∧ φ2 | 〈a〉>qφ

Bisimulation is sound for much richer logic pCTL*.

Bisimulation is a congruence for usual process operators.
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A metric-based approximate viewpoint

Move from equality between processes to distances
between processes (Jou and Smolka 1990).

Formalize distance as a metric:

d(s, s) = 0, d(s, t) = d(t , s), d(s, u) ≤ d(s, t) + d(t , u).

Quantitative analogue of an equivalence relation.

Quantitative measurement of the distinction between
processes.
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Summary of results

Establishing closeness of states: Coinduction

Distinguishing states: Real-valued modal logics

Equational and logical views coincide: Metrics yield same
distances as real-valued modal logics

Compositional reasoning by Non-Expansivity.
Process-combinators take nearby processes to nearby
processes.

d(s1, t1) < ǫ1, d(s2, t2) < ǫ2

d(s1 || s2, t1 ||t2) < ǫ1 + ǫ2

Results work for Markov chains, Labelled Markov
processes, Markov decision processes and Labelled
Concurrent Markov chains with τ -transitions.
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Criteria on Metrics

Soundness:

d(s, t) = 0 ⇔ s, t are bisimilar

Stability of distance under temporal evolution:“Nearby
states stay close forever.”

Metrics should be computable (efficiently?).
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Bisimulation Recalled

Let R be an equivalence relation. R is a bisimulation if: s R t if:

(s −→ P) ⇒ [t −→ Q, P =R Q]

(t −→ Q) ⇒ [s −→ P, P =R Q]

where P =R Q if

(∀R − closed E) P(E) = Q(E)
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A putative definition of a metric-bisimulation

m is a metric-bisimulation if: m(s, t) < ǫ ⇒:

s −→ P ⇒ t −→ Q, m(P, Q) < ǫ

t −→ Q ⇒ s −→ P, m(P, Q) < ǫ

Problem: what is m(P, Q)? — Type mismatch!!

Need a way to lift distances from states to a distances on
distributions of states.
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A detour: Kantorovich metric

Metrics on probability measures on metric spaces.

M: 1-bounded pseudometrics on states.

d(µ, ν) = sup
f

|

∫

fdµ −

∫

fdν|, f 1-Lipschitz

Arises in the solution of an LP problem: transshipment.
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An LP version for Finite-State Spaces

When state space is finite: Let P, Q be probability distributions.
Then:

m(P, Q) = max
∑

i

(P(si) − Q(si))ai

subject to:
∀i .0 ≤ ai ≤ 1
∀i , j . ai − aj ≤ m(si , sj).
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The Dual Form

Dual form from Worrell and van Breugel:

min
∑

i ,j

lijm(si , sj ) +
∑

i

xi +
∑

j

yj

subject to:
∀i .

∑

j lij + xi = P(si)

∀j .
∑

i lij + yj = Q(sj )
∀i , j . lij , xi , yj ≥ 0.

We prove many equations by using the primal form to
show one direction and the dual to show the other.
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Example 1

m(P, P) = 0.

In dual, match each state with itself,
lij = δijP(si ), xi = yj = 0. So:

∑

i ,j

lijm(si , sj) +
∑

i

xi +
∑

j

yj

becomes 0.

This clearly cannot be lowered further so this is the min.
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Example 2

Let m(s, t) = r < 1. Let δs(δt ) be the probability measure
concentrated at s(t). Then,

m(δs, δt) = r

Upper bound from dual: Choose lst = 1 all other lij = 0.
Then

∑

ij

lijm(si , sj ) = m(s, t) = r .

Lower bound from primal: Choose as = 0, at = r , all others
to match the constraints. Then

∑

i

(δt (si) − δs(si ))ai = r .
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The Importance of Example 2

We can isometrically embed the original space in the metric
space of distributions.
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Example 3 - I

Let P(s) = r , P(t) = 0 if s 6= t . Let
Q(s) = r ′, Q(t) = 0 if s 6= t .

Then m(P, Q) = |r − r ′|.

Assume that r ≥ r ′.
Lower bound from primal: yielded by ∀i .ai = 1,

∑

i

(P(si ) − Q(si ))ai = P(s) − Q(s) = r − r ′.
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Example 3 - II

Upper bound from dual: lss = r ′ and xs = r − r ′, all others 0
∑

i ,j

lijm(si , sj) +
∑

i

xi +
∑

j

yj = xs = r − r ′.

and the constraints are satisfied:
∑

j

lsj + xs = lss + xs = r

∑

i

lis + ys = lss = r ′.
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Return from Detour

Summary of detour: Given a metric on states in a metric space,
can lift to a metric on probability distributions on states.
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Metric “Bisimulation”

m is a metric-bisimulation if: m(s, t) < ǫ ⇒:

s −→ P ⇒ t −→ Q, m(P, Q) < ǫ

t −→ Q ⇒ s −→ P, m(P, Q) < ǫ

The required canonical metric on processes is the least
such: ie. the distances are the least possible.

Thm: Canonical least metric exists. Usual fixed-point
theory arguments.
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Metrics: some details

M: 1-bounded pseudometrics on states with ordering

m1 � m2 if (∀s, t) [m1(s, t) ≥ m2(s, t)]

(M,�) is a complete lattice.

⊥(s, t) =

{

0 if s = t
1 otherwise

⊤(s, t) = 0, (∀s, t)

(⊓{mi}(s, t) = sup
i

mi(s, t)
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{

0 if s = t
1 otherwise

⊤(s, t) = 0, (∀s, t)

(⊓{mi}(s, t) = sup
i

mi(s, t)
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Maximum fixed point definition

Let m ∈ M. F (m)(s, t) < ǫ if:

s −→ P ⇒ t −→ Q, m(P, Q) < ǫ

t −→ Q ⇒ s −→ P, m(P, Q) < ǫ

F (m)(s, t) can be given by an explicit expression.

F is monotone on M, and metric-bisimulation is the
greatest fixed point of F .

The closure ordinal of F is ω.
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A Key Tool: Splitting

Let P and Q be probability distributions on a set of states. Let
P1 and P2 be such that: P = P1 + P2. Then, there exist Q1, Q2,
such that Q1 + Q2 = Q and

m(P, Q) = m(P1, Q1) + m(P2, Q2).

The proof uses the duality theory of LP.
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What about Continuous-State Systems?

Develop a real-valued “modal logic” based on the analogy:
Program Logic Probabilistic Logic
State s Distribution µ

Formula φ Random Variable f
Satisfaction s |= φ

∫

f dµ

Define a metric based on how closely the random variables
agree.

We did this before the LP based techniques became
available.
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Real-valued Modal Logic

f ::= 1 | max(f , f ) | h ◦ f | 〈a〉.f

1(s) = 1 True
max(f1, f2)(s) = max(f1(s), f2(s)) Conjunction
h ◦ f (s) = h(f (s)) Lipschitz
〈a〉.f (s) = γ

∫

s′∈S f (s′)τa(s, ds′) a-transition

where h 1-Lipschitz : [0, 1] → [0, 1] and γ ∈ (0, 1].

d(s, t) = supf |f (s) − f (t)|

Thm: d coincides with the canonical metric-bisimulation.
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Finitary syntax for Real-valued modal logic

1(s) = 1 True
max(f1, f2)(s) = max(f1(s), f2(s)) Conjunction
(1 − f )(s) = 1 − f (s) Negation

⌊fq(s)⌋ =

{

q , f (s) ≥ q
f (s) , f (s) < q

Cutoffs

〈a〉.f (s) = γ
∫

s′∈S f (s′)τa(s, ds′) a-transition

q is a rational.
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The role of γ

γ discounts the value of future steps.

γ < 1 and γ = 1 yield very different topologies

The approximants defined last week converge in the metric
γ < 1.

The γ < 1 metric yields the Lawson topology.

For γ < 1 there is an LP-based strongly-polynomial (in the
number of constraints, and the number of bits of precision
required) algorithm to compute the metric.

For γ = 1 the existence of an algorithm to compute the
metric has just been discovered by van Breugel et al.
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Conclusions

For a CSP-like process algebra (without hiding) the
process combinators are all contractive.

We can show that if one perturbs the probabilities slightly
the resulting process is close to the unperturbed one.

We have an asymptotic version of the metric.

We can extend the LP-based theory to continuous state
spaces using the theory of infinite dimensional LP: recent
PhD thesis of Norm Ferns.
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