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What are Labelled Markov Processes?

Labelled Markov processes are probabilistic versions of
labelled transition systems. Labelled transition systems
where the final state is governed by a probability
distribution - no other indeterminacy.

All probabilistic data is internal - no probabilities associated
with environment behaviour.

We observe the interactions - not the internal states.

In general, the state space of a labelled Markov
process may be a continuum.
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Stochastic Kernels

A stochastic kernel (Markov kernel) is a function h : S × Σ
−→ [0,1] with (a) h(s, ·) : Σ −→ [0,1] a (sub)probability
measure and (b) h(·,A) : X −→ [0,1] a measurable
function.

Though apparantly asymmetric, these are the stochastic
analogues of binary relations

and the uncountable generalization of a matrix.
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Formal Definition of LMPs

An LMP is a tuple (S,Σ,L,∀α ∈ L.τα) where

(S,Σ) is an analytic space

and τα : S × Σ −→ [0,1] is a transition probability function
such that

∀s : S.λA : Σ.τα(s,A) is a subprobability measure
and
∀A : Σ.λs : S.τα(s,A) is a measurable function.
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Larsen-Skou Bisimulation

Let S = (S, i ,Σ, τ) be a labelled Markov process. An
equivalence relation R on S is a bisimulation if whenever
sRs′, with s, s′ ∈ S, we have that for all a ∈ A and every
R-closed measurable set A ∈ Σ, τa(s,A) = τa(s′,A).
Two states are bisimilar if they are related by a bisimulation
relation.

Can be extended to bisimulation between two different
LMPs.
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Logical Characterization

L ::== T|φ1 ∧ φ2|〈a〉qφ

We say s |= 〈a〉qφ iff

∃A ∈ Σ.(∀s′ ∈ A.s′ |= φ) ∧ (τa(s,A) > q).

Two systems are bisimilar iff they obey the same formulas
of L. [DEP 1998 LICS, I and C 2002]
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Proof Sketch

Show that the relation “s and s′ satisfy exactly the same
formulas” is a bisimulation.

Can easily show that τa(s,A) = τa(s′,A) for A of the form
[[φ]].

Use Dynkin’ λ− π theorem to show that we get a well
defined measure on the σ-algebra generated by such sets
and the above equality holds.

Use special properties of analytic spaces to show that this
σ-algebra is the same as the original σ-algebra.
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The Easy Direction

Let R be a bisimulation relation on an LMP (S,Σ, τa). We
prove by induction on φ that ∀φ ∈ L

∀s, s′ ∈ S.sRs′ ⇒ s |= φ⇔ s′ |= φ.

Base case trivial.

∧ is obvious from Inductive Hypothesis.

For φ = 〈a〉qψ we have that [[ψ]] is R-closed from inductive
hypothesis. Thus

τa(s, [[ψ]]) = τa(s′, [[ψ]])

and thus sRs′ ⇒ s |= φ⇔ s′ |= φ.
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What is measure theory?

We want to assign a “size” to sets so that we can use it for
quantitative purposes, like integration or probability.

We could count the number of points but this is useless for
the continuum.

We want to generalize the notion of “length” or “area.”

What is the “length” of the rational numbers between 0 and
1?

We want a consistent way of assigning sizes to these and
(all?) other sets.
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What are measurable sets anyway?

Alas! Not all sets can be given a sensible notion of size
that generalizes the notion of length of an interval.

We take a family of sets satisfying “reasonable” axioms
and deem them to be “measurable.”

Countable unions are the key.
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Measurable spaces

A measurable space (X ,Σ) is a set X together with a family Σ
of subsets of X , called a σ-algebra or σ-field , satisfying the
following axioms:

1 ∅ ∈ Σ,
2 A ∈ Σ implies that Ac ∈ Σ, and
3 if {Ai ∈ Σ|i ∈ I} is a countable family then ∪i∈IAi ∈ Σ.

If we require only finite additivity rather than countable additivity
we get a field or algebra .
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Basic facts

The intersection of any collection of σ-algebras on a set is
another σ-algebra.

Thus given any family of sets B there is a least σ-algebra
containing B: the σ-algebra generated by B.

Measurable sets are complicated beasts, we often want to
work with the sets of family of simpler sets that generate
the σ-algebra.

The σ-algebra generated by the intervals in R is called the
Borel algebra.

There is a larger σ-algebra containing the Borel sets called
the Lebesgue σ-algebra; we will not use it.
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Functions

What are the “right” functions between measurable
spaces?

Let f : X −→ Y be a function and let Σ be a σ-algebra on Y .
The sets of the form {f−1(A)|A ∈ Σ} form a σ-algebra on
X .

σ-algebras behave well under inverse image.

A function f from a σ-algebra (X ,ΣX ) to a σ-algebra
(Y ,ΣY ) is said to be measurable if f−1(B) ∈ ΣX whenever
B ∈ ΣY .
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Measures

A measure (probability measure ) µ on a measurable space
(X ,Σ) is a function from Σ (a set function) to [0,∞] ([0,1]),
such that if {Ai |i ∈ I} is a countable family of pairwise disjoint
sets then

µ(
⋃

i∈I

Ai) =
∑

i∈I

µ(Ai).

In particular if I is empty we have

µ(∅) = 0.

A set equipped with a σ-algebra and a measure defined on it is
called a measure space .
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An example

Fix a set X and a point x of X . We define a measure, in fact a
probability measure, on the σ-algebra of all subsets of X as
follows. We use the slightly peculiar notation δ(x ,A) to
emphasize that x is a parameter in the definition.

δ(x ,A) =

{

1 if x ∈ A,

0 if x 6∈ A.

This measure is called the Dirac delta measure. Note that we
can fix the set A and view this as the definition of a
(measurable) function on X . What we get is the characteristic
function of the set A, χA.
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Lebesgue measure on R

For any subset of R we define outer measure as the
infimum of the total length of the intervals of any covering
family of intervals.

The rationals have outer measure zero.

This is not additive so it does not give a measure defined
on all sets.

It does however give a measure on the Borel sets.
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It does however give a measure on the Borel sets.

Panangaden Labelled Markov Processes



Introduction
Bisimulation implies logical agreement

Measure theory
The gory details

Concluding remarks

Digression on Analytic Spaces

An analytic set A is the image of a Polish space X (or a
Borel subset of X ) under a continuous (or measurable)
function f : X −→ Y , where Y is Polish. If (S,Σ) is a
measurable space where S is an analytic set in some
ambient topological space and Σ is the Borel σ-algebra on
S.

Analytic sets do not form a σ-algebra but they are in the
completion of the Borel algebra under any measure.
[Universally measurable.]

Regular conditional probability densities can be defined on
analytic spaces.
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Amazing Facts about Analytic Spaces

Given A an analytic space and ∼ an equivalence relation
such that there is a countable family of real-valued
measurable functions fi : S −→ R such that

∀s, s′ ∈ S.s ∼ s′ ⇐⇒ ∀fi .fi(s) = fi(s
′)

then the quotient space (Q,Ω) - where Q = S/ ∼ and Ω is
the finest σ-algebra making the canonical surjection q : S
−→ Q measurable - is also analytic.

If an analytic space (S,Σ) has a sub-σ-algebra Σ0 of Σ
which separates points and is countably generated then Σ0

is Σ! The Unique Structure Theorem (UST).

Panangaden Labelled Markov Processes



Introduction
Bisimulation implies logical agreement

Measure theory
The gory details

Concluding remarks

Amazing Facts about Analytic Spaces

Given A an analytic space and ∼ an equivalence relation
such that there is a countable family of real-valued
measurable functions fi : S −→ R such that

∀s, s′ ∈ S.s ∼ s′ ⇐⇒ ∀fi .fi(s) = fi(s
′)

then the quotient space (Q,Ω) - where Q = S/ ∼ and Ω is
the finest σ-algebra making the canonical surjection q : S
−→ Q measurable - is also analytic.

If an analytic space (S,Σ) has a sub-σ-algebra Σ0 of Σ
which separates points and is countably generated then Σ0

is Σ! The Unique Structure Theorem (UST).

Panangaden Labelled Markov Processes



Introduction
Bisimulation implies logical agreement

Measure theory
The gory details

Concluding remarks

The Quotient

Given (S,Σ, τa) an LMP, we define s ≃ s′ if s and s′ obey
exactly the same formulas of L0.

The functions I[[φ]] : S −→ R defined by I[[φ]](s) = 1 if s |= φ
and 0 otherwise are a countable family of measurable
functions such that s ≃ s′ if and only if all the functions
agree on s and s′. Thus the quotient space (Q,Ω) is
analytic.

We define an LMP (Q,Ω, ρa) where
ρa(t ,U) := τa(s,q−1(U)); s ∈ q−1({t}).
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ρ is well defined - I

Easy to check that q−1(q([[φ]])) = [[φ]]:
s ∈ q−1(q([[φ]])) implies that q(s) ∈ q([[φ]]), i.e. ∃s′ ∈ [[φ]].s ≃ s′ , so s |= φ so s ∈ [[φ]].

Thus q([[φ]]) is measurable.

Thus the σ-algebra generated -say, Λ - by q([[φ]]) is a
sub-σ-algebra of Ω.

Λ is countably generated and separates points so by UST it
is Ω. Thus q([[φ]]) generates Ω.
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ρ is well defined - II

The collection q([[φ]]) is a π-system (because L0 has
conjunction) and it generates Ω; thus if we can show that
two measures agree on these sets they agree on all of Ω.

If q(s) = q(s′) = t then τa(s, [[φ]]) = τa(s′, [[φ]]) (simple
interpolation).

Thus τa(s,q−1(q([[φ]]))) = τa(s′,q−1(q([[φ]]))) and hence ρ
is well defined. We have ρa(q(s),B) = τa(s,q−1(B)).
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Finishing the Argument

Let X be any ≃-closed subset of S.

Then q−1(q(X )) = X and q(X ) ∈ Ω.

If s ≃ s′ then q(s) = q(s′) and

τa(s,X ) = τa(s,q−1(q(X ))) = ρa(q(s),q(X )) =

ρa(q(s′),q(X )) = τa(s′,q−1(q(X ))) = τa(s′,X ).
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Other Logics

LCan := L0 | Can(a)

L∆ := L0 | ∆a

L¬ := L0 | ¬φ

L∨ := L0 | φ1 ∨ φ2

L∧ := L¬ |
∧

i∈N

φi

where

s |= Can(a) to mean that τa(s,S) > 0;
s |= ∆a to mean that τa(s,S) = 0.

We need L∨ to characterise simulation.
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Conclusions

Strong probabilistic bisimulation is characterised by a very
simple modal logic with no negative constructs.

There is a logical characterisation of simulation.

There is a “metric” on LMPs which is based on this logic.

Why did the proof require so many subtle properties of
analytic spaces? There is a more general definition of
bisimulation for which the logical characterisation proof is
“easy” but to prove that that definition coincides with this
one in analytic spaces requires roughly the same proof as
that given here.
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