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Summary of Results

Probabilistic bisimulation can be defined for continuous
state-space systems. [LICS97]

Logical characterization. [LICS98,Info and Comp 2002]

Metric analogue of bisimulation. [CONCUR99, TCS2004]

Approximation of LMPs. [LICS00,Info and Comp 2003]

Weak bisimulation. [LICS02,CONCUR02]

Real time. [QEST 2004, JLAP 2003,LMCS 2006]
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Labelled Transition System

A set of states S,

a set of labels or actions, L or A and

a transition relation ⊆ S ×A× S, usually written

→a⊆ S × S.

The transitions could be indeterminate (nondeterministic).
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Markov Chains

A discrete-time Markov chain is a finite set S (the state
space) together with a transition probability function
T : S × S → [0, 1].

A Markov chain is just a probabilistic automaton; if we add
labels we get a PTS.

The key property is that the transition probability from s to
s′ only depends on s and s′ and not on the past history of
how it got there. This is what allows the probabilistic data
to be given as a single matrix T .

Panangaden Labelled Markov Processes



Introduction
Discrete probabilistic transition systems

Labelled Markov processes
Probabilistic bisimulation

Simulation

Markov Chains

A discrete-time Markov chain is a finite set S (the state
space) together with a transition probability function
T : S × S → [0, 1].

A Markov chain is just a probabilistic automaton; if we add
labels we get a PTS.

The key property is that the transition probability from s to
s′ only depends on s and s′ and not on the past history of
how it got there. This is what allows the probabilistic data
to be given as a single matrix T .

Panangaden Labelled Markov Processes



Introduction
Discrete probabilistic transition systems

Labelled Markov processes
Probabilistic bisimulation

Simulation

Markov Chains

A discrete-time Markov chain is a finite set S (the state
space) together with a transition probability function
T : S × S → [0, 1].

A Markov chain is just a probabilistic automaton; if we add
labels we get a PTS.

The key property is that the transition probability from s to
s′ only depends on s and s′ and not on the past history of
how it got there. This is what allows the probabilistic data
to be given as a single matrix T .

Panangaden Labelled Markov Processes



Introduction
Discrete probabilistic transition systems

Labelled Markov processes
Probabilistic bisimulation

Simulation

Discrete probabilistic transition systems

Just like a labelled transition system with probabilities
associated with the transitions.

(S, L,∀a ∈ L Ta : S × S → [0, 1])

The model is reactive: All probabilistic data is internal - no
probabilities associated with environment behaviour.
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Examples of PTSs
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Bisimulation for PTS: Larsen and Skou

Consider
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Should s0 and t0 be bisimilar?

Yes, but we need to add the probabilities.
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The Official Definition

Let S = (S, L, Ta) be a PTS. An equivalence relation R on
S is a bisimulation if whenever sRs′, with s, s′ ∈ S, we
have that for all a ∈ A and every R-equivalence class, A,
Ta(s, A) = Ta(s′, A).

The notation Ta(s, A) means “the probability of starting
from s and jumping to a state in the set A.”

Two states are bisimilar if there is some bisimulation
relation R relating them.
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What are labelled Markov processes?

Labelled Markov processes are probabilistic versions of
labelled transition systems. Labelled transition systems
where the final state is governed by a probability
distribution - no other indeterminacy.

All probabilistic data is internal - no probabilities associated
with environment behaviour.

We observe the interactions - not the internal states.

In general, the state space of a labelled Markov
process may be a continuum.
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Motivation

Model and reason about systems with continuous state spaces
or continuous time evolution or both.

hybrid control systems; e.g. flight management systems.

telecommunication systems with spatial variation; e.g. cell
phones

performance modelling,

continuous time systems,

probabilistic process algebra with recursion.
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An Example of a Continuous-State System

�
�
�
�
�
�
�
��
C
C
C
C
C
C
C
CO

@
@

@I

a - turn left

b - turn right

c - straight
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Actions

a - turn left, b - turn right, c - keep on course
The actions move the craft sideways with some probability
distributions on how far it moves. The craft may “drift” even with
c. The action a (b) must be disabled when the craft is too near
the left (right) boundary.
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Schematic of Example

WVUTPQRSL

a,c !! a,c
--WVUTPQRSM

a,b,c
==b,c

mm

a,c
--WVUTPQRSR

b,c}}

b,c

mm

This picture is misleading: unless very special conditions
hold the process cannot be compressed into an equivalent
(?) finite-state model. In general, the transition probabilities
should depend on the position.
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Some remarks on the use of this model

This is a toy model but exemplifies the issues.

Can be used for reasoning - much better if we could have a
finite-state version.

Why not discretize right away and never worry about the
continuous case? Because we lose the ability to refine the
model later.

A better model would be to base it on rewards and think
about finiding optimal policies as in AI literature.
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The Need for Measure Theory

Basic fact: There are subsets of R for which no sensible
notion of size can be defined.

More precisely, there is no translation-invariant measure
defined on all the subsets of the reals.
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Stochastic Kernels

A stochastic kernel (Markov kernel) is a function
h : S × Σ → [0, 1] with (a) h(s, ·) : Σ → [0, 1] a
(sub)probability measure and (b) h(·, A) : X → [0, 1] a
measurable function.

Though apparantly asymmetric, these are the stochastic
analogues of binary relations

and the uncountable generalization of a matrix.
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Formal Definition of LMPs

An LMP is a tuple (S,Σ, L,∀α ∈ L.τα) where
τα : S × Σ → [0, 1] is a transition probability function such
that

∀s : S.λA : Σ.τα(s, A) is a subprobability measure
and
∀A : Σ.λs : S.τα(s, A) is a measurable function.
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Larsen-Skou Bisimulation

Let S = (S, i ,Σ, τ) be a labelled Markov process. An
equivalence relation R on S is a bisimulation if whenever
sRs′, with s, s′ ∈ S, we have that for all a ∈ A and every
R-closed measurable set A ∈ Σ, τa(s, A) = τa(s′, A).
Two states are bisimilar if they are related by a bisimulation
relation.

Can be extended to bisimulation between two different
LMPs.
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Logical Characterization

L ::== T|φ1 ∧ φ2|〈a〉qφ

We say s |= 〈a〉qφ iff

∃A ∈ Σ.(∀s′ ∈ A.s′ |= φ) ∧ (τa(s, A) > q).
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That cannot be right?

s0

a

����
��

��
�

a

��;
;;

;;
;;

s1 s2

b
��

s3

t0

a
��

t1

b
��

t2

Two processes that cannot be distinguished without negation.
The formula that distinguishes them is 〈a〉(¬〈b〉⊤).
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But it is!

s0
a[p]

����
��

��
� a[q]

��;
;;

;;
;;

s1 s2

b
��

s3

t0

a[r ]
��

t1

b
��

t2

We add probabilities to the transitions.

If p + q < r or p + q > r we can easily distinguish them.

If p + q = r and p > 0 then q < r so 〈a〉r 〈b〉1⊤
distinguishes them.
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Proof idea

Show that the relation “s and s′ satisfy exactly the same
formulas” is a bisimulation.

Can easily show that τa(s, A) = τa(s′, A) for A of the form
[[φ]].

Use Dynkin’s lemma to show that we get a well defined
measure on the σ-algebra generated by such sets and the
above equality holds.

Use special properties of analytic spaces to show that this
σ-algebra is the same as the original σ-algebra.
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Simulation

Let S = (S,Σ, τ) be a labelled Markov process. A preorder R
on S is a simulation if whenever sRs′, we have that for all
a ∈ A and every R-closed measurable set A ∈ Σ,
τa(s, A) ≤ τa(s′, A). We say s is simulated by s′ if sRs′ for some
simulation relation R.
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Logic for simulation?

The logic used in the characterization has no negation, not
even a limited negative construct.

One can show that if s simulates s′ then s satisfies all the
formulas of L that s′ satisfies.

What about the converse?
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Counter example!

In the following picture, t satisfies all formulas of L that s
satisfies but t does not simulate s.
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t1
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All transitions from s and t are labelled by a.
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Counter example (contd.)

A formula of L that is satisfied by t but not by s.

〈a〉0(〈a〉0T ∧ 〈b〉0T).

A formula with disjunction that is satisfied by s but not by t :

〈a〉 3
4
(〈a〉0T ∨ 〈b〉0T).
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A logical characterization for simulation

The logic L does not characterize simulation. One needs
disjunction.

L∨ := Lφ1 ∨ φ2.

With this logic we have:
An LMP s1 simulates s2 if and only if for every formula φ of
L∨ we have

s1 |= φ ⇒ s2 |= φ.

The only proof we know uses domain theory.
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