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CANONICAL EXTENSIONS AND RELATIONAL COMPLETENESS OF
SOME SUBSTRUCTURAL LOGICS*

J. MICHAEL DUNN, MAI GEHRKE', AND ALESSANDRA PALMIGIANO*

Abstract. In this paper we introduce canonical extensions of partially ordered sets and monotone maps
and a corresponding discrete duality. We then use these to give a uniform treatment of completeness of
relational semantics for various substructural logics with implication as the residual(s) of fusion.

81. Introduction. Canonical extensions were first introduced by Jénsson and
Tarski for Boolean algebras with operators (BAOs) in their 1950’s papers [14, 15].
Canonical extensions provide an algebraic formulation of what is otherwise treated
via topological duality or relational methods. The theory of canonical extensions
has since been simplified and generalized [9, 7, 10], leading to a widely applicable
and transparent theory which is now ready to be applied even in the setting of
partially ordered algebras. The only restriction is that the basic operations of the
algebras to be considered either preserve or reverse the order in each coordinate.
We will call such algebras monotone poset expansions (MPEs).

Rather than developing a complete and general theory of canonical extensions for
MPE:s at this stage, we have opted here to develop only what is necessary to solve a
particular problem. In recent years a number of papers on completeness of various
substructural logics with respect to relational semantics have been published [2, 1,
3. 16, 17]. Relational semantics have proved very useful for modal and intuitionistic
logics. In addition, these fit well with the algebraic theory as they are closely related
to topological duality for these varieties. The purpose of searching for relational
semantics for substructural logics as well is of course that it is hoped that these
semantics will prove a powerful tool in a similar manner in this setting as well.
However, topological duality for non-distributive lattice based ordered algebras is
vastly more complicated than its Boolean and distributive counterparts and this is
where canonical extensions come in. Canonical extensions have been explored to
some extent for non-distributive lattices [7], and the surprising fact is that the theory
is very similar and essentially as smooth in this setting as in the Boolean setting.
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The purpose of this paper then is to explore the potential of canonical extensions
as a tool for the development of a smooth and transparent theory of relational
methods for non-distributive lattice based ordered algebraic structures. To this end
we will consider the setting from Dunn’s paper [5]. There he attempted to provide a
uniform approach to relational semantics for various implicative substructural logics
by means of representation theorems for the corresponding algebras suggested by
his gaggle theory, see [4] (further references and more can be found in [6]). In
this work he considered several logics including the Lambeck calculus, linear logic,
BCK logic, and relevance logic. While he achieved a uniform approach in the sense
that the relational semantics obtained all arose through concrete representation of
the algebras, he had to change his method of representation in ad hoc ways to fit
the various logics.

We show here that using canonical extensions and the associated discrete duality
we obtain complete relational semantics for each of the logics considered in [5].

We have organized the paper as follows: In Section 2 we define the canonical
extension of a poset, and derive some of its properties. In Section 3 we treat
extension of maps and define canonical extensions for MPEs. In Section 4 we
develop a discrete duality for a class of complete lattices that includes all lattices
that arise as canonical extensions of posets. In Section 5 we discuss the dual of
additional binary operations of the type appropriate to our applications. Finally, in
Section 6 we use the results from the previous sections to obtain relational semantics
for the substructural logics mentioned above.

It should be noted that apart from solving the problem at hand, the work herein
gives the fundamental ideas for how to define topological dualities, possibly for
MPEs in general, and definitely for those based on lattices. In particular, the
dual characterization of arbitrary morphisms in our discrete duality provides the
relational part of the dual characterizations of arbitrary homomorphisms for topo-
logical duality of bounded lattices, a long standing open problem.

§2. The canonical extension of a poset. Let P be a poset. Recall that a filter of P
is a non-empty subset F of P satisfying:

1. Fisanup-set, thatis,if x € F,y € P,and x < y,then y € F;
2. F is down-directed, that is, if x and y are in F, then there exists z € F with
z<xandz <y.

An ideal of P is defined dually. That is, 7 is an ideal of P provided I is a non-empty
up-directed down-set of P. We denote by # and .# the families of all filters and
ideals of P, respectively.

We make the following definitions here:

DeriNITION 2.1, Let P be a poset.

1. An extension of P is an order embedding e : P — Q, i.e., forevery x,y € P,
x < yifandonlyif e(x) < e(y). For ease of notation we will suppress e and
call Q an extension of P and assume that P is a subposet of Q.

2. Given an extension Q of P, an element of Q is called closed provided it is the
infimum in Q of some filter F of P. We denote the set of all closed elements of
O by K(Q). Dually, an element of Q is called open provided it is the supremum
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in Q of some ideal I of P. We denote the set of all open elements of Q by
0(0).

3. Anextension Q of P is said to be dense provided each element of Q is both the
supremum of all the closed elements below it and the infimum of all the open
elements above it.

4. An extension Q of P is said to be compact provided that whenever D is a
non-empty down-directed subset of P, U is a non-empty up-directed subset
of P, and/\QD < \/Q U, thenthereare x € D and y € U with x < y.

We are now almost ready to give the abstract definition of the canonical extension
of a poset. But first recall that a completion of a poset P is an extension Q of P
which also happens to be a complete lattice.

DEerFINITION 2.2. Let P be a poset. A canonical extension of P is a dense and
compact completion of P.

REMARK 2.3. This definition exactly agrees with the definition of canonical ex-
tension for bounded lattices [7], bounded distributive lattices [9], and Boolean
algebras [14]. As we shall see next, this definition provides an abstract characteri-
zation of the very natural completion of P obtained via the polarity given by the set
of filters of P, the set of ideals of P, and the relation of non-disjointness between
these. One may still question our choice of filters and ideals, if for no other reason
then at least because there are several other possible choices that agree with this
one in the case of bounded lattices. A note currently in preparation by the two last
authors develops extensions of this type in greater generality and shows that the
choice which leads to what is called canonical extension here is unique in allowing
certain (algebraically) desirable properties such as preserving the existing finitary
lattice structure, commuting with (Cartesian) product, and destroying all purely
infinitary lattice structure. We may also mention that this choice can be viewed as
natural from the point of view of abstract algebraic logic. This is the subject of an
article in preparation by the third author. Finally, there certainly are situations in
which one does not necessarily want to destroy all the infinitary structure of the
original poset (e.g. dynamic modal logic) and then one might want to restrict the set
of filters and ideals. However, this may lead to loss of preserved algebraic identities.
Nevertheless, investigations in this direction would certainly be of interest.

The following proposition tends to cut our work in half when proving various
results and is of intrinsic importance for applications in logic. For any poset P we
denote by P? the dual poset obtained by reversing the order on P.

PROPOSITION 2.4. Let P be a poset. If Q is a canonical extension of P, then Q9 is
a canonical extension of P?.

Proor. This follows from the fact that each of the defining properties: denseness,
compactness, and being a completion are self-dual. -

THEOREM 2.5. Let P be a poset. If P has a canonical extension then it is unique up
to an isomorphism that fixes P.

Proor. First we show that the set of closed elements of any canonical extension
Q of P is reverse order isomorphic to the poset (&, C) of filters of P. First of all
notice that the definition of closed elements yields a surjective order reversing map
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from 7 to K(Q) given by F + xp = A\, F. Now let £ G € & with xp > xg.
Let p € F, then xp < p and thus xg < p. We now have D = G is a non-empty
down-directed subset of P, U = {p} is a non-empty up-directed subset of P, and
No G =xg < p =\ {p} Bycompactness we get p € G and we have shown that
F CQG.

By duality we then get that the set of open elements of any canonical extension Q
of P is order isomorphic to the poset (_#, C) of ideals of P via the order isomorphism
I—y =\ ol

Next we show that the order structure on K(Q) U O(Q) is uniquely determined
by showing that for ' € & and I € .¥ we have:

1. xp < ysifandonlyif FNTI # 0.
2. y; < xpifandonlyifforall x € I andforall y € F, x < y.

To see that this is so notice that the ‘if” part of 1 is trivial and the ‘only if” part follows
by compactness, whereas 2 simply is a reformulation of the definitions of supremum
and infimum. Thus we have shown that for any two canonical extensions of P the
union of the closed and the open elements of the two extensions are isomorphic via
an isomorphism that fixes P.

Finally notice that denseness implies that any canonical extension is the Dedekind-
MacNeille completion of the union of its closed and open elements. Now the
uniqueness of the Dedekind-MacNeille completion of a poset combined with the
uniqueness of the structure of the closed elements union the open elements yields
the desired result. =

THEOREM 2.6. Let P be a poset, then P has a canonical extension.

Proor. The above uniqueness proof essentially spells out a construction of the
canonical extension of P: First one defines a quasi-order on % U .# according to
the two conditions given in the above proof. The corresponding partially ordered
quotient will yield the open elements union the closed elements. Then one takes the
Dedekind-MacNeille completion of this poset.

Alternatively, the polarity given by non-empty intersection between the filters
and the ideals of P yields a Galois connection:

O:P(F)=P(T): Y

where ®(X) = {I : F € X implies FNI # (0} and ¥(X) = {F : I € X implies F N
I # 0}. The Galois closed subsets ¥ = {X C F : Y(®O(X)) = X} form a
complete lattice. It is not too hard to show that the map ¢ : P — & given by
e(p) = {F : p € F} is a canonical extension of P. We leave the details to the
reader. —

REMARK 2.7. The description/construction of the canonical extension given in
the proof of Theorem 2.5 is closely related to the construction of the canonical
extension of BAOs given in [13], and the second construction corresponds to the
one used for bounded lattices in [7]. Both constructions are clearly constructive
unlike the more traditional constructions via topological duality. Below, we will see
that the non-constructiveness comes in when we want to stipulate that the canonical
extension has enough completely join and meet irreducible elements.



CANONICAL EXTENSIONS AND RELATIONAL COMPLETENESS 5

We will denote the canonical extension of a poset P by P?. Note that for Boolean
algebras the canonical extension may be seen as the power set of the spectrum
(i.e., the set of ultrafilters) of the algebra. For distributive lattices, the canonical
extension may be seen as the lattice of upsets of its spectrum (i.e., the set of its
prime filters). For finite posets, it should be clear from the first construction in the
existence proof above that the canonical extension is just the Dedekind-MacNeille
completion.

The set of all completely join irreducible elements of a poset P we will denote by
J>(P), the set of all completely meet irreducible elements of P we will denote by
M>=(P). We now give a few fundamental properties of canonical extension.

THEOREM 2.8. Let P, and Q be posets, then

1. (P9)” = (P°)?.

2. (Px Q)" =P’ x Q°.

3. J®(P%) is join-dense in P° and M > (P°) is meet-dense in P°.
4. Any finite meets and joins existing in P are preserved in P°.

PrOOF. 1 is just Proposition 2.4. To prove 2 first notice the projection onto either
coordinate of an up- (down-)directed subset of the product is up- (down-)directed.
Conversely, the product of two up- (down-)directed sets in the factors is up- (down-
)directed in the product. Thus, viewing P° x Q° as an extension of P x Q, the open
(closed) elements are exactly the coordinate-wise open (closed) elements. Thus it is
clear that P? x Q7 is a dense completion of P x Q. To see that it is also compact,
we use again that the projection onto either coordinate of an up- (down-)directed
subset of the product is up- (down-)directed. Then the coordinate-wise compactness
yields the compactness of the product.

Statement 3 holds essentially because filters (ideals) are closed under unions of
chains. Also notice that the axiom of choice is needed to prove 3. To show that
J>(P?) is join-dense in P?, we just need to show that each closed element is the
join of the completely join irreducible elements below it as we already know that
the closed elements are join dense in P?. To this end let x be a closed element of
P?. Let u be the join of 0 and all the completely join irreducible elements of P
that are below x. Then certainly # < x. Suppose however that u < x. Now we use
the fact that the open elements of P? are meet-dense in P? to get y € O(P”) with
u < ybutx £ y. Consider the set S = {v € K(P?) : v < x butv £ y}. Then
S is non-empty since x € S. Also if C is a non-empty chain in S, then we claim
that ¢ = A C isagainin S. First of all ¢y is a closed element. This is because ¢y =
NpeP:p>cforsomec e C}andtheset {p € P:p > cforsomec € C}is
a filter of P since C is a non-empty chain. Secondly ¢y < ¢ < x foranyonec € C,
s0 ¢o < x. Now suppose ¢o < y. Butthen A{p € P: p > cforsomec e C} <y
and by compactness there is p € P and ¢ € C so that p > ¢ and p < y. This
implies that ¢ < y which contradicts the fact that ¢ € S. Thus ¢y £ y and ¢p € S
and therefore by Zorn’s Lemma we may conclude that S has minimal elements. Let
J be minimal in S. Since j £ y we know that j # 0. We show that j is completely
join irreducible. To this end suppose that j = \/ T" where T is a subset of P?. Again
because the closed elements are join-dense in P°, we may assume that 7 is a set
of closed elements. For each ¢ € T with ¢ < j we know that 7 ¢ S by minimality
of j. The only condition that can be violated is # £ y. and thus we know that for
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eacht € T with t < j we have t < y. Tt follows that \/{r € T : 1 < j} < y, and
as j £ y, we conclude that \/{r € T : ¢t < j} # j. As j = \/ T there must be
t € Twitht &£ j, thatist = j. So we have shown that there is a completely join
irreducible element in .S. But j completely join irreducible and j < x imply that
J < u by definition of u. This in turn implies that j < y since u < y by definition
of y. But this contradicts j € S which implies that j £ y. We conclude that u = x
and that x is in fact the join of all the completely join irreducible elements below x.
Finally, to prove 4, let x, y € P and suppose x V y exists in P and call this element
. Now let u denote the supremum of x and y in P?. Then u < z. We show that
< u by showing that that every open element v above u also is above z. So let
€ O(P?) withu < v. Then x < v and y < v. The fact that v is open means that
I ={p € P: p <w}isanideal and that the join of this ideal is v. Since x,y € I
there must be p € I with x < p and y < p. Now, since z is the supremum of x and
y in P, we must have that z < p and thus z € I. We conclude that z < v and thus
z <wuandxVpy = xVps y. The corresponding statement for binary meets follows
by duality. Notice also that if P has a zero then every open element of P’ is above
it since ideals are required to be non-empty. But then the fact that the opens are
meet dense in P? implies that the zero of P is also the zero of P°. Dually for 1. -

S N N

The key fact for the use of canonical extensions in studying relational semantics
for various logics corresponding to BAOs and DLEs (bounded distributive lattice
expansions) is that the canonical extension is (isomorphic to) a concrete algebra,
that is, an algebra which may be viewed as the complex algebra of some relational
structure. The corresponding fact for the underlying lattice is that it may be viewed
as a complete field of sets in the Boolean case and a complete ring of sets in the DL
case. This of course can not be true once we are outside the scope of distributive
lattices. Nevertheless there is an analogue here, and the complete lattices obtained
when taking the canonical extensions of posets are also concrete in some sense that
we will describe in Section 4. Right here we give the abstract description of these
‘concrete’ lattices.

DEFINITION 2.9. A complete lattice C is perfect provided J*°(C) is join-dense in C
and M > (C) is meet-dense in C, i.e. forevery x € C,x = \/{j € J®(C) : j < x}
and x = AN{m € M>(C) : x < m}.

It should be clear that among Boolean algebras the ones that are perfect lattices are
exactly the complete and atomic Boolean algebras, and among distributive lattices
the ones that are perfect are exactly the complete, completely distributive lattices
that are join generated by their completely join prime elements, or equivalently the
doubly algebraic complete distributive lattices.

COROLLARY 2.10. Let P be any poset, then P? is a perfect lattice.

Proor. This is exactly the content of statement 3 in the above theorem. -

§3. Canonical extensions of maps. In order to be able to define canonical exten-
sions for monotone poset expansions, we now need to describe how we will extend
additional operations from a poset to its canonical extension. First we define
monotone operations and monotone poset expansions.
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DEermNiTION 3.1, Each € € {1,9}" is called a monotonicity type. An n-ary oper-
ation f : P" — P on a poset P is said to be monotone provided there ise € {1,9}"
so that the order-variant f : P¢ — P ,where P = P*! x ... x P® and Plis P and
P? is the order-dual of P, is order preserving. For more details of this notation
see [11].

A monotone poset expansion (MPE) is a tuple (P, ( f;):cr) where P is a poset and
each f; is an n;-ary monotone operation on P. The corresponding sequence (&;);cs
of monotonicity types for the individual operations is called the monotonicity type
of the MPE (P, (f)icr).

Given a monotone operation f : P" — P on a poset P, we may consider it as
an order preserving map f : P° — P whose domain is obtained from P by taking
some combination of order duals and finite product. Since canonical extension of
posets commutes with both of these, all we need to define is how to extend order
preserving maps.

DEerFINITION 3.2. Let P and Q be posets, and f : P — Q an order preserving
map. Define maps /7, f” : P — Q° by setting:

") =\{\{f(p):x<pePtiu>xecK(P)}
") = N\{f(p):y>pePt:u<yeco(P))}

REMARK 3.3. It should be clear to anyone familiar with the theory of canonical
extensions that these definitions agree with the ones given in the bounded lattice,
distributive bounded lattice, and Boolean cases. In the setting of bounded distribu-
tive lattices it was shown in [10] that these extensions satisfy universal properties
with respect to certain topologies on canonical extensions. It was also shown in [10]
and [7] that canonical extensions (both the sigma or the pi versions) are functorial
for monotone DLEs and LEs (i.e., bounded lattice expansions). Of course the cor-
responding questions should also be considered and answered in this more general
setting eventually. However, they are not central to the problem considered in this
paper and we leave them for future work.

As in the lattice case, the following facts hold for these extensions:

LEMMA 3.4. For every order preserving map f : P — Q, both f? and f™ are order
preserving extensions of f. In addition f° < f™ with equality holding on both K (P°)
and O(P?). Foru € P?, x € K(P"), and y € O(P?) we have

=\{f7(x)u>xeK(P)}
) N{f(p):x<peP}
() = \{/*(»):u<ye0(P)}
W=\V{/(p):y>per}

and f° and f™ send closed elements to closed elements and open elements to open
elements.

PrOOF. Let x,x’ € K(P?) with x < x’, then as f is order preserving we have

NS (p):x <pePt<N\{f(p):x" < pe€ P}and therefore f7(x) = A{f(p):
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x < p € P}. Notice also that the set { / (p) : x < p € P} is down-directed so that
f? sends closed elements to closed elements. Furthermore this description of f
for closed elements together with the fact that /" is order preserving easily yields the
fact that /7 extends /. Finally, it also easily implies that /' is order preserving on
K(P?) and that f7(u) = \/{f?(x) : u > x € K(P?)}. This last fact in turn easily
implies that £ is order preserving on all of P?. By duality all the corresponding
statements hold for /. In terms of the claims about the relationship between f“
and /™, notice that for x € K(P?)

£ = AU x <y € 0(P7))
< A\{/"(p):x<peP}
AU () :x < pe Py = f7(x).

Also, for each y € O(P?) with x < y, by compactness, there exists p € P with
x < p < y. Thus

N3 ix <y eoP)y > N{f™(p): x < pe P}

and we conclude that /(x) = f?(x). By duality /?(y) = f™(y) for y € O(P?)
as well. Finally we see that for u € P°

o) =\{f7(x):u>x e K(P7)}
=\/{f"(x):u>xeK(P)}
< AU iu<yeo(P)} = fHu). .

Since we consider two, generally, different ways of extending maps, the canonical
extension of an MPE is not uniquely determined. As in the lattice and distributive
lattice settings, whether we want to extend a particular additional operation using
the o- or the m-extension depends on the properties of the particular operation to
be extended. Here, as in [8] we make a general definition of f-canonical extensions.

DErFINITION 3.5. Let (P, (f;)ics) be an MPE with additional operations indexed
by a set I. Let ff be a map from 7 to the set {o, #}. Then the f-canonical extension

of (P.(f)ic1) is the MPE (P7, (fF)),)).

In order to obtain relational semantics from a class of algebras it is necessary
that the additional operations are such that they can be encoded by relations on
the dual. This will be the case when the extensions of the maps are (possibly up
to some turning upside down of coordinates) complete operators or complete dual
operators. Here we show that this happens for residuated maps.

First we recall some facts about residuation of maps. Let P, Q and R be posets
andlet f : PxXQ — R, g: PXR— Qandh: R x Q — P. The map g is called
the right residual of f provided forevery p € P,q € Qandr € R,

f(p.q) <rifandonlyif ¢ < g(p.r).

h is called the left residual of f provided forevery p € P,q € Q andr € R,
f(p.q) <rifand onlyif p < h(r,q).

Further, if g and £ are the right and left residuals of f, respectively, then
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l. f:PxQ—R, g:P’xR— Qandh: R x Q% — P are order preserving.

2. If P, Q and R are complete lattices, then f : P x Q — R preserves arbitrary
joins in each coordinate, and g : P? x R — Q and & : R x Q? — P preserve
arbitrary meets in each coordinate.

PROPOSITION 3.6. Let P, Q and R be posets and let f : P x Q — R be order
preserving. Then forg : P x R — Qandh: R x Q — P,

1. If g is the right residual of f, then g™ is the right residual of f°.

2. If h is the left residual of f, then h™ is the left residual of f°.

ProoOF. To prove statement 1, we have to show that for every u € P?, v € Q,

and w € R,

f%(u,v) < wif and only if v < g™(u, w).

We first show thatif s € K(P?), t € K(Q%), y € O(R’), and f°(s,t) < y, then
t < g"(s.y). Wehave f7(s.1) = N{f(p.q):s <pePt<qeQ}<y. Since
s and ¢ are closed, sois f7(s, 7). Infact {f(p.q): s < pe Pt <qe Q}isa
down-directed family in R whose infimum is (s, ). Also, y is open and thus by
compactness, f(p,q) < y forsome p € Pandg € Q withs < pand < q. Let
f(p.q)=r € R.As f(p.q) < randg is the right residual of f, ¢ < g(p.r). Now
since s < pandr = f(p,q) < y.g(p,r) e {glp'.r):s < p € Py >r €R}
and thus 1 < g < g(p,r) < \V{g(p.)):s <p' € Py >1r € R} =g"(s,y) as
desired. Notice that this last equality holds because (s,y) € K(P°) x O(R%) =
O((P?)? x R%).

For the general case, assume that f°(u,v) < w. We need to show that v <
g"(u.w) = N{g"(s,y) :u>s € K(P?),w <y € O(R%)},ie thatv < g"(s,y)
for every s € K(P?) and y € O(R?), with s < u and w < y. By denseness,
v =\{t € K(Q7) : t < v} and it is enough to show that # < g"(s, y) for every
s € K(P?)),t € K(Q°),and y € O(R°) with s < u, t <wv,and w < y. By
assumption, \/{f7(s.7) :u > s € K(P?),v >t € K(Q°)} = f?(u,v) < w, so
f(s,t) < y forevery s € K(P?),t € K(Q?), and y € O(R") such that s < u,
t <wvandw < y. We have already seen that this implies # < g™ (s, y).

For the other direction, assume v < g"(u,w). Then ¢ < g"(s,y) whenever
s € K(P°),t € K(Q?),y € O(R%),s <ut <wv,and w < y. Since g"(s,y) =
\V{g(p.r):s < pe Pandy > r € R}, by compactness, there are p € P,r € R,
with s < p,y > rand ¢t < g(p.r). Using the fact that g is the right residual of f,
we get f(p,g(p.r)) <r.andthus f(s,t) < f(p.g(p.r)) <r < y. It follows that
f7(u,v) < w as desired. Statement 2 is obtained by interchanging the role of the
coordinates of f. a

COROLLARY 3.7. Let P, Q, and R be posets and f : P x Q — R a map with right
and left residuals g : P x R — Q.and & : R x Q — P, respectively. Then

1. f7 is a complete operator;
2. g7 :(P?)?xR? — Q7 and h™ : R” x(Q7)? — P? are complete dual operators.

§4. Basic Discrete duality. Here we develop a duality between the categories of
what we have named perfect lattices and what we will call perfect posets.

DErINITION 4.1. A lattice C is called perfect provided J*°(C) is join-dense in C
and M >°(C) is meet-dense in C. A homomorphism of perfect lattices is a complete
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lattice homomorphism, orin other terms, a map which is both residuated and dually
residuated.

Given a perfect lattice C, we define the dual of C tobe C = J*(C) U M>(C).

ExaMPLE 4.2. Given a complete and atomic Boolean algebra B, we usually define
the discrete dual to be By, the set of atoms of B, which of course is the same as
the set of all completely join irreducible elements of B. The set of completely join
irreducible elements is sufficient as long as we stay within the realm of DLs. But
here we must keep both the completely join and the completely meet irreducible
elements to be able to reconstruct the lattice. Notice that B may be obtained from
B, by taking the disjoint union B, W B, and defining an order by x < y if and only
if either x and y are in the same copy of B, and x = y, or x is in the first copy of
B, y is in the second copy of B, and x # y.

DEFINITION 4.3. A poset Z is perfect provided J*°(Z) is join-dense in Z, M > (Z)
is meet-dense in Z, and Z = J>®(Z) U M>=(Z).

REMARK 4.4. The morphisms of this category are not the order preserving maps
or anything like that. The remaining work of this section discovers what they are.
While it is not the most obvious and simple thing, the remarkable fact here is that
they are something that is first order definable (also in the non-surjective case).

We first finish working out the duality on objects. Given a perfect poset Z, we
define the dual of Z to be the Dedekind-MacNeille completion Z of Z.

ExamPLE 4.5. Given a complete and atomic Boolean algebra, notice that the
Dedekind-MacNeille completion of B is isomorphic to the complex algebra (namely
the power set) of B,

We will need the following possibly not so well-known but very important prop-
erty of the Dedekind-MacNeille completion.

PROPOSITION 4.6. For every poset P, J®(P) = J*(P) and M>(P) = M>(P).

PrOOF. Let x € J*(P). Then, as x = \/{p : x > p € P} by join-denseness
of P, x € P. If x = \/p A for some 4 C P C P, then, as the Dedekind-
MacNeille completion preserves all existing joins, x = \/» 4, hence, by complete
join irreducibility of x in P, x € A. So J>®(P) C J*(P). Now let x € J*(P)
and assume x = \/ 4 for some 4 C P. Now using the join-denseness of P in P,
we get x = \/ X, where X = {p € P: p < aforsomea € A}, and since x is
completely join irreducible in P, it follows that x = x’ for some x’ € X. But then,
by the definition of X, there is « € 4 with x’ < a. Finally, since ¢ < x it follows
that x = @ € A4, and x is also completely join irreducible in P. The statement for
completely meet irreducible elements follows by order duality. a

PROPOSITION 4.7. For every perfect lattice C,

1. (C)=C:

2. J>(C) =J>(C)and M>(C) = M>(C):

3. C is a perfect poset.

Proor. The statement 1 follows from the abstract characterization of the Dede-
kind-MacNeille completion of a poset as the complete lattice in which the poset
is both join- and meet-dense: By the definition of a perfect lattice clearly C =
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J*®(C) U M>=(C) is both join- and meet-dense in C. By 1, the statement 2 is
exactly the content of Proposition 4.6. The statement 3 now clearly follows by 2
and the definition of C. a

PrROPOSITION 4.8. The following are equivalent for every poset P:

1. P isa perfect poset; _
2. P=J%(P)UM>(P)and P is a perfect lattice.

ProOF. If Pisa perfect poset, then P = J*°(P)UM > (P) by definition. Also, P is
join-densein P, and J°°(P) is join-dense in P, and Dedekind-MacNeille completion
preserves existing joins, so J(P) is join-dense in P. Finally, by Proposition 4.6, it
follows that J>°(P) = J°°(P). The fact that M >°(P) is meet-dense in P follows by
order duality. For the converse, assume that P = J>°(P) U M>°(P) and that P is
a perfect lattice. By Proposition 4.7, J>°(P) = J*°(P), and since P is assumed to
be a perfect lattice this set is join-dense in P. But then it is certainly also join-dense
in the smaller set P. By order duality we conclude that M *°(P) is meet-dense in P.
We have thus shown that 2 implies 1. -

COROLLARY 4.9. For every perfect poset Z, Z is a perfect lattice and (Z) = Z.

Now that we have defined the dual of objects we turn to maps. We will want
to apply this discrete duality not only to perfect lattices but actually to perfect
lattices with additional monotone operations that are either complete operators or
complete dual operators. Thus, eventually at least, we need to find duals not only for
homomorphisms but also for complete operators and complete dual operators. We
will do this, for the binary case, in the next section. However, here we already treat
the unary case as a complete homomorphism may be seen as a complete operator
and a complete dual operator with the additional equation that says the two are
equal.

DEerINITION 4.10. Let f : C — D be a completely join preserving map between
perfect lattices. Define R, C J>(C) x M°°(D) as follows:

xRy n ifandonlyif f(x)<n.

REMARK 4.11. Notice that this definition is a departure from the way R 1 is defined
in the distributive and Boolean settings. There, R, is a binary relation from J (D)
to J(C) given by y < f(x). This definition is also available to us here and would
also work. In fact, it is an easy ‘toggle’ between these two and it may very well be
that one in general wants to keep both available. However, for the work we will do
in this paper, the above definition makes the exposition slightly smoother, and it is
all we need to name explicitely.

In the distributive and Boolean settings, we have a tight relationship between
J*(C) and M (C) as they are isomorphic. This means that all the structure can
be moved to just one of these sets, as it traditionally is. In the general setting that
we treat here, J*°(C) and M°°(C) are no longer isomorphic in general, and both
sets must be kept in play. Accordingly, we will need some machinery to toggle back
and forth between J°°(C) and M > (C).



12 J. MICHAEL DUNN, MAT GEHRKE, AND ALESSANDRA PALMIGIANO

DEFINITION 4.12. Given a poset P in which J°°(P) is join-dense and M *°(P) is
meet-dense, we define

0 : 2(I=(P) — P(M>(P))
Ar—{m:a € Aimplies a < m}.
0" 2(M>(P)) — 2(J(P))
B —— {x:b € Bimplies x < b}.

REMARK 4.13. Tt is well known that these maps form a Galois connection. It is
easy to see that the Dedekind-MacNeille completion of P, which is equal to the
Dedekind-MacNeille completion of J*° (P)UM *°(P), is isomorphic to the lattice of
the Galois closed sets of this Galois connection. This is of course the restriction of
the upper/lower Galois connection on P, which gives the standard construction of
the Dedekind-MacNeille completion. The above construction is sufficient exactly
because J°°(P) is join-dense in P and M>°(P) is meet-dense in P. Thus for a
perfect poset Z this Galois connection gives Z, and for a perfect lattice C this
Galois connection gives C = C. We only prove the following two facts about this
Galois connection, which will be used repeatedly in what follows.

LemMA 4.14. If C is a perfect lattice, then for every X C J*(C) and every
Y C M>(C).

L. AX*=VX.

2. VY =AY,

PROOF. We just prove 1. Let \/ X = x¢. As C is a perfect lattice, xo = A{m €
M>(C):m > xp},s0

\/X:/\{m € M>®(C):m > xo}
:/\{m € M>=(C): x € X implies m > x}

= /\ X -
PROPOSITION 4.15. For every completely join preserving map f : C — D between
perfect lattices, every x € J®(C) and every n € M>(D),
R1. (Ry[x])™ = R/[x].
R2. (R} '[n]" = R} '[n].
PROOF. Statement R1. is true because R/[x] = {n € M*>°(D) : f(x) < n} =1
f(x) N M>(D) is a Galois stable set. In fact, for any element v € D, we have

that 7 v N M (D) is Galois stable. To see this, notice that (T v N M>(D))* = (|
v N M>(D))* =T vN M>(D). The statement R2. follows by order duality. -

DEFINITION 4.16. Let Y and Z be perfect posets, and let R C J*®(Y) x M>(Z).
We say that R is an (unary) operator relation provided for every x € J°°(Y) and
every n € M*°(Z), the following conditions are satisfied:

RI1. (R[x])™ = R[x].
R2. (R7'[n])* = R7'[n].

Given an operator relation R C J®(Y) x M>(Z), define fr : Y — Z by

setting:
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1. Forevery x € J>(Y), fr(x) = A\ R[x]:
2. Foreveryu € Y. fr(u) = V{fr(x):u>xecJ>(Y)}.

LemMa 4.17. Let Y and Z be perfect posets and R C J>*°(Y) x M>*(Z) an
operator relation. For every u € Y we have

Sr) = N(VRIx]:u>xeI>(Y)})
= N\{m € M>(2) :u > x € J®(Y) implies xRm}.
PrOOF. Foreveryu € Y,

Fr) = \/{fr(x)1u>xe€T>(Y)}
= \V{ARIx]:u>xeJ®(Y)}
= VIARKXD" :u>x € J=(Y)}
=\V{VRExD :u>xes>(x)}
= VIR :u>xes=(¥)})
=\ (RIx]:u>xeT=(¥)})
= A(RIx]:u > x € J=(Y)}). .

ProPosITION 4.18. Given Y and Z perfect posets and an operator relation R C
JX(Y) x M>®(Z), we have:

. <oRo< = R.

2. fr(x) < nifandonlyif xRn.

3. fris order preserving.

4. f g preserves arbitrary joins.

PrOOF. To prove 1 assume that x < x’Rn, and let us show that xRn. By R2,
it is enough to show that x € (R~'[n])*. As x’Rn, x’ € R7'[n]. so x’ < m
for every m € (R™![n])*. Hence x < x’ < m for every m € (R™![x])*. and
so x € (R~'[n])“. This shows that < o R C R. Now assume that xRn’ < n,
and let us show that xRn. By RI, it is enough to show that n € (R[x])*. As
XRn', n' € R[x], so y < n’ for every y € (R[x])). Hence y < n’ < n for
every y € (R[x])’. and so n € (R[x])"™. This shows that <o Ro < C R. The
other containment is trivial as the order is reflexive. For 2 first notice that if xRn,
then n € R[x] and hence fr(x) = A R[x] < n. For the converse, assume that
fr(x) < n. By R1, it is enough to show that n € (R[x])™. For every y € (R[x])’.
y < AR[x] = fr(x) < n, hence n € (R[x])™. To prove 3 it is enough to show that
fris order preserving on J*°(Y). Let x, x’ € J*°(Y) with x < x’. If we show that
R[x'] C R[x] then fr(x) = A\ R[x] < A R[x'] = fr(x’) and we are done. But if
x'Rn then x < x’Rn and so by 1 xRn. To prove 4 let u € Y and suppose u = \/ 4.
Since f g is order preserving we have f z(u) > \/ f r(A4). Thus we need to show that
fr(u) <\ fr(A4). To this end first notice that as Y is join-generated by J>°(Y)
we can suppose that A C J°°(Y). But then fr(a) = A R[a] and then, as in the
proof of Lemma 4.17, we get \/ fzr[4] = A(N{Rl[a] : a € A}). Finally since each
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a € Asatisfiesu > a € J®(Y), we have A(N{R[a]:a € A}) > N(N{R[x] : u >
x € J(Y)}) and thus \/ fr[4] > fr(u) as desired. -
PROPOSITION 4.19. For every completely join preserving map f . C — D between
perfect lattices, fr, = f.
PRrOOF. For every x € J>°(C) = J*®(C), fr,(x) = \N{n € M>(D): xR/n} =
N{ne M>=(D): f(x) <n} = f(x)and then the result follows as both functions
are completely join preserving. -

PRrOPOSITION 4.20. For any two perfect posets Y and Z and operator relation R C
J=(Y) x M>®(Z). Rs, = R.

PrOOE. Forx € J*°(Y)andn € M (Z), wehave xR, n if and only if fz(x) <
n if and only if xRn. -

The above takes care of dualizing unary completely join preserving maps. By
order duality we then also are able to dualize completely meet preserving maps:
If g : C — D is a completely meet preserving map between perfect lattices, then
g? 1 €% — D? is a completely join preserving map between perfect lattices. The
associated relation S, C M>(C) x J*°(D) is defined by setting for every m €
M>(C) and every y € J>(D)

mS, y ifandonlyif g(m) >y,

and the dual relations, which we will refer to as (unary ) dual operator relations, are
characterized by the following properties:

S1. (Sg[m]) = S¢[m].

S2. (S 'D™ =S, ']

Notice that S1is R2 for R~', where R is a relation corresponding to a completely
join preserving map, and similarly for S2 and R1.

Now that we have found duals for completely join preserving as well as completely
meet preserving maps we are ready to dualize homomorphisms. As mentioned
above, we will do this by finding the dual characterization of an equational theory
where we have one complete operator f, one complete dual operator g, and one
equation f = g — or actually rather two inequalities: f < g and g < f. Since we
have already described the relations dual to f/ and g, what we still need to do is to
find first order correspondents of the two inequalities f < g and g < f. Notice
that, using modal notation, these are of the form & < O and O < <, respectively.
The first is the most basic type of Sahlqvist equation, namely the strictly positive
kind, and the second is the more involved kind. Nevertheless. finding the first
order duals in this setting is not much more involved than in Sahlqvist theory for
classical modal logic based on Boolean algebras. Thus this certainly indicates the
basic building blocks of a Sahlqvist-type correspondence theory for the partially
ordered setting. Working this out further is the subject of current work by the two
last authors and H. Priestley.

ProrosiTioN 4.21. Let f,g : C — D be maps between perfect lattices with f
completely join preserving and g completely meet preserving. Furthermore, let R
be the operator relation corresponding to f, and let S be the dual operator relation
corresponding to g. Then the following are equivalent:

1. Forallu € C, f(u) < g(u);
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2. Forallx € J*(C)andm € M>=(C), if x < m then f(x) < g(m);

3. Forallx € J*®(C)andm € M>=(C), if x < m then (R[x]) C S[m];

4. Forallx € J®(C)andm € M>(C), if x < m then (S[m])* C R[x].
ProOF. That 1 implies 2 is clear. On the other hand if 2 holds and u € C, then

:\/{f(x):uZxGJOO(C)}
< N{g(m) :u<me M>(C)} =gu)

and thus 1 holds. To show that 2 is equivalent to 3, notice that f(x) = A R[x] =
V(R[x]) and g(m) = \/ S[m] = \/(S[m])*. Finally, the equivalence of 3 and 4
follows simply from the fact that S[m] and R[x] are closed under u/ and [u, respec-
tively. -

The following lemma is the essential content of the Sahlqvist mechanism for
equations like 0 < <. It is just the fact that completely join preserving and
completely meet preserving maps are residuated combined with the observation
that the relation for the residual is the converse of the relation for the original maps.

LEMMA 4.22. Let f : C — D be a completely join preserving map between perfect
lattices, and let n € M (D). Then
Forallu e C, f(u) <nifandonlyifu < u,

where u, = \/ R™'[n]. Dually. let g : C — D be a completely meet preserving map
between perfect lattices, and let y € J°°(D). Then
Forallu € C, g(u) > yifandonlyifu > v,
where v, = \ S~![y].
Proor. This is because f is completely join preserving and g is completely meet
preserving. -
ProposiTION 4.23. Let f,g : C — D be maps between perfect lattices with f
completely join preserving and g completely meet preserving. Then the following are
equivalent:
1. Forallue C,g(u) < f(u):
2. Foralln € M>*(D) g (u,,) < f(un);
3. Forally € J*°(D) andn € M (D). if v, < uy then y < f(u,);
4. For ally € J°°(D) andn € M>(D),
(ST C R [n] then (N{R[x]:x € R '[n]} Cy1:
)
)

e

Forally € J°°(D) andn € M*> (D), if v, < uy, then g(v,) < n:
Forall y € J®(D) andn € M= (D),

if (ST S R7'[n] then (\{S[ml:me Sy} Cn .

ProOF. The fact that 1 implies 2 is clear. To see that 2 implies 1, let # € C and
n € M>®(D) withn > f(u). Then u < u, and thus we have g(u) < g(u,) <
f(u,) < n. Since this holds forevery n € M>°(D) g(u) < f(u) and 1 holds. The
fact that 2 is equivalent to 3 follows from the fact that g(u,) < f (u,) holds if and
only if for all y € J*(D) y < g(u,) implies y < f(u,), and from the fact that
y < g(u,) holds if and only if v, < u,. The statement 4 is equivalent to 3 as it just
uses the definitions of the various entities in 3 in terms of R and .S. Finally 5 and 6
follow by order duality from 3 and 4, respectively. -

@
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DerINITION 4.24. Given perfect posets Y and Z, we define a morphism from Z
to Y to be a pair (R, S) of binary relations R C J*®(Y) x M*>®(Z) and S C
M>=(Y) x J>(Z) satisfying R1 and R2, and S1 and S2, respectively, as well as the
equivalent conditions of both Proposition 4.21 and Proposition 4.23.

REMARK 4.25. While it is not clear at this point how to best understand these
morphisms, the main point is that a/l morphisms, not just surjective ones, have
first-order definable duals.

One alternative option which may be better than 4 and 6 in Proposition 4.23 is:
4. (R'[n)")S < (R—'[n]R):

6. ((S7'D¥)* c ((s~'yDH*
where AR = {n : for all x if x € 4 then xRn}. Note that in this notation A = 4=<.

For surjective homomorphisms we get a somewhat simpler description of the
dual, thus explaining why these were easier to discover.

LEmMMA 4.26. Leth : C — D be a complete homomorphism between perfect lattices
that is surjective, then

1. Foralln € M>(D) we have u, € M°>°(C);

2. Forall y € J>*(D) we have v, € J>°(C).

Proor. To prove 1, recall that u, is the largest element of C that is mapped
below n by h. Also. by surjectivity, we must have h(u,) = n. Now we get n =
h(u,) = N{h(m) : u, < m € M°°(C)} since h is also completely meet preserving.
But then, by complete meet irreducibility of n, we get n = h(m) for some m with
u, < m € M>(C). But then, by maximality of u, with respect to 2(__) < n we
have that u, = m € M*°(C). The proof of 2 is (order) dual. 4

Thus for 2 : C — D a surjective complete homomorphism between perfect
lattices, define

1yt M®(D) — M>®(C)
n— u, = \/{x th(x) <n}

and
sp 2 J2(D) — J=(C)

y vy, = /\{m :h(m) > y}.

ProprOSITION 4.27. Let h : C — D be a surjective complete homomorphism be-
tween perfect lattices, then

1. Foralln,n' € M*>(D),n < n' ifand only if r,(n) < rp(n’);
Forall y,y" € J*(D),y <y ifand only if 5,(y) < sn(y");
Forally € J®(D) andn € M>(D), y < n if and only if s;,(y) < rp(n);
Forallx € J=(C), (r, ' (x 1)) = s, ' (x |) and (s, " (x 1)) =r, ' (x 1):
Forallm € M*>(C), (r,;l(m N = s,jl(m 1) and (s}fl(m 1)) = r,?l(m .

Proor. For 1, if n < n’ then clearly r;,(n) < rj,(n’). For the converse, since / is
onto, we have n = h(r,(n)) < h(r,(n’)) = n’. The statement 2 is dual to 1. For 3, if
y < n, then i(s; () = y < nsosu(y) < ry(n). Conversely, if s, (y) < r(n). then
y =h(sp(»)) < h(ry(n)) = n. Statements 4 and 5 follow from the fact that for any
ue C.r,'w?l)={n:h(u) <n}ands,'(u])={y:h(u) >y} -

nkhwbd
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PROPOSITION 4.28. Let C and D be perfect lattices. For a pair of maps (r :
M>®(D) — M>(C),s : J®(D) — J>(C)) satisfying the five properties in Propo-
sition 4.277, the map

h = h(r,x) :C—=D
where h(u) = N{n € M>*(D) :u < r(n)} = \/{y € J®D) :u>s(y)}isa
surjective complete homomorphism with r, = r and s, = s.
PrOOF. Define R C J*®(C) x M>(D) by xRn if and only if x < r(n) and
S C M>(C) x J*(D) by mSy if and only if m > s(y). Then we have foru € C
fr(u) = /\{n € M*(D) : Forall x € J>°(C) if x < u then xRn}

= /\{n € M*(D) :Forallx € J®(C)if x <uthenx <r(n)}

= /\{n € M>®(D):u<r(n)}
and dually

gs) = \/{y € 7(D) 1w > s()).

Thus we will have that / is a well-defined complete homomorphism if we can show
that (R, S) is a morphism of perfect posets. The fact that / is surjective and that
r, = r and s; = s is easy to check.
Letn € M (D). then R~'[n] = {r(n)}’ and thus (R~'[n])* = R~'[n]. Dually
we have that for each y € J>°(D), (S~ '[y])* = S~ '[y]. For x € J=(C),
(RIXD"™ = ({n 2 x < r(m)}h)"

=7 e )

=)

= R[x]
by property 4 in Proposition 4.27, and dually (S[m])* = S[m] by property 5 in
Proposition 4.27. Thus fr is completely join preserving and ggs is completely meet

preserving. We now check that R and S give the same function. Let x € J>°(C)
and m € M>°(C) with x < m then

(RIx]) =57 (x 1)
={y:s(y) <x}
C{y:s(y) <m}=S[m]

Finally we show that for all n € M*°(D) we have gs(u,) < fr(u,). Notice that
S r(un) = fr(r(n))
= /\{n' cr(n) <r(n)}
:/\{n':ngn'}:n,
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so we just need to show that g, (u,) < n. We have
gs(un) = gs(r(n))
=\ {y:s(y) <r(n)}
:\/{y:ygn}:n.

This completes the proof. =

Thus one may take the duals of surjective perfect lattice morphisms to be pairs of
maps (r : M>®(Z) — M>(Y),s : J*(Z) — J>®(Y)), where Y and Z are perfect
posets, satisfying the five properties in Proposition 4.27.

85. Discrete duals of binary operators and dual operators. We now return to the
task of developing duals of complete operators and complete dual operators.

LemMma 5.1. Let Ci, Cy and D be perfect lattices, f : C1 x C2 — D be completely
Join preserving in each coordinate, g : Cf’ x Cy — D and h : Cy x sz’ — D be
completely meet preserving in each coordinate. Then for every u; € C;, i = 1,2,

Lo furun) = V{f(x1.x2) 1wy > x; € J°(C;)}.

2. glur.un) = N{g(x1.mz) tuy > x1 € J°(Cy) anduy < my € M>®(Cr)}.

3. h(ur,up) = N{h(my, x2) : us > x3 € J®(Cy) and uy < my € M>®(Cy)}.

Proor. To prove 1, let u; € C;, i = 1,2. As C; is perfect, u; = \/ 4;, where
A; = {x; € J®(C;) : x; < u;}. As f preserves arbitrary joins in each coordinate,
we get that

[ w) = £\ A1)
= \{f(x1.u2) 1 x1 € 41}
— \/{\/{f(X1,xz) txp € Ay} i xy € Ay}

:\/{f(xl,xz):x,- €4;,i=12}

To prove 2, let u; € C;, i = 1,2. As C; is perfect, u; = \/ 41, where 41 = {x; €
JOO(C1) x1 < u1}, and u, = /\Bg, where B, = {I’l’lz S MOO(CQ) Tmy > uz}. Asg
preserves arbitrary meetss in each coordinate, we get that

g(uy,uz) Zg(\/Alvuz)
= /\{g(xlauz) (X1 € A}
= /\{/\{f(xl,mz) 1y € By} i x1 € A1}
= /\{f(xl,mz) 1 x1 € Arandmy € By}.
The proof of 3 is similar to the proof of statement 2. 4

REMARK 5.2. Notice that the result and the arguments given in the above lemma
and its proof depend on the fact that f (u;,u,) = 0 as soon as at least one of u; and
u, is 0 (and corresponding statements may be made for g and /). This will indeed
be the case for all the basic operations considered in this paper, but it is of course a
little restrictive. A duality theory can easily be developed without this restriction,
however then 0 must be added to the set of completely join irreducibles and 1 must
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be added to the set of completely meet irreducibles. For work of this kind in the
DL setting see [12].

Let C;. C; and D be perfect lattices, and let f : C; x C; — D be completely join
preserving in each coordinate. Let us define Ry C J*°(Cy) x J<(C3) x M>°(D)
as follows:

Ry(x1.x2,n) ifandonlyif f(x1.x2) <n.

PROPOSITION 5.3. For every f : C; x Cy — D completely join preserving in each
coordinate, evey x; € J*®(C;),i = 1,2, and every n € M (D),

RI1. Rf(xl,x2,_)l” = Rf(xl,xz,_).
R2y. Rp(_,x2.,n)" =Rs(_,x2.n).
R22. Rf(xl,_,n)“l = R/'(X],_, I’l).

PrOOF. To prove 1 let n € (R;(x1,x2,_))™. We have to show that f(x1,x3) <
n. Asn € (Ry(x1,x2,_ )" then n > \/(R;(x1.x2,_)) = ARs(x1,x2,_) by
Lemma 4.14, so it is enough to show that f (xj,x2) = A Ry (x1, x2,_). Using the
fact that D is a perfect lattice, we get the desired equality:

fxxn) = \{n € M*(D): f(x1.x) < n}
= N\f{n € M>=(D): Ry(x.x2.n)}
:/\Rf'(xl,)(z,_).

To prove 2 let x> € (Ry(x1,_,n))", then xo < A(R;(x1,_,n))*. By Lemma 4.14,
ARy (x1,_.n))* = VRs(x1,_.n). As f is completely join preserving in each
coordinate, f is order preserving, and so

f(x1.x2) < f(xls\/Rf(xls_an))
— \/{f(xl,x') :x" € Ry(x1,_,n)}

= \V{/ G x) s flx X)) <n} <.
The proof of 3 is like the proof of statement 2. -

DEFINITION 5.4. Let Yy, Y3, and Z be perfect posets, and let R C J*(Y7) x
J®(Y2) x M>(Z). We call R a (binary) operator relation provided, for every
x; €J°°(Y;),i =1,2and foreveryn € M>*(Z)

Rl. R()ﬂ,xZ,_)lu = R(X],Xg,_).

R21. R(_,x2.,n)" = R(_,x2,n).

R2,. R(x1, _,n)" = R(x1,_.n).

Given such a binary operator relation, define fz : Y| x Y, — Z by setting:

1. Forx; € J®(Y;),i = 1,2, fr(x1,x2) = A\ R(x1,x2, ).

2. Foru; € Y;,i =1,2,

Sl w) = \/{f (x1.x2) i > x; € T(Y3).i = 1,2}

PROPOSITION 5.5. Let Y1, Y»., and Z be perfect posetsand R C J*° (Y1) xJ®(Y,)x
M (Z) be an operator relation, then

1. R(_, x»,n) and R(x1,_, n) are downsets, and R(x1, x5, _) is an upset.
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2. fr(x1,x2) < mifandonly if R(x1, x2,n).

3. fris order preserving.

4. fris completely join preserving in each coordinate.

ProoF. The statements in 1 are direct consequences of the fact that R(x1, X2, ),
R(_.x3,n), and R(x;,_,n) are stable sets, which is exactly the content of the
conditions R1, R2;, and R2,. To prove 2, first notice that if R(x1,x»,n), then
n € R(xy,xy._)andthus fr(x1,x2) < n. Conversely, if fr(x1,x2) < n.theny <n
for each y € (R(x1,x2._))". Thatis, n € (R(x1,x2._))™ = R(x1, x2._) as desired.
To prove 3, it is enough to show that f'x is order preserving on J* (Y1) x J®(Y>).
To this end, let x;,x/ € J°°(Y;) with x; < x/. Let n € R(x{,x},_). then
x; < x] € R(_,x},n), and so by 1 R(xy,x}.n), and so x < x} € R(x1,_.n)
and we get R(x|, x,n) by 1. It now follows that

S r(x1,x2) /\R X1, x2,_) < /\R(x{,xé,_) = fr(x].x3).

To prove 4 we show that fx is completely join preserving in the first coordinate:
Let u; € Y; and assume that u; = \/ A. That fr(u1,up) > \/{fr(a.up) : a € A}
follows from 3. For the other direction we may assume that 4 C J>°(Y;) since
J>(Y1) is join-dense in Y. Also, since Z is meet-generated by M>(Z), it is
enough to show that if n € M>(Z) and n > \/{fr(a,up) : a € A} then n >
Sru,up) = \V{fr(x1.x2) 1 x; < u;},ie fr(x1,x2) < n whenever x; < u;, for
i =1,2. Butn > \/{fr(a,up) : a € A} implies that n > \/{fr(a.x3) : a € A}
and this means that R(a, x»,n) for each a € A. Now let m € (R(_, x»,n))", then
m > a for each a € A, and thus x; < u; = \/4 < m. So x; < m for each
m € (R(_, x2,n))". Thatis, x; € (R(_,x2,n))* = R(_, x2.n) and R(x;,x2,n) or
fr(x1,x2) < n as desired. -

PROPOSITION 5.6. Let Ci, Ca, D be perfect lattices, and f : C; x C» — D a map
that is completely join preserving in each coordinate, then fr, = f.

Proor. For x; € J*(C;) fori = 1,2,
fro(x1.x0) = \{n € M>(Z) : Ry(x1.x2.n)}
= N\{ne M>(2): f(x1.x2) <n} = f(x1.x2).
So fr, = f on J®(C1) x J*®(C,), and for (u1, us) € C; x C, we get
fr, (1. u2) Z\/{fRf(waz) cup > x; € J2(C)}
=\/{f (x1.x2) : wi > xi € T=(C)}
=\/{\V/{/ (x1.x2) 1 > x1 € J®(C)}iua > x3 € T (Y2)}

=\/{f(u1,xz) tuy > x2 € JX((C)}
:f(ula uz)- 4
PROPOSITION 5.7. Let Y1, Y», and Z be perfect posets, and let R C J>(Y7) X
J>®(Y2) x M>(Z) be an operator relation, then Ry, = R.

PrOOE. We have Ry, (x1,x2.n) if and only if fr(xi.x2) < n if and only if
R(x1, x2,1). -
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The above treatment also takes care of binary maps g : C? x C; — D and
h : Cy x C§ — D that are completely meet preserving in each coordinate: If
g : CY x C, — D is completely meet preserving in each coordinate, then g2 : C; x
C? — D?isacompletely join preserving map. Given x; € J<(C)), my € M (),
and x € J>°(D), the relation associated with g S, C J>°(Cy) x M>(C3) x J>°(D)
is defined by
Se(x1,ma, x) ifandonlyif g(x1,m) > x,

and these dual relations are characterized by the following properties:

S1. (Sg (x1 .My, _))u/ = Sg (x1 s mz,_).

S29. (Sg(L,ma, x))" = Sy(_,mn, x).
S2. (Sg(x1,_x))" = Sy (x1,_,x).

Notice that if R € J>®(Y]) x J®(Y,) x M>(Z) is an operator relation, then the
relation S C J*(Y1) x M>(Z) x J>(Y,) obtained by simply moving around the
order of the coordinates: R(xy, x>, n) if and only if S(x1, n, x») is a relation of the
type just described, that is, it satisfies S1, SZ?, and S2§. As the next proposition
shows this is no coincidence:

PrOPOSITION 5.8. Let C be a perfect lattice, f : C x C — C a complete operator,
and g : C? x C — C a complete dual operator. The following two statement are
equivalent:

1. g is the right residual of f;
2. Forall x,y € J®(C) and for allm € M>(C) we have

Ry (x.y.m) if and only if Sy (x.,m. y).

ProOOF. Suppose g is the right residual of f, and let x,y € J*°(C) and m €
M>(C), then R (x, y,m) if and only if f(x,y) < m if and only if y < g(x,m) if
and only if S, (x, m, y). Conversely assume 2, and let u,v,w € C. If f(u,v) < w,
then foreach x, y € J*°(C) withx < u, y < vwehave f(x,y) < w. Consequently,
for each m € M>(C) with m > w, we have f (x, y) < m, thatis, R, (x, y,m). But
then, by assumption, S, (x, m, y) holds, that is, g(x,m) > y. It now follows that

v:\/{y:vzyeJoo(C)}
< \/{g(xm) u>xeJ®C),w<me M*(C)} = g(u,w).

Similarly v < g(u, w) implies f (u,v) < w. -

Analogously one can define the relations 7}, dual to complete dual operators of
the type of /i, and one can prove corresponding statements about these.

86. Applications to substructural logic. We will now obtain relational semantics
for the fragment given by implication and fusion for each of the following logics:
Lambeck calculus, linear logic, relevance logic, BCK logic, and intuitionistic logic.
Our set-up is as in [5], and we refer to that paper for details.

As explained there, each of these logics correspond to classes of ordered algebras.
In all cases the appropriate ordered algebras are MPEs of the form (P,;, —, +)
where ;, —, « are binary operations. The operation ; is known as fusion, and the
two arrows are known as implication, and it is assumed that the fusion operation is
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residuated with — and « as its right and left residual, respectively. We call these
ordered algebras residuated algebras:

DEFINITION 6.1. A residuated algebrais an MPE (P, f, g, h) where P is a partially
ordered set, f,g. and & are binary operations on P, and g and % are the right and
left residual of £, respectively.

Each of the logics we will consider corresponds to a subclass of these algebras
given by some combination of the following inequations:

(associative) (a:B)y ~ a:(B:y)
(commutative) af =~ fia
(square-increasing) a 2 aa
(right-lower-bounded) a:f 2P

The Lambeck calculus corresponds to the class of associative residuated algebras,
the fragment of linear logic to associative and commutative residuated algebras, the
fragment of relevance logic to square-increasing associative and commutative resid-
uated algebras, and the fragment of BCK logic corresponds to right-lower-bounded
associative and commutative residuated algebras. Finally, the fragment of intu-
itionistic logic corresponds to the class of associative and commutative residuated
algebras that satisfy both square-increasing and right-lower-bounded.

Here we will first show that each of these equations are canonical for residuated
algebras, that is, if any one of them is satisfied in a residuated algebra, then it is
also satisfied in the canonical extension of that residuated algebra. This of course
implies that the class of residuated algebras corresponding to each of these logics
is generated as a variety of ordered algebras by its perfect members, where perfect
residuated algebras are defined by:

DEFINITION 6.2. A perfect residuated algebra is an MPE (C, f, g, h) where C is a
perfect lattice, f, g, and % are binary operations on C, and g and /4 are the right
and left residual of f, respectively. In particular f is a complete operator on C,
andg: C?x C — Candh: C x C? — C are complete dual operators.

Thus we are in a situation where the lattices obtained as canonical extensions fall
under the discrete duality as described in the previous two sections, we may define:

DEFINITION 6.3. Given a perfect residuated algebra, C = (C, f, g, h), its discrete
dual is the structure C = (C, R), where R C J>=(C) x J>=(C) x M*>(C) is given
by

R(x,y,m)ifand onlyif f(x,y) <m
ifand only if y < g(x,m)
ifand only if x < h(m, y).

PropoSITION 6.4. Let C = (C, f., g, h) be a perfect residuated algebra, and C =

(C. R) its dual structure. Then C is a perfect poset, and R satisfies R1 and R2.

Proor. This follows readily from the results in Sections 4 and 5. -
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DEFINITION 6.5. Let X = (X, R) be a structure where X is a perfect poset, and
R CJ®(X)xJ®(X)x M>(X) satisfies R1 and R2. We will call such a structure
a Kripke structure for now. Define relations S and 7" by

R(x,y,m) if and only if S(x,m, y)
if and only if T(m, y, x).
Then the dual of X is the residuated algebra X = (X, fr.gs.hr).

PROPOSITION 6.6. For any perfect residuated algebra C, (C) = C, and for any
Kripke structure X = (X, R), we have (X) = X.

ProOF. Again this follows from the results in sections 4 and 5, and we leave the
details to the reader. -

Secondly, after showing that each of the equations associative, commutative,
square-increasing, and right-lower-bounded are canonical for residuated algebras,
we show that each of them has a first order correspondent, that is, it holds in a
perfect residuated algebra if and only if its first order correspondent holds on the
dual structure of that perfect residuated algebra.

The consequence of these two facts then is that the class of dual structures
satisfying the appropriate first order correspondents provides a complete relational
semantics for the given logic.

We start by proving the canonicity of the equations:

PROPOSITION 6.7. Let f : P X P — P be such that f° preserves arbitrary joins in
each coordinate. If f satisfies associative, then so does f°.

PrOOF. Letz: P x P x P — P be defined by
1(p1.p2.p3) = f(p1. f(p2.p3)) = £ (f (p1. p2). p3).

It is enough to show that for all u;, us, u3 € P?,

S, f7(u2, u3)) = 17 (ur up, uz) = fO(f(ur. uz), u3).
We first show it for x1, x2, x3 € K(P°):

1% (x1, %2, x3) = N{t(p1. p2. p3) : xi < pi € Pi = 1,23}
= N/ (o1 f(p2.p3)) : xi < pr€ Pi = 1,2,3}
2 /\{f(Pl,Q) ix1 < p1€P f7(x2,x3) < q € P}

The reverse inequality 77 (x1, x2,x3) < A{f(p1.q) : x1 < p1 € P, f7(x2,x3) < q €
P} follows from the fact that { f (p, p3) : x; < pi.i = 2,3} is down-directed in the
set of elements from P that are above (x5, x3). As for the general case, since f°
preserves arbitrary joins in each coordinate, we get:

1 (ur, uz, u3) = \/{t”()q,xz,)q) cup > x; € K(P?),i =1,2,3}
= VoG £ xs)) sy > xi € K(P).i = 1,2,3)

= \/{f"(\/{xl cur > x1 € K(P7)}, f7(x2,x3) i ui > x5 €
K(P%),i =2,3}

= f"(ul,\/{f"(xz,x3)) tup > x; € K(P7).i =2.3})
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= 7 /{7 (w2, x3)) s > x5 € K(P)})
= f(ur. £ (U2, u3)).
Similarly, one can show that 7 (u1, us, u3) = fo(f°(u1, uz), u3). -

PrOPOSITION 6.8. Let f : P x P — Q be order preserving. If f satisfies commu-
tative, then so does f°.

PROOE. Let x1,x; € K(P7),
[ (x1.x2) = /\{f(l’lapz) tx; <p€Pi=12}
= AN{f(p2.p) i xi < pi€Pi=12}
= [7(x2,x1).
So for any uy, u, € P7,
o (uy, u) = \/{f”(xl,xz) cup > x; € K(P7),i =1,2}
= \/{f”(xz,xl) cu; > x; € K(P?),i =1,2}
= [ (ua, ). 4

PROPOSITION 6.9. Let [ : P X P — P be order preserving. If [ satisfies square-
increasing, then so does f°.

ProoF. Let x € K(P?) then
x=/N{p:x<pePr}
<A/ (p.p):x < per}
<A/ (p.@):x<pgeP}=[(xx)

The second inequality holds because the set {(p,p) : x < p € P} is filtering in
{(p.q) : x < p,q € P}, and this is because the projections of the second set is a
filter, namely the filter of P corresponding to the closed element x. Now for u € P?

u:\/{x:uzxeK(P”)}
<\V{/7(x.x):u>x € K(P°)}
< \/{f(x,y):u >x,y € K(P?)} = f7(u,u).

Here the second < simply holds because {f(x,y) : u > x,y € K(P?)} contains
{fo(x,x):u>x¢€K(P)}. =

PROPOSITION 6.10. Let f : P x Q — Q be order preserving. If f satisfies right-
lower-bounded, then so does [°.

PROOF. Suppose f(p.q) < g for every p € P, and ¢ € O, then for every
x€K(P?).y € K(Q)

f7x.y) = N{f(p.g):x<pePy<qeQ}
<Ng:y<qe0}=y.
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And then foru € P? and v € Q7,
Sow) =\/{/7(x.p) 1 u>x € K(P7).v > y € K(Q°)}
<\{y:v>yek(Q)}=n .

This completes the canonicity proofs. Now we turn to correspondence.

PROPOSITION 6.11. Let C be a perfect lattice and f : C x C — C a complete
operator. Then the following statements are equivalent:

1. Foralluy,us,uz € C, f(ur, f(uz,u3)) = f(f (ur,u2). u3).

2. Forall x1,x3,x3 € J=(C), f(x1, f(x2,x3)) = f(f (x1.x2). x3).

ProoF. Clearly 1 implies 2. The converse follows from the fact that for
up, uy, u3 € C

S, [ u3)) = \J{f (x1. f(x2.%3)) i > x; € T(C).i = 1,2.3}
and
L) uz)) = \J{S(f (x1.x2). x3)) 2w > % € T°(C),i = 1,2,3}.
This is obtained by using the fact that f preserves joins in each coordinate
repeatedly. —

The point is that the second statement in the above proposition only refers to
elements of the dual structure. These kind of statements easily translate to first
order statements on the dual. Here we do the translation in an algorithmic way not
worrying about getting the simplest possible statements.

PROPOSITION 6.12. Let f : C x C — C bea complete operator on a perfect lattice.
Let x; € J*(C), i =1,2,3andm € M>(C).

1. The following are equivalent:

(a) f(x1, f(x2.x3)) < m.
(b) Vx5([Vm' (R (x2,x3.m") — x5 <m')] — Ry(x1,x5.m)).
2. The following are equivalent:

(@) f(f(x1.x2),x3) < m.
(b) Vx| ([Vm' (R (x1,x2,m") — x| < m')] — Ry(x],x3,m)).
PrOOF. We just prove the first equivalence, and we resort to formal first order
statements in doing so. We assume that any element named x with any super- or

subscript comes from J*(C) whereas any element named m with any superscript
comes from M (C).

S(x1. f(x2. x3)) <m
& Vxy(x < f(x2.x3) = Ry(x1.x5.m))
S Vxy(Vm'[Ry(x2, x3.m") = x5 <m'l = Ry(x1,x3,m)).

DEFINITION 6.13. Let ®, denote the first order statement:
Vx1,x2,x3 Vm
(Vx5 (Vm'[R(x2, x3.m") = x5 < m'] = R(x1, x5, m))]

S[Vx|([Vm" (R(x1, x2,m") — x| <m")] — R(x{,x3,m))]).
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When interpreting this statement in a structure we assume the variables named by
x’s range over completely join irreducibles and the variables named by m’s range
over completely meet irreducibles.

COROLLARY 6.14. Let (X, R) be a Kripke structure, then the following statements
are equivalent:

1. (X, R) satisfies @,,;

2. (X, R) satisfies associative.

PROPOSITION 6.15. Let C be a perfect lattice, and f . C x C — D be a complete
operator. Then the following statements are equivalent:

1. Forallui,us € C, f(u1,us) = f(us, u1).

2. Forall x1,xy € J®(C), f(x1,x2) = f(x2,x1).

ProOOF. Similar to the proof of Proposition 6.11. |

DEFINITION 6.16. Let @, denote the first order statement:
Vxi1,x2 Vm (R(x1, x2,m) < R(x2, x1.m)).

When interpreting this statement in a structure we assume the variables named by
x’s range over completely join irreducibles and the variable named by m ranges over
completely meet irreducibles.

COROLLARY 6.17. Let (X, R) be a Kripke structure, then the following statements

are equivalent:
1. (X, R) satisfies @,

2. (X, R) satisfies commutative.
PROPOSITION 6.18. Let C be a perfect lattice, and f : C x C — C be a complete
operator. Then the following statements are equivalent:

1. Forallu e C,u < f(u,u).
2. Forallx € J®(C), x < f(x,x).

PROOF. Similar to Proposition 6.11. -
DEFINITION 6.19. Let ®@,; denote the first order statement:
Vx Vm (R(x,x,m) = x < m).

When interpreting this statement in a structure we assume the variable named by x
ranges over completely join irreducibles and the variable named by m ranges over
completely meet irreducibles.

COROLLARY 6.20. Let (X, R) be a Kripke structure, then the following statements
are equivalent:

1. (X, R) satisfies ®y;;

2. (X, R) satisfies square-increasing.

PROPOSITION 6.21. Let C be a perfect lattice, and f : C x C — C be a complete
operator. Then the following statements are equivalent:

1. Forallui,ur € C, f(ui,u2) < uy.

2. Forall x1,x, € J>®(C), f(x1.x) < x1.

PrOOF. Similar to the proof of Proposition 6.11. -
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DEFINITION 6.22. Let @,;, denote the first order statement:
Vx1,xo Vm (x1 < m = R(x1,x2,m)).

When interpreting this statement in a structure we assume the variables named by
x’s range over completely join irreducibles and the variable named by m ranges over
completely meet irreducibles.

COROLLARY 6.23. Let (X, R) be a Kripke structure, then the following statements
are equivalent:

1. (X, R) satisfies @,:

2. (X, R) satisfies right-lower-bounded.

We conclude:

THEOREM 6.24. The class of Kripke structures satisfying @, is a complete semantics
for the Lambeck calculus.

THEOREM 6.25. The class of Kripke structures satisfying ®, and @, is a complete
semantics for the fragment of linear logic given by implication and fusion.

THEOREM 6.26. The class of Kripke structures satisfying ®,, ®., and @y is a
complete semantics for the fragment of relevance logic given by implication and fusion.

THEOREM 6.27. The class of Kripke structures satisfying ®,, ®., and @, is a
complete semantics for the fragment of BCK logic given by implication and fusion.

THEOREM 6.28. The class of Kripke structures satisfying ®,, ®., Oy, and ®,y, is
a complete semantics for the fragment of intuitionistic logic given by implication and
fusion.
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