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CANONICAL EXTENSIONS AND
COMPLETIONS OF POSETS AND LATTICES

A b s t r a c t. The purpose of this note is to expose a new

way of viewing the canonical extension of posets and bounded

lattices. Specifically, we seek to expose categorical features of

this completion and to reveal its relationship to other completion

processes.

.1 Introduction

The theory of canonical extensions is introduced by Jónsson and Tarski

[15, 16] for Boolean algebras with operators. Their approach was based on

a complete-lattice theoretic characterisation of the dual space of a Boolean

algebra and provides access to the benefits of Stone duality in a uniform

way for a class of varieties of algebras having a Boolean reduct. The most
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significant contribution made by this pioneering work of Jónsson and Tarski

is to provide a framework for transporting the benefits of Boolean duality

theory to a wider setting. It is chiefly in this respect that the raison d’être

of the theory of canonical extensions lay.

In [9] and [10] Jónsson and Gehrke showed that topological duality for

distributive lattices can be captured in a similarly algebraic way, and that

results and tools may be developed for a much broader class of additional

operations than those considered by Jónsson and Tarski. In the Boolean

and distributive settings the existence of the canonical extension of the

lattice reduct is provided by topological duality. Thus finding the complete-

lattice theoretic characterisation of the dual space is all that needs to be

done before addressing the main issue: the treatment of other algebraic

operations and their properties.

In [8] the first steps were taken in generalising the theory beyond the

distributive setting. Here the requirements changed somewhat in that ex-

istence also is an issue. In the setting of non-distributive lattices a number

of candidate completions were available including the particular comple-

tion introduced by Harding in [13] as a candidate for a canonical extension

for lattices as well as the completions obtainable via the existing dualities

for lattices [20, 4, 14]. While the canonical extension characterised in [8]

may be seen to be the one obtained by all the above mentioned candidate

methods, a simple and direct construction of the canonical extensions us-

ing a Galois connection between filters and ideals of a lattice was used to

prove existence instead. This construction has the advantage of being con-

structive. Furthermore, as we indicate below, it shifts the focus towards

viewing the canonical extension as one completion among a whole hierarchy

of completions of a lattice.

There is a significant difference between the character of canonical ex-

tension theory in the distributive and non-distributive settings. In the

distributive (and Boolean) settings the theory simply rephrases the dual-

ity theoretic methods in an algebraic form and thus facilitates the treat-

ment of additional operations. By contrast, it has turned out that in the

non-distributive setting the canonical extension theory works as in the dis-

tributive setting. It is therefore much simpler than the available duality

theories. Thus it has proved to be a method for transporting insight, re-

sults and methodology from distributive and Boolean duality theory to

canonical extensions of lattice-based and even poset-based algebras and,
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from there, also to the duality theory for these structures [3, 7].

Canonical extensions for partially ordered algebras were introduced in

[3] and the existence issue had to be treated again. While a construction

similar to the one given in [8] works in this setting as well, an alternate

description was outlined. This description clearly identifies the canonical

extension as obtained in two steps. The first consists in making an amal-

gam of the directed join and meet completions of the original poset. This

so-called intermediate structure is quite important; it was first exploited by

Ghilardi and Meloni in [12]. At the second step of the construction one

forms the MacNeille completion of the intermediate structure. Viewing the

canonical extension as a two-step process in this way makes clear the close

relationship of canonical extension to these classical forms of completion.

In this paper we take this idea further: we consider a hierarchy of comple-

tions for posets and identify the position and significance of the canonical

extension within this hierarchy.

The traditional focus of canonical extension theory is additional opera-

tions. We will not consider these here. We will however concern ourselves

with finding a direct and two-sided treatment of the extension of homo-

morphisms. So far, in the theory of canonical extensions homomorphisms

have been treated within the framework of operators and dual operators.

In fact, in [3] the dual object and the extensions of arbitrary lattice homo-

morphisms are easily derived precisely because one can split the persona of

a lattice homomorphism into two parts: a box which is meet-preserving and

a diamond which is join-preserving. The additional (Sahlqvist) inequalities

2 6 3 and 3 6 2 tell us that these two personae are actually equal. It

is clear that this approach is useful for obtaining a dual correspondent for

the notion of homomorphism. However, it seems natural from a categori-

cal point of view to ask whether there is a more direct and intrinsic way

of extending morphisms than through a detour to the much more general

operators and dual operators. We show here that there is indeed such a

way.

We begin the paper by considering completions in general. Posets and

order preserving maps do not allow for a free extension mechanism to the

category of complete lattices and complete lattice homomorphisms. They

do however allow for free one-sided completions. The directed join comple-

tion of a poset is the unique directed-join-compact dcpo generated by the

poset and may be obtained as the lattice of all ideals of the poset. Dually,
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posets of course also have free directed meet completions and both have

the nicest categorical properties one could wish for. By alternating these

two completions we obtain a hierarchy of extensions of a poset akin to the

hierarchy of Borel sets in analysis or the hierarchies for quantifier com-

plexity for sentences in first order logic. The directed join completion of a

poset P is its Σ0 completion, the directed join completion of the directed

meet completion of P is the Σ1 completion, and so on. In this setting it

is then natural to ask for ∆n completions to be two-sided objects that are

the greatest common lower bounds of the Σn and Πn completions.

In this paper we identify the ∆1 object. We show that for a poset P it

contains both the Σ0 completion (that is, the directed join completion) and

the Π0 completion (that is, the directed meet completion) of P and that

the order structure on the union of these in this ∆1 object is exactly the

order structure of the intermediate structure from [3]. While this order was

chosen ad hoc in [3] the findings of this paper identify its naturality. Fur-

thermore we show that, for lattices, the ∆1 object is exactly the MacNeille

completion of the intermediate structure. As defined in [3], this MacNeille

completion is exactly the canonical extension. Thus, in the lattice case, our

analysis identifies the canonical extension as a very natural object in the

completion hierarchy. Outside the lattice case, the ∆1 object is in general

not a bi-dcpo which makes it less desirable. We show that it is reasonable

to adopt the canonical extension as identified in [3] as the ∆1-like object in

general. For this reason we introduce here and propose the future change in

notation by which the canonical extension of a poset is denoted P δ rather

than the traditional P σ.

As stated above our second purpose is to understand directly how and

why lattice homomorphisms extend to complete lattice homomorphisms

under canonical extension. MacNeille completion, the last step in con-

structing the canonical extension, is well known not to be well-behaved

on maps. However, in [6] Erné shows that the maps between posets that

extend to complete lattice homomorphisms of the MacNeille completions

are those that are cut-stable. Cut-stability is nice in that it has a first-

order description. On the other hand, a major drawback is that not all

lattice homomorphism (even between Boolean algebras for example) are

cut-stable. Interestingly and significantly, cut-stability becomes a much

more reasonable requirement for intermediate structures. In particular we

show that the unique extension of a lattice homomorphism to the inter-
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mediate structures is always cut-stable thus explaining the functoriality of

canonical extension intrinsically.

.2 Free join- and meet-completions

This section collects together in the form we require it material on free

join- and meet-completions of bounded lattices, and of the extensions of

the ideas to posets. Sources for this are [17], Section 6, and [11], Sections

I-4 and IV-1 and [19]; for an outline of the constructions in the poset case

see [2], Exercise 9.6.

Let Q be a poset. Then we write
⊔

D for the supremum of a directed

subset D of Q, when this supremum exists. A dcpo (directedly complete

partial order) is a poset Q in which
⊔

D exists for every directed subset D

of Q. Given a subset R of a dcpo Q we say that Q is
⊔

-generated by R

if every element of Q is the directed join of elements from R. An element

k of a dcpo Q is said to be compact (alias finite)if k 6
⊔

D implies that

k 6 d for some d ∈ D. The set of compact elements of Q will be denoted

by F (Q). In the terminology of [11], a dcpo Q is said to be an algebraic

domain if Q is
⊔

-generated by F (Q). A particular instance of an algebraic

domain is the family Id(P ) of all ideals (= directed down-sets) of a poset

P , ordered by inclusion; in this context directed joins are given by union.

We have F (Id(P )) = { ↓p | p ∈ P } and ↓ : p 7→ ↓p is an order-isomorphism

from P onto F (Id(P )).

Let P be a poset. Then a
⊔

-completion of P consists of a pair (α,Q)

where Q is a dcpo and α : P →֒ Q is an order-embedding such that Q is
⊔

-generated by α(P ). Such a completion is said to be compact if

α(p) 6
⊔

D =⇒ ∃d ∈ D(α(p) 6 d)

(equivalently, α(p) 6
⊔

α(S), where α(S) is a directed subset of Imα, then

p 6 s for some s ∈ S).

Proposition 2.1. Assume that (α,Q) is a
⊔

-completion of a poset Q.

Then the following are equivalent:

(1) (α,Q) is a compact completion;
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(2) whenever Q′ is a dcpo and f : P → Q′ is an order-preserving map,

then there exists a unique map f : Q → Q′ preserving directed joins

and such that f ◦ α = f , given by

f(x) :=
⊔

{ f(p) | x > α(p) };

(3) there exists an isomorphism η : Q ∼= Id(P ) with η(α(p)) = ↓(p) for

all p ∈ P .

The proposition shows that a poset P has one, and up to isomorphism

only one, compact
⊔

-completion, and that this has the universal mapping

property given by (2). For this reason we shall refer to this completion as

the free
⊔

-completion of P . We denote it by F⊔(P ), and the embedding of

P into F⊔(P ) by αP .

Lemma 2.2. Let P be a poset. Then αP : P → F⊔(P ) has the following

properties.

(i) αP preserves all existing meets;

(ii) αP preserves all existing finite joins.

Proof. Consider (i). Let S ⊆ P and assume that
∧

P S = s0 exists

in P . Clearly s0 is a lower bound for S in F⊔(P ). Consider y ∈ F⊔(P ) for

which y 6 s for all s ∈ S. Then P ∋ p 6 y implies p 6 s for all s ∈ S,

so that p 6 s0. Since y =
⊔

{ p ∈ P | p 6 y } we deduce that y 6 s0.

Therefore s0 =
∧

F⊔(P )) S, as required.

We now prove (ii). Certainly the empty join is preserved if it exists in

P , since this is equivalent to P having a bottom element, which is mapped

by αP to the bottom element of F⊔(P ). Now assume that p1 and p2 in P are

such that p1 ∨ p2 exists in P . Since αP is an order-embedding, pi 6 p1 ∨ p2

(i = 1, 2) in F⊔(P ) as well. Suppose y is an upper bound for p1 and p2

in F⊔(P ). Then, since y =
⊔

{ p ∈ P | p 6 y }, there exists p′ ∈ P with

pi 6 p′ 6 y, for i = 1, 2. Therefore p1 ∨ p2 6 y. 2

Notice that the compactness property tells us that αP must destroy any

inherently infinite directed joins which happen to exist in P .

The following interaction with the existence of ∧ is worthy of note.

Proposition 2.3. If P is a ∧-semilattice then F⊔(P ) is also a ∧-

semilattice.
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F⊔(P )
F⊔(f)

// F⊔(P ′)

P

αP

OO

f // P ′

α
P ′

OO

Figure 1:

Proof. It is easy to see that if I and J are up-directed down-sets of a

∧-semilattice then I ∩ J is also an up-directed downset. 2

Given two posets P and P ′, and an order-preserving map f : P → P ′

then we have a unique directed join preserving map F⊔(f) : F⊔(P ) →

F⊔(P ′) such that the diagram in Figure 1 commutes.

We can, and sometimes will, suppress the embedding of a poset into

its free
⊔

-completion and regard P as a subposet of F⊔(P ). When this is

done, the formula for F⊔(f) takes the form

F⊔(f)(y) =
⊔

{ f(p) | y > p } for y ∈ F⊔(P ).

It is immediate that this map F⊔(f) is order-preserving and extends f .

The following lemma records elementary properties of the lifting of a

map f . Parts (i)(a) and (b) are essentially well known (cf. [11], [19], [2],

9.11).

Lemma 2.4. Let P and P ′ be posets and let f : P → P ′ be an order-

preserving map.

(i) (a) F⊔(f) is the unique extension of f that preserves
⊔

.

(b) Assume P and P ′ are ∨-semilattices and that f preserves ∨ and

0. Then F⊔(f) preserves
∨

.

(c) Let P and P ′ be ∧-semilattices and assume that f preserves ∧.

Then F⊔(f) preserves ∧.

(ii) Assume that f is an order-embedding. Then F⊔(f) is an order-

embedding.

Proof. To prove (i)(a), notice that since F⊔(P ) is
⊔

-generated by P ,

there is at most one
⊔

-preserving extension of f to F⊔(P ). We show that
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the map F⊔(f) as specified above does indeed preserve directed joins. To

this end let D be a directed set in F⊔(P ). Then

F⊔(f)(
⊔

D) =
⊔

{ f(p) |
⊔

D > p }

=
⊔

{f(p) | ∃d ∈ D(d > p) }

=
⊔

d∈D

⊔

{f(p) | d > p }.

To prove (b), simply replace, in the above calculation, directed joins by

arbitrary non-empty joins and exploit the fact that f preserves finite joins.

The empty join is preserved since f preserves 0.

Now consider (c). Let y = y1 ∧ y2 in F⊔(P ). Then F⊔(f)(y) 6

F⊔(f)(y1) ∧ F⊔(f)(y2) because F⊔(f) is order-preserving. Also

F⊔(f)(y1) ∧ F⊔(f)(y2) =
∨

{ p′ ∈ P ′ | p′ 6 F⊔(f)(yi) (i = 1, 2) }.

By compactness, there exist p1 and p2 in P such that p′ 6 f(pi) and pi 6 yi

(i = 1, 2). Then p′ 6 f(p1) ∧ f(p2) = f(p1 ∧ p2). Hence p′ 6 F⊔(y). The

required result follows.

Finally we prove (ii). Take y1 
 y2 in F⊔(P ). Then there exists p ∈ P

such that p 6 y1 but p 
 y2. Then f(p) 6 f(y1). We claim that f(p) 

f(y2). If this were not so we would have

f(p) 6
⊔

{ f(q) | y2 > q }.

By compactness, there exists q 6 y2 such that f(p) 6 f(q). Since f is an

order-embedding we have p 6 q 6 y2, contrary to hypothesis. 2

We have, of course, order dual versions of all of the above constructions

and properties. We adopt the notation F⊓(P ) for the free ⊓–completion of

a poset P . We write F⊓(f) for the directed meet preserving extension of

an order-preserving map f : P → P ′. It is given by

F⊓(f)(y) = ⊓{ f(p) | y 6 p ∈ P }.

We can of course iterate the above constructions, to form F⊔(F⊓(P ))

and F⊓(F⊔(P )) and so on. This enables us to form an infinite hierarchy of

completions by alternating up-directed and down-directed completions. In

the next section we investigate the bottom end of this hierarchy.
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Figure 2:

.3 The intermediate structure and bi-directed completions

Figure 2 shows the first stages of a hierarchy of completions of a poset P ,

in which directed completions and dually directed completions alternate.

As in first-order logic and set theory, one can think of this as a complexity

hierarchy. From this perspective F⊔(P ) is the Σ0 directed completion of

P while, for example, F⊔(F⊓(P )) is the Σ1 directed completion of P and

F⊓(F⊔(P )) is the Π1 directed completion of P . With this idea in mind,

it is natural to ask for two-sided objects of type ∆0, ∆1 etc. Here we

shall consider this question on level 1 as we are ultimately interested in

elucidating the canonical extension construction.

Essentially, what we want to do is to identify the ’common part’ of the

Σ1 and the Π1 directed completion of P . If F⊔(F⊓(P )) and F⊓(F⊔(P )) were

subsets of some common set X, then we would simply take the common

part to be their intersection. In the absence of such an X, a natural sub-

stitute is to ask for a greatest interpolant Q in the diagram in Figure 3.

Specifically, in the diagram we want all the maps to be embeddings and

the compositions along the upward and downward diagonals to be αF⊓(P )

and βF⊔(P ), respectively and we want the diagram to commute.

We now embark on showing how to construct the required interpolant Q.

First we note that both F⊔(P ) and F⊓(P ) sit inside both of F⊔(F⊓(P )) and

F⊓(F⊔(P )), for example, in F⊔(F⊓(P )) we have a copy of F⊔(P ) in the guise

of Im(F⊔(βP )) and a copy of F⊓(P ) in the guise of Im(αF⊓(P )).

Theorem 3.1. For a poset P , the order induced on

Int(P ) = F⊔(P ) ∪ F⊓(P )

in F⊔(F⊓(P )) is the same as the one induced in F⊓(F⊔(P )). For y ∈ F⊔(P )
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Figure 3:

and x ∈ F⊓(P ) it is given by

y 6 x ⇐⇒ ∀p, q ∈ P ([αP (p) 6 y and x 6 βP (q)] =⇒ p 6 q)

x 6 y ⇐⇒ ∃p ∈ P (x 6 βP (p) and αP (p) 6 y).

In particular, for y ∈ F⊔(P ) and x ∈ F⊓(P ) we have y = x if and only if

there is a p ∈ P with αP (p) = y and βP (p) = x.

Proof. Let y ∈ F⊔(P ) and x ∈ F⊓(P ) and consider their embeddings in

F⊔(F⊓(P )), namely F⊔(βP )(y) and αF⊓(P )(x). Since maps in the image of

F⊔ preserve
⊔

(Lemma 2.4) and the α-embeddings preserve
∧

(Lemma 2.2),

it follows that

F⊔(βP )(y) =
⊔

{F⊔(βP )(αP (p)) | αP (p) 6 y, p ∈ P}

and

αF⊓(P )(x) =
∧

{αF⊓(P )(βP (q)) | x 6 βP (q), q ∈ P}.

Thus we see that F⊔(βP )(y) 6 αF⊓(P )(x) if and only if

∀p, q ∈ P [(αP (p) 6 y and x 6 βP (q)) =⇒ F⊔(βP )(αP (p)) 6 αF⊓(P )(βP (q))].

Now, since the diagram in Figure 1 with f = βP commutes we have

F⊔(βP )(αP (p)) = αF⊓(P )(βP (p)) and thus the inequality F⊔(βP )(αP (p)) 6

αF⊓(P )(βP (q)) is equivalent to αF⊓(P )(βP (p)) 6 αF⊓(P )(βP (q)). In turn,

since both αF⊓(P ) and βP are embeddings, this inequality is equivalent to

p 6 q and we have proved that F⊔(βP )(y) 6 αF⊓(P )(x) if and only if

∀p, q ∈ P [(αP (p) 6 y and x 6 βP (q)) =⇒ p 6 q].
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That is, we have shown that, in F⊔(F⊓(P )), the condition for y 6 x is the

one claimed.

Now we consider

αF⊓(P )(x) 6 F⊔(βP )(y)

=
⊔

{F⊔(βP )(αP (p)) | αP (p) 6 y, p ∈ P}.

As the image of αF⊓(P ) is
⊔

-compact in F⊔(F⊓(P )), it follows that this

inequality is equivalent to

∃p ∈ P (αP (p) 6 y and αF⊓(P )(x) 6 F⊔(βP )(αP (p)) = αF⊓(P )(βP (p)).

Now as αF⊓(P ) is an embedding we have αF⊓(P )(x) 6 αF⊓(P )(βP (p)) if and

only if x 6 βP (p). Putting these things together we have that αF⊓(P )(x) 6

F⊔(βP )(y) if and only if

∃p ∈ P (αP (p) 6 y and x 6 βP (p)).

Checking that the conditions for βF⊔(P )(y) 6 F⊓(αP )(x) and F⊓(αP )(x) 6

βF⊔(P )(y) in F⊓(F⊔(P )) are the same can be done similarly and is left to

the reader. 2

According to the final statement in Theorem 3.1 αP (p) and βP (p) are

identified for each p ∈ P and we regard Int(P ) as being partially ordered,

and as containing P as a subposet. We refer to this ordered set as the

intermediate structure of P . This structure was first exploited by Ghilardi

and Meloni in [12]. It was identified as being the amalgamation of F⊔(P )

and F⊓(P ) given above in [3]; see Theorem 2.5 and the remarks following

it. New to this paper is the point that this is the order induced on the

union in the Σ1- and Π1-completions of P .

Remark 3.2. One of the advantages of the canonical extension point

of view is that lattice ordered algebras and their duals both are encoded in

one and the same structure making it easier to talk about the relationship

between the two. However, in the traditional approach to duality and com-

pletions the duals are given set theoretically. In that setting one may want

to think of the elements of F⊔(P ) as the ideals of P ordered by inclusion

while the elements of F⊓(P ) are the filters of P ordered by the opposite
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order to inclusion. As an aside we note that in this incarnation the order

on Int(P ) is given below. For F,F ′ ∈ F⊓(P ) and I, I ′ ∈ F⊔(P )

I 6 F ⇐⇒ ∀x, y ([x ∈ I and y ∈ F ] =⇒ x 6 y)

F 6 I ⇐⇒ F ∩ I 6= ∅;

F 6 F ′ ⇐⇒ F ⊇ F ′;

I 6 I ′ ⇐⇒ I ⊆ I ′.

In addition, F 6 I and I 6 F if and only if there exists p ∈ P such that

F = ↑p and I = ↓p.

Theorem 3.1 together with the results of the preceding section yield the

following proposition.

Proposition 3.3. Let P be a poset. The following statements hold:

(i) F⊔(P ) is meet-dense in Int(P ) and F⊓(P ) is join-dense in Int(P ).

(ii) In Int(P ) up-directed joins exist for elements drawn from F⊔(P ), and

may be regarded as being calculated either in F⊔(P ) or in Int(P ).

Dual assertions hold for down-directed meets of elements drawn from

F⊓(P ).

(iii) Let L be a bounded lattice. Then in Int(L), arbitrary joins and finite

meets exist for elements drawn from F⊔(L), and may be regarded as

being calculated either in F⊔(L) or in Int(L). Likewise for arbitrary

meets and finite joins of elements drawn from F⊓(L).

Now we have established that Q = Int(P ) works as an interpolant but

we would like to find the largest such Q. Suppose Q is an interpolant as

in Figure 3 and let q ∈ Q. Since Q embeds in F⊔(F⊓(P )) we have that

↓q∩F⊓(P ) is a directed set whose join is q in F⊔(F⊓(P )) and thus certainly

also in the subposet Q. By symmetry we also have the dual property that

↑q ∩ F⊔(P ) is a down-directed set whose meet in Q is q. In particular,

this means that Int(P ) is both
∨

-dense and
∧

-dense in Q, and thus Q

may be seen as a subposet of the MacNeille completion N (Int(P )). For a

discussion of the basic properties of MacNeille completion see for example

[2]; cf. also [1] and [18].
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Definition 3.4. For a poset P , define the bi-directional interpolant,

P δ, by

P δ = {u ∈ N (Int(P )) : ↑u ∩ F⊔(P ) is down-directed and

↓u ∩ F⊓(P ) is up-directed }.

The next proposition follows immediately from the discussion above.

Proposition 3.5. For a poset P , the bi-directional interpolant, P δ, is

the greatest possible interpolant Q in Figure 3.

We can easily prove that in the lattice case the greatest interpolant

coincides with the canonical extension.

Proposition 3.6. Let L be a lattice. Then Lδ = N (Int(L)) and is thus

the canonical extension of L.

Proof. As noted above, we know from the treatment in [3] that the

canonical extension of a poset P is N (Int(P )).

As we saw in Proposition 2.3, if L is a lattice then F⊔(L) is a ∧-

semilattice and, dually, F⊓(L) is a ∨-semilattice. Therefore ↑u ∩ F⊔(L)

is down-directed and ↓u ∩ F⊓(L) is up-directed, for each u ∈ N (Int(P )).

This shows that Lδ = N (Int(P )). 2

We must now ask whether, for an arbitrary poset P , the greatest inter-

polant P δ has the completeness properties we would want of a bi-directional

completion. It does not: P δ need not be a bi-dcpo (that is, a dcpo and a

dual dcpo).

Consider the poset depicted in Figure 4. This has an infinite decreasing

sequence of ideals, obtained by starting from the improper ideal P and

discarding the uppermost north-east diagonal ray of points repeatedly; this

sequence has {r, s} as its set of common lower bounds in Int(P ), but {r, s}

is not an up-directed set.

Notwithstanding the bad behaviour exhibited by our example, there is

however a sizeable class of posets for which the interpolant is a bi-dcpo.

This class of course includes the finite posets and it includes all lattices.

Further exploration of this class would certainly be of interest but will not

be pursued here.

Our analysis above points towards N (Int(P )) as another reasonable ∆1-

like object of study. We pursue this in the next section. Before concluding
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Figure 4:

F⊓(P )
F⊓(f)

// F⊓(P ′)

P

βP

OO

f
// P ′

β
P ′

OO
F⊔(F⊓(P ))

F⊔(F⊓(f))
// F⊔(F⊓(P ′))

F⊔(P )

F⊔(βP )

OO

F⊔(f)
// F⊔(P ′).

F⊔(β
P ′)

OO

Figure 5:

this section we shall show that order-preserving maps have an unambiguous

extension to the intermediate structure.

Let P and P ′ be posets and let f : P → P ′ be an order-preserving map.

The basic commutative diagram for the free directed meet extension and the

result of applying the functor F⊔ to it yield the diagram shown in Figure 5.

On the other hand, applying first the functor F⊔ and then the functor F⊓

to the basic commutative diagram for the free directed join extension yields

the diagram shown in Figure 6. These two figures, Figure 5 and Figure 6,

show that in both the lifting of f to the Π1-completion, F⊓(F⊔(f)), and the

lifting of f to the Σ1-completion, F⊔(F⊓(f)), the restriction to F⊔(P ) acts

exactly as F⊔(f) and is thus unambiguously determined. Dually we get

that the action of the lifting of f on F⊓(P ) is unambiguously determined

and is that of F⊓(f).

For a more compact notation we shall henceforth adopt the customary

terminology and refer to the elements of F⊔(P ) and F⊓(P ) as open and

closed, respectively, and denote these by by O and K. Whenever P is
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F⊓(F⊔(P ))
F⊓(F⊔(f))

// F⊓(F⊔(P ′))

F⊔(P )

βF⊔(P )

OO

F⊔(f)
// F⊔(P ′)

β
F⊔(P ′)

OO

P

αP

OO

f
// P ′.

α
P ′

OO

Figure 6:

clear from the context, we suppress all reference to it when dealing with

open and closed elements. Usually in the canonical extension literature O

has been denoted O(P σ) whenever it was desirable to make the poset P

explicit. Actually the collection of ’opens’, as the
∨

-closure of the original

poset in the extension, depends on both the poset and the extension and

should really be named O(P,P σ). In fact, as we have seen here, the opens

are fully determined by P , being the free directed completion of P , and we

will have occasion to consider this poset as sitting inside various extensions.

Therefore we elect not to make P σ overt when dealing with open elements.

Instead, when we need to make clear which poset we are talking about, we

will write KP and OP .

We thus have the following explicit description of the extension of maps

to the intermediate structure

Int(f)(x) =

{

⊔

{ f(p) : P ∋ p 6 x } (x ∈ OP ),

⊓{ f(p) : P ∋ p > x } (x ∈ KP ).

.4 The MacNeille completion of the intermediate structure

In this section we focus on the canonical extension viewed as the MacNeille

completion of the intermediate structure. We recall again that the basic

properties of the MacNeille completion are discussed for example in [2];

cf. also [1] and [18].

In [3], the canonical extension of a poset P , as defined there was shown

to be the MacNeille completion of Int(P ) up to isomorphism. As we have

seen above P δ = N (Int(P )) for lattices. Even beyond the setting of lattices
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N (Int(P )) has several merits. For one, it is a lattice completion and thus

has much better closure properties than P δ does in general. Secondly,

and maybe even more importantly, as was exploited in [3] and [7], this

completion lands us within a category that is part of a discrete duality and

thus allows us to apply/develop duality theory.

Our concern here is with extension of maps. In particular, we want

to show that lattice homomorphisms extend to complete lattice homo-

mophisms without developing the more general theory of operators and

dual operators. It is well known that the MacNeille completion has nice

categorical properties with respect to embeddings [1], but that it does not

behave well with respect to maps in general.

For complete lattices the complete lattice homomorphisms are the most

natural. This is particularly true in the context of a two-sided completion

such as the MacNeille completion. To this end the results of M. Erné in

[6] are relevant. There he shows that in order for the class of posets (and

then in fact quosets will do) to be a reflective subcategory of the category

of complete lattices with complete lattice homomorphisms, the notion of

map must be extremely restricted (to what he calls cut-stable maps).

In [6] Erné identifies the cut-stable maps as those maps f : P → P ′

between posets such that

∀p′, q′ ∈ P ′ [p′ 
 q′ =⇒ ∃p, q ∈ P (p 
 q

and [f−1(↑p′) ⊆ ↑p] and [f−1(↓q′) ⊆ ↓q])].

We now adapt this condition to the special setting of maps Int(f).

Let P be a poset. Then Int(P ) is such that the open elements, OP ,

and the closed elements, KP , are respectively
∧

- and
∨

-dense in Int(P ).

We shall adopt the notation, adopted in [6], of superscript arrows to de-

note common bounds, but, as in [3] and [7], we restrict the bounds under

consideration to be open or closed elements. To be precise, given a poset

P and a subset S of Int(P ) we define

S↑ = { y ∈ OP | ∀s ∈ S(y > s) },

S↓ = {x ∈ KP | ∀s ∈ S(x 6 s) }.

The set S is a lower cut if S = S↑↓ and the associated cut is the pair (S, S↑).

The pair (↑,↓ ) forms a Galois connection, and the associated complete

lattice of Galois-closed sets or cuts is the MacNeille completion N (Int(P )).
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Lemma 4.1. Let f : P → P ′ be order preserving and Int(f) : Int(P ) →

Int(P ′) the extension of f to the intermediate structure. Then Int(f) is cut

stable if and only if the following condition holds:

For all x′ ∈ KP ′ and y′ ∈ OP ′ with x′ 
 y′ there exist x ∈ KP and

y ∈ OP with x 
 y such that:

∀p ∈ P (x′
6 f(p) =⇒ x 6 p),

∀p ∈ P (f(p) 6 y′ =⇒ p 6 y).

Proof. If Int(f) is cut-stable, then, as x′, y′ ∈ Int(P ′) and x′ 
 y′, there

are u, v ∈ Int(P ) with u 
 v and Int(f)−1(↑x′) ⊆ ↑u and Int(f)−1(↓y′) ⊆

↓v. Since KP is
∨

-dense in Int(P ) and OP is
∧

-dense in Int(P ), there

are x ∈ KP and y ∈ OP with x 6 u, v 6 y and x 
 y. Now let p ∈ P

with x′ 6 f(p) = Int(f)(p). Then p ∈ Int(f)−1(↑x′) and thus u 6 p

which implies x 6 p. Dually, if p ∈ P with y′ > f(p) = Int(f)(p), then

p ∈ Int(f)−1(↓y′) and thus p 6 v which implies p 6 y. That is, x, y is the

pair of elements required for the above condition.

Conversely, suppose the condition of the lemma holds, and let u′, v′ ∈

Int(P ′) with u′ 
 v′. Again, as KP ′ is
∨

-dense in Int(P ′) and OP ′ is
∧

-

dense in Int(P ′), there are x′ ∈ KP ′ and y′ ∈ OP ′ with x′ 6 u′, v′ 6 y′ and

x′ 
 y′. Now by the condition of the lemma, we have x ∈ KP and y ∈ OP

with x 
 y such that for all p ∈ P we have (x′ 6 f(p) =⇒ x 6 p) and

(f(p) 6 y′ =⇒ p 6 y).

We first show that it follows that for all z ∈ Int(P ) we have (x′ 6

Int(f)(z) =⇒ x 6 z) and (Int(f)(z) 6 y′ =⇒ z 6 y). Let z ∈ KP with

x′ 6 Int(f)(z) = ⊓{f(p) | z 6 p ∈ P}. Then for each p ∈ P with z 6 p we

have x′ 6 f(p) and thus x 6 p. But then we have x 6 ⊓{p | z 6 p ∈ P} = z

as desired. Now let z ∈ OP with x′ 6 Int(f)(z) =
⊔

{f(p) | z > p ∈ P}. By

the
⊔

-compactness of F⊓(P ′) = KP ′ in F⊔(F⊓(P ′)) and thus in Int(P ′), it

follows that there is p ∈ P with z > p and x′ 6 f(p). Consequently x 6 p

and thus x 6 z.

The proof that for all z ∈ Int(P ) we have (Int(f)(z) 6 y′ =⇒ z 6 y)

is order dual.

Finally suppose u′ 6 Int(f)(z) for z ∈ Int(P ). Then x′ 6 Int(f)(z) and

thus x 6 z. Dually if Int(f)(z) 6 v′ for z ∈ Int(P ), then Int(f)(z) 6 y′ and

thus z 6 y. So the pair x, y shows that the cut-stability condition holds for

the pair u′, v′. 2
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Combining this lemma with Erné’s result from [6] that the cut-stable

maps are exactly the ones that extend to complete lattice homomorphisms

when taking the MacNeille completion, we obtain the followig theorem.

Theorem 4.2. Let f : P → P ′ be an order preserving map between

posets. Then Int(f) has a (necessarily unique) extension

N (Int(f)) : N (Int(L)) → N (Int(M))

to a complete lattice homomorphism if and only if we have:

For all x′ ∈ KP ′ and y′ ∈ OP ′ with x′ 
 y′ there exist x ∈ KP and

y ∈ OP with x 
 y such that:

∀p ∈ P (x′
6 f(p) =⇒ x 6 p),

∀p ∈ P (f(p) 6 y′ =⇒ p 6 y)

Translating the condition of the lemma and the theorem into properties

involving filters and ideals we obtain the condition for what we will call

δ-morphisms.

Definition 4.3. Let P and P ′ be posets and f : P → P ′ an order

preserving map. Then we say that f is a δ-morphism if and only if, for

each pair F ′, I ′ consisting of a filter and an ideal of P ′ that are disjoint,

there is a filter of F and an ideal I, both of P , that are also disjoint and

so that f−1(F ′) ⊆ F and f−1(I ′) ⊆ I.

Corollary 4.4. An order preserving map f : P → P ′ extends to a

complete homomorphism f δ : N (Int(P ) → N (Int(P ′) if and only if f is a

δ-homomorpism.

Proposition 4.5. Let P and Q be posets and assume that f : P → Q

is an order-preserving map which possesses an upper and a lower adjoint,

then f is a δ-morphism.

Proof. Suppose f has an upper and a lower adjoint and let F ′, I ′ be

a disjoint pair consisting of a filter and an ideal of P ′. Let F = ↑f ♭(F ′)

and I = ↓f ♯(I ′). We show that F is a filter of P . Clearly it is an upset.

Now let r, s ∈ F , then there are r′, s′ ∈ F ′ with f ♭(r′) ≤ r and f ♭(s′) ≤ s.

Consequently we have r′ ≤ f(r) and s′ ≤ f(s). Now pick t′ ∈ F ′ with

t′ ≤ r′ then t′ ≤ f(r) and thus f ♭(t′) ≤ r. Similarily f ♭(t′) ≤ s and thus F
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is down-directed. The dual argument shows that I is an ideal. Finally we

show that I ∩F = ∅. If p ∈ I ∩F then there exists p′ ∈ F ′ and q′ ∈ I ′ with

f ♭(p′) ≤ p ≤ f ♯(q′). Now f ♭(p′) ≤ f ♯(q′) implies p′ ≤ f(f ♯(q′)) ≤ q′, which

is a contradiction of F ′ ∩ I ′ = ∅. 2

Theorem 4.6. Assume that L and M are bounded lattices and that

h : L → M is a lattice homomorphism. Then h is a δ-morphism.

Proof. Let F ′ be a filter of L′, I ′ and ideal of L′, F = h−1(F ′), and

I = h−1(I ′). Then it is easy to check that F and I have the required

properties. 2
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