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Algebraization of LKK

The algebraic semantics of LKK is the class of modal algebras.

Definition

A modal algebra is an L-algebra A = 〈A,∧A,∨A,→A,2A,>A,⊥A〉 such that
〈A,∧A,∨A,→A,>A,⊥A〉 is a Boolean algebra and 2A is a map from A to A such
that

1) 2A>A = >A,

2) 2A(a ∧A b) = 2Aa ∧A 2Ab.

MA: denotes the class of modal algebras.
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Lemma
In any normal modal algebra A,

1 2(a→ b) ≤ 2a→ 2b

2 2(a↔ b) ≤ 2a↔ 2b

3 3(a ∨ b) = 3a ∨3b

4 30 = 0

5 2a ∧3b ≤ 3(a ∧ b)

6 2(a ∨ b) ≤ 2a ∨3b

7 if a ≤ b, then 2a ≤ 2b and 3a ≤ 3b
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Recall that the notion of derivation in LKK from a set of sequents defines a
relation between sets of sequents and sequents.

S `LKK Γ � ∆ iff there is derivation of Γ � ∆ from S.

We translate a sequent Γ � ∆ into an inequality as we did in LK, that is:

τ(Γ � ∆) =
∧

Γ ≤
∨

∆.
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Theorem (Extended completeness theorem)

Let S be a set of sequents and let Γ � ∆ be a sequent. The following are
equivalent:

1 S `LKK Γ � ∆,

2 t(S) `LKK t(Γ � ∆)

3 τ(S) |=MA τ(Γ � ∆).

Proof.
Similar to the case of LJ.
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As in the LJ case, any equation ϕ ≈ ψ can be turned into an equivalent pair of
inequalities ϕ ≤ ψ and ψ ≤ ϕ and translated into a pair of sequents ϕ� ψ and
ψ � ϕ. Thus we translate an equation ϕ ≈ ψ into the set of sequents

ρ(ϕ ≈ ψ) = {ϕ� ψ,ψ � ϕ}.

Theorem
For any equation ϕ ≈ ψ,

ϕ ≈ ψ |=MA τ(ρ(ϕ ≈ ψ)) and τ(ρ(ϕ ≈ ψ)) |=MA ϕ ≈ ψ.

Theorem
For any sequent ∆ � ϕ,

{∆ � ϕ} `LKK ρ(τ(∆ � ϕ) and ρ(τ(∆ � ϕ) `LKK ϕ∆ � ϕ.

Theorem

For any set of equations {ϕi ≈ ψi : i ∈ I} and any equation ϕ ≈ ψ,

{ϕi ≈ ψi : i ∈ I} |=MA ϕ ≈ ψ iff
⋃
i∈I

ρ(ϕi ≈ ψi ) `LKK ρ(ϕ ≈ ψ).
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We obtained:

Theorem

LKK is algebraizable. The variety MA is its equivalent algebraic semantics and the
translations are the maps τ and ρ given above.
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Let A be an algebra and v a valuation on A. For every binary sequent ϕ� ψ we
set v(ϕ� ψ) = 〈v(ϕ), v(ψ)〉.

A binary relation R on A is an LKK -filter of A if for every valuation v on A, every
set of binary sequents S and every binary sequent ϕ� ψ, if S `LKK ϕ� ψ and
v [S] ⊆ R, then v(ϕ� ψ) ∈ R.

Every LKK -filter of A is a reflexive and transitive relation.

Given a LKK -filter R on A, let

ΩA(R) = {〈a, b〉 : 〈a, b〉, 〈b, a〉 ∈ R} = R ∩ R−1.

This relation is the greatest congruence which is compatible with R.

Moreover,

Theorem

ΩA(.) gives an isomorphism between the lattice of LKK -filters of A and the lattice
of congruences of A.

Theorem

MA = {A/ΩA(R) : R is an LKK -filter of A}
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The class of algebras of a Gentzen system

Let G be a Gentzen calculus equivalent to its restriction to binary L-sequents.

Let A be an L-algebra. Let v be a valuation on A and ϕ� ψ a binary sequent.
Then we set v(ϕ� ψ) = 〈v(ϕ), v(ψ)〉.
A binary relation R on A is an G-filter of A if for every valuation v on A, every set
of binary sequents S and every binary sequent ϕ� ψ,

if S `G ϕ� ψ and v [S] ⊆ R, then v(ϕ� ψ) ∈ R.

If G satisfies Identity and Cut for binary sequents, every G-filter of A is a reflexive
and transitive relation.

A congruence θ of A is compatible with a G-filter R if

aθa′, bθb′, aRb ⇒ a′Rb′.

Given a G-filter R on A, the greatest congruence which is compatible with R
always exist. It is the greatest congruence included in
R ∩ R−1 = {〈a, b〉 : 〈a, b〉, 〈b, a〉 ∈ R}. We denote it by ΩA(R).

If G has Cut for binary sequents, the class of algebras of G is

Alg(G) = {A/ΩA(R) : R is a G-filter of A}.
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gK is algebraizable

The extended completeness theorem implies:

Theorem
The following are equivalent:

1 {ϕi : i ∈ I} `gK ϕ

2 {ϕi : i ∈ I} |=MA ϕ

3 {> ≈ ϕi : i ∈ I} |=MA > ≈ ϕ

Moreover, if we translate an equation ϕ ≈ ψ by ρ(ϕ ≈ ψ) = ϕ↔ ψ and a formula
ϕ by τ(ϕ) = > ≈ ϕ, then for every equation ϕ ≈ ψ

ϕ ≈ ψ |=MA τ(ρ(ϕ ≈ ψ)) and τ(ρ(ϕ ≈ ψ)) |=HA ϕ ≈ ψ.

Therefore,

Theorem
gK is algebraizable. Its equivalent algebraic semantics is MA and translations are
given by the maps: ϕ 7→ > ≈ ϕ and ϕ ≈ ψ 7→ ϕ↔ ψ
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Proposition

Let A be an algebra. If R is an LKK -filter then

1 FR = {a ∈ A : 〈>, a〉 ∈ R} is a gK -filter,

2 ΩA(FR) = ΩA(R).

Proposition

If F is an sK -filter on A, the LKK -filter RF on A generated by {〈>, a〉 : a ∈ F} is
such that F = FRF

.

Theorem

ΩA(.) gives an isomorphism between the lattice of gK -filters of A and the lattice
of congruences of A.
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Algebraizing lK

Let us try to apply the Lindenbaum-Tarski method to lK .

Given a theory T of lK we define the following binary relation θ(T ) on Fm in the
same way that we defined Ω(T ) in the case of Intuitionistic logic:

〈ϕ,ψ〉 ∈ θ(T ) iff T `lK ϕ↔ ψ.

This relation does not need to be a congruence relation. It could happen that

T `lK ϕ↔ ψ but T 6`lK 2ϕ↔ 2ψ.

Example: Let T be the theory generated by p. Then T `lK > ↔ p, but
T `lK 2> ↔ 2p, for if this was the case, then since `lK 2>, we would have
p `lK 2p, which is not the case.
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1 θ(T ) is compatible with T , namely, for every ϕ and ψ

if 〈ϕ,ψ〉 ∈ θ(T ) and ϕ ∈ T , then ψ ∈ T ;

2 θ(T ) is the greatest equivalence relation on Fm which is compatible with T ,

3 For every formula ϕ,

〈ϕ,>〉 ∈ θ(T ) iff ϕ ∈ T ;

4 θ(T ) is the interderivability relation modulo T , that is:

〈ϕ,ψ〉 ∈ θ(T ) iff 〈ϕ,ψ〉 ∈ ΛlK (T ) iff T , ϕ `lK ψ and T , ψ `lK ϕ.

Thus in lK , ΛlK (T ) is not a congruence for every lK -theory T .

Recall that the greatest congruence included in ΛlK (T ) is called the Suszko

congruence of T and is denoted by Ω̃lK (T ).

We say that Fm/Ω̃lK (T ) is the Lindenbaum-Tarski algebra of T .

Proposition

The Lindenbaum-Tarski algebra Fm/Ω̃lK (T ) of T is a modal algebra.
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Comparing lK and gK

Let T be a theory of gK . The relation Ω(T ) on Fm defined by

〈ϕ,ψ〉 ∈ Ω(T ) iff T `gK ϕ↔ ψ.

is a congruence relation on Fm (like for Intuitionistic logic).

1 Ω(T ) is compatible with T , namely, for every ϕ and ψ

if 〈ϕ,ψ〉 ∈ Ω(T ) and ϕ ∈ T , then ψ ∈ T ;

2 Ω(T ) is the greatest congruence relation on Fm which is compatible with T ,

3 For any formula ϕ,
〈ϕ,>〉 ∈ Ω(T ) iff ϕ ∈ T .

But

1 Ω(T ) is not the interderivability relation ΛgK T in gK relative to T . It could
happen that

T , ϕ `gK ψ and T , ψ `gK ϕ, but T 6`gK ϕ↔ ψ.
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We already saw Ω(T ) is the greatest congruence relation which is compatible with
the LKK filter {〈ϕ,ψ〉 : ϕ→ ψ ∈ T}.
By the usual technique of Lindenbaum-Tarski algebras we can also obtain the
algebraic completeness theorem:

Theorem (Completeness)

For any set of formulas Γ and any formula ϕ,

Γ `gK ϕ iff Γ |=MA ϕ.
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Let now T be a theory of lK .

The greatest theory of gK which is included in T always exists and is the set of
formulas

T s = {ϕ : (∀n) 2nϕ ∈ T}.

Then Ω(T s) is the greatest congruence which is included in ΛlK (T ).

Therefore, Ω(T s) = Ω̃lK (T ).

Similarly, given an algebra A and a lK -filter F of A, the greatest gK filter of A
which is included in F always exists, and its Leibniz congruence is the lK -Suszko
congruence of F .
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Weakly Congruential and Congruential logics

Let L = 〈L,`L〉 be a logical system. We denote the interderivability relation
(ϕ a` ψ) by ΛL.

If ΛL is a congruence of FmL we say that L is weakly congruential.

If for every L-theory T ΛL(T ) is a congruence of FmL we say that L is Fregean.

Note that ΛL = ΛL(C`L(∅)). Hence every Fregean logic is weakly congruential.

The logic lK is weakly congruential. The logic gK is not weakly congruential.
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Recall that given a logical system L and an algebra A, the L-filters of A induce
the quasi-order (or preorder) given by

a ≤A
L b iff (∀F ∈ FiLA)(a ∈ F ⇒ b ∈ F )

whose naturally associated equivalence relation we denote by ∼A
L.

If A is an algebra of the type of modal logic, then the relation ∼A
lK is a congruence

of A and A/∼lK is a modal algebra. Moreover, if A is a modal algebra, then ∼A
lK

is the identity and ≤A
lK is the semi-lattice order of A.

A logical system L is congruential if for every algebra A, the relation ∼A
L is a

congruence. Thus lK is congruential.
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