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“But how does he know where and how
he is to look up the word ‘red’ and

what he is to do with the word ‘five’?”
Well, I assume he acts as I have described.
Explanations come to an end somewhere.

Ludwig Wittgenstein

Philosophical Investigations I.1
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Three people A, B, C walk into a restaurant. One of
them orders pakodas, one orders dahiwada, and one or-
ders samosas. The waiter goes away and after ten min-
utes another waiter arrives with three plates. “Who
has the pakodas?” “I do,” says A. “Who has the dahi-
wada?” “I do,” says C.

Will the waiter ask a third question?”
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Consider the possible situations for waiter 2. They are

1) PDS, 2) PSD, 3) DPS,
4) DSP, 5) SPD, 6) SDP

When A says that he has the pakodas, 3,4,5,6 are elim-
inated.

When C says that he has the dahiwada, 1 is eliminated.

Now the waiter knows that B has the samosas.
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A butler enters a hotel room to clean it and make the
bed, but he encounters a woman guest, coming out of
the bathtub and not even wearing a towel.

“Excuse me, sir,” says the butler, and leaves the room.

Why did the butler say, “Excuse me, sir”?
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In the woman’s mind there were two possibilities.

S1 = “The butler saw her clearly”

S2 = “The butler did not see her clearly”

The butler’s remark eliminated S1 and saved her from
embarrassment.
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There are two people, Mr. Sum and Mr. Product.
There are two numbers a, b with 2 ≤ a ≤ b ≤ 100. Mr
Sum is told the value s of a+b and Mr. Product is told
the value p = a× b.

Dialogue

Mr. Product: I don’t know a, b

Mr. Sum: I knew you didn’t.

Mr. Product: But I know them now!

Mr. Sum: And so do I.

What are a, b?
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Note that if a, b are prime, then the factoriza-
tion of p is unique, and the first line would not
be right. Thus at least one of a, b is non-prime.
Thus a = 3, b = 5 is not possible.

Also, if there are primes a′, b′ such that a+b =
s = a′ + b′, then even though Mr. Product
does not know what a, b are, Mr. Sum cannot
know that he does not. The numbers might
have been a′, b′ for all that Sum knows. Thus
a = 5, b = 9 is impossible because a + b = 14
is also 3 + 11.

Thus we know that a+b is not the sum of two
primes.

But Mr. Product’s remark, “But I know them
now!” shows that for all (a′, b′) 6= (a, b) with
a′ × b′ = a × b, a′ + b′ is the sum of two
primes. Sum’s remark, “I knew you didn’t,”
allows Product to figure out what a, b must
be.
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Two players Ann and Bob are told that the
following will happen. Some positive integer
n will be chosen and one of n, n + 1 will be
written on Ann’s forehead, the other on Bob’s.
Each will be able to see the other’s forehead,
but not his/her own.

Note that each can see the other’s number, but
not their own. Thus if Ann has 5 and Bob has
6, then Ann knows that her number is either 5
or 7 and Bob knows that his number is either
6 or 4.

After this is done, they are asked repeatedly,
beginning with Ann, if they know what their
own number is.

We can show by induction on n that eventually
one of them will guess his/her number. Clearly
this is true if n = 1.
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Theorem 1: In those cases where Ann has
the even number, the reponse at the nth stage
will be, “my number is n+1”, and in the other
cases, the response at the (n+1)st stage will be
“my number is n+1”. In either case, it will be
the person who sees the smaller number, who
will respond first.
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Proof: By induction on n. We divide the
cases into four categories.
(A)n: n is even, Ann has n.
In this case, Bob sees n and concludes that his
own number is n − 1 or n + 1. In the first
case, we are in case (B)n−1 and by induction
hypothesis, if Bob’s number is n−1, then Ann
should guess her own number at stage n − 1.
Since she said “I don’t know my number”, Bob
realises that his number is not n−1 and hence
must be n + 1, which he will say at the next
stage, i.e. n + 1.

(B)n: n is odd, Bob has n.
If n is 1, then at the very first stage, Ann,
seeeing a 1, will say, “my number is 2”. If
n > 1, then we reduce to the case (A)n−1 as
above.
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(C)n: n is even, Bob has n.
Ann knows that her number is n− 1 or n + 1.
If it were n − 1, Bob would say at stage n
that his number is n. Hence, when Bob says
“I don’t know my number”, she realises that
she is in case (C)n rather than in (D)n−1 and
at the next stage she guesses her number.

(D)n: n is odd, Ann has n.
This case is like the case (B). Note that if n is
1, then the number will be guessed at stage 2,
since that is Bob’s first chance to speak. 2
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Definition 1: A Kripke model M for a (two
person) knowledge situation consists of a state
space W and two equivalence relations≡1 and
≡2. Intuitively s ≡1 t means that states s and
t are indistinguishable to player 1 (Ann) and
s ≡2 t means that they are indistinguishable
to player 2 (Bob). We shall assume in this
paper that W is finite or countable.

In the example we are looking at,
W = {(m,n)|m,nεN+ and |m− n| = 1}.
If s, tεW and iε{1, 2}, then s ≡i t iff (s)j =
(t)j , where j = 3 − i, and (s)j is the j-the
component of s. Intuitively, s ≡i t means that
when the dialogue begins, player i cannot dis-
tinguish between s and t, where Ann is player
1 and Bob is player 2.
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Definition 2: A subset X of W is i-closed if
sεX and s ≡i t imply that tεX . X is closed
if it is both 1-closed and 2-closed.

The subset where Ann has the odd number is
closed, as is the subset where Bob has the odd
number.

Definition 3: Given Kripke model M , X ⊆
W , and sεX , then i knows X at s iff for all
t, s ≡i t implies that tεX . X is common
knowledge at s iff there is a closed set Y such
that sεY ⊆ X .

Thus if Ann has an odd number then that fact
is common knowledge.

Observation: If an announcement of a for-
mula φ is made, then the new Kripke structure
is obtained by deleting all states s ∈ W where
φ is false.
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However, there is a defect in the argument be-
cause both Ann and Bob’s reasoning depends
heavily on what the other one is thinking, in-
cluding a consideration of what the other does
not know. Ann’s reasoning is justified if Bob
thinks as she believes he does, and Bob’s rea-
soning is justified if she thinks as he believes
she does. But there is no guarantee that they
do indeed think this way. How do we justify
what each thinks and what each does and does
not know?
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Definition 4: An IDS (interactive discov-
ery system) for M is a map
f : W × N+ → {“no”} ∪ W such that for
each odd n, f (s, n) (Ann’s response at stage
n) depends only on the ≡1 equivalence class
of s and on f (s,m) for m < n. For each even
n, f (s, n) depends only on the ≡2 equivalence
class of s and on f (s,m) for m < n.

20



Definition 5: The IDS f is sound if for all s,
if f (s, n) 6= “no”, then f (s, n) = s. We define
if (s) = µn(f (s, n) 6= “no”) and p(s) = 1 if
if (s) is odd and 2 if if (s) is even. (Here µ
stands for “least”. if (s) = ∞ if f (s, n) is
always “no”. We may drop the subscript f
from if if it is clear from the context.)
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Lemma 1: Let f be a sound IDS. Let s ≡i t,
i(s) = k < ∞ and p(s) = i. Then i(t) < k
and p(t) 6= i.

Proof: At stage i(s), i has evidence distin-
guishing between s and t. Since all previous
utterances associated with s were “no”, some
previous utterance associated with t must have
been nontrivial. Formally, f (s, i(s)) = s 6=
f (t, i(s)). But s ≡i t.
Hence (∃m < i(s))(f (s,m) 6= f (t,m)). Since
m < i(s), f (s,m) = “no” and so f (t,m) 6=
“no”. Thus i(t) ≤ m < i(s). Now, if p(t) =
i, then, by a symmetric argument, we could
prove also that i(t) < i(s). But this is absurd.
Hence p(t) 6= i. 2
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Corollary: Suppose that p(s) = i and there
is a chain
s = s1 ≡1 s2 ≡2 s3 ≡1 ...sm. Then i(s) ≥
m.

Corollary: Suppose that there is a chain
s1 ≡1 s2 ≡2 s3 ≡1 ...sm ≡2 s1, with m > 1.
Then i(si) = ∞ for all i.

Proof: If, say, i(s1) = k < ∞, we would
get i(s1) > i(s2) > ... > i(sm) > i(s1), a
contradiction. 2
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Remark 1: Theorem 1 is really a proof that
the IDS f is sound where f is defined by:
Ann’s strategy: If you see 2n+1, then say n
“no”’s and then, if Bob has not said his num-
ber, say “2n+2”. If you see 2n, then say n
“no”’s and if Bob has not said his number, say
“2n+1”.
Bob’s strategy: If you see 2n+1, then say n
“no”’s and then, if Ann has not said her num-
ber, say “2n+2”. If you see 2n, then say n
“no”’s and if Ann has not said her number, say
“2n+1”.

These strategies yield: i(2n+2, 2n+1) = 2n+
1, i(2n, 2n+1) = 2n, i(2n+1, 2n+2) = 2n+2
and i(2n+1, 2n) = 2n+1. In other words, the
smaller number if Ann’s number is even, and
the bigger number if it is odd. These strategies
are optimal. E.g. we have

(6, 5) ≡1 (4, 5) ≡2 (4, 3) ≡1 (2, 3) ≡2 (2, 1)

and hence i(6, 5) has a minimum value of 5,
the value achieved by the strategy above.
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Theorem 2: The strategies implicit in the-
orem 1 and described in remark 1 are opti-
mal. I.e. if h is any other sound IDS, then
if (s) ≤ ih(s) for all s.

Proof: By cases. Suppose, for example, that
Ann has an even number and s = (2n, 2n−1).
if (s) = 2n − 1. Suppose Bob is the one who
first notices the state. Then we have (2n, 2n−
1) ≡2 (2n, 2n + 1) ≡1 (2n + 2, 2n + 3)...,
and by lemma 1, ih(s) could not be finite. So
Ann does first discover s. But then we have
(2n, 2n − 1) ≡1 (2n − 2, 2n − 1) ≡2 (2n −
2, 2n − 3)... ≡2 (2, 1) and so, by lemma 1,
ih(s) ≥ 2n− 1. 2
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Infinite Dialogues

Instead of using the function f (n) = n + 1
we use a somewhat more interesting function
g defined as follows:

g(n) = 1 if n = 2k for some k > 0
g(n) = n + 2 if n is odd
g(n) = n− 2 otherwise, i.e. if n is even, not a
power of 2.
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Again the game proceeds by picking a positive
integer n, and writing one of n, g(n) on Ann’s
forehead, the other on Bob’s. Figure II shows
states (a, b), where a is written on Ann’s fore-
head and b on Bob’s and either g(a) = b or
g(b) = a.
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Consider now what happens if the state is (1,3).
Bob realises after Ann’s first “I don’t know”,
that his number is not 2, for otherwise Ann
would have known that her number is 1. After
her second “I don’t know”, he realises that his
own number is not 4, for otherwise she would
have guessed her own number. More gener-
ally, after 2k−1 + 1 stages, he realises that his
number is not 2k.

Thus when ω stages pass, and Ann has still
not guessed her own number, Bob will realise
that his number is not any power of 2, and
hence it must be 3. Thus, in the case of the
state (1,3), it is at stage ω + 1 that one of the
two players realises his number. We can easily
see now that if the state is (5, 3), then Ann will
realise her own number at stage ω + 2, and so
on through all ordinals of the form ω + n.
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This construction is quite similar to that in
the Cantor-Bendixson theorem, [Mo], where a
closed set is gradually diminished by removing
isolated points until, at some countable ordi-
nal, either nothing is left or else a perfect set
is left. We now show that the parallel is ex-
act except that we are dealing simultaneously
with two topologies on the same space.
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The Cantor-Bendixson Theorem

Let X be a subset of the Euclidean space En

and p ∈ X . Then p is isolated if there is
a neighbourhood U of p which contains no
points of X except p.

Theorem: Let X be a closed subset of En

and X ′ be the subset of X (its derivative) ob-
tained by removing all isolated points. X ′ may
have new isolated points if all their neighbours
have been removed. Let X ′′ be the deriva-
tive of X ′ and let Xω be the limit for all fi-
nite stages. Continue this process, then after a
countable number of steps, there are no more
isolated points. The limit X∞ may be either
empty, or else a perfect set (a closed set which
is dense in itself).

Fact: Every perfect set has cardinality that
of the continuum.

Corollary: Every closed subset of En is ei-
ther countable (or finite) or has cardinality
that of the continuum.
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In other words, the continuum hypoth-
esis holds for closed sets.
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Definition 6: Let O be the set of count-
able ordinals, M a Kripke structure. A TIDS
(transfinite interactive discovery system) for
M is a pair of maps
p : O → {1, 2} and f : W×O → {“no”}∪W
such that for each s, α, If j = p(α), then
f (s, α) depends only on the ≡j equivalence
class of s and on f (s, β) for β < α. Intuitively,
p(α) is the person who responds at stage α and
f (s, α) is his response at stage α. Again, “no”
stands for “I don’t know”.

Definition 7: The TIDS f, p is sound if for
all s, α, if f (s, α) 6= “no”, then f (s, α) = s.
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We again define if (s) = µα(s(α) 6= “no”).
Again, if (s) = ∞ if f (s, α) is always “no”.
We think of ∞ as larger than all the ordinals,
even the infinite ones. By abuse of language,
we will write p(s) for p(i(s)). This makes our
usage consistent with that of the previous sec-
tion.

First define:
W0 = W , Ti,0 = Ti, where the topologies Ti
were defined in definition 2.
Wα+1 = Wα− the i-isolated points of Wα,
where i = p(α).
Ti,α+1 = Ti,α
Tj,α+1 = Tj,α⊕Wα+1 = {X∩Wα+1|XεTj,α}
for j 6= i
If λ is a limit ordinal, then
Wλ =

⋂
α<λ Wα

Ti,λ = {X ∩Wλ|∃α < λ, XεTi,α}.
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Note that the i-isolated points are not j-isolated
for j 6= i. Thus, in general, Wα+1 has to be
added to j’s topology. E.g. in figure II, the
point (6,4) is an isolated point for Bob but
not for Ann. When that point is removed,
Ann gets more sets in her topology.

Now define the functions p, f by: p(α) = 1
if α is even and 2 if α is odd. (We think of
Ann as beginning with the first ordinal, 0, and
re-starting the dialogue at each limit ordinal.
Thus for instance, she responds at ω, an even
ordinal.) Let the function f be given by: at
stage α, if s is an i-isolated point of Wα and
i=p(α) then answer s. If the answer s has ever
been given, then answer s. Otherwise answer
“no”. We show now that this is a sound and
optimal strategy for all Kripke structures Mg

arising from some function g from N+ to N+.
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Theorem 3: f is an optimal (among all
strategies which question Ann at all even or-
dinals and Bob at all odd ordinals.) sound
strategy and yields,
i(s) = if (s) = µα(sεWα −Wα+1).

Proof: f is evidently sound if it is a strategy.
To see that it is a strategy, suppose, if possible,
that there exist s, t, α such that s ≡i t where
i = p(α) and f (s, β) = f (t, β) for all β < α,
but f (s, α) 6= f (t, α). We may assume that
α is the smallest ordinal for which this hap-
pens, so that f (s, β) = f (t, β) = “no” for
all β < α. Obviously, one (and by soundness
exactly one) of f (s, α), f (t, α), say the first,
is different from “no”. Now s, tεWα (since
all previous answers were “no”) but s is an
i-isolated point of Wα. This contradicts the
fact that s ≡i t.
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Suppose now that h is another sound strat-
egy and, there is some s such that ih(s) =
α < if (s). I.e., h yields knowledge earlier in
some case. Assume α is the smallest ordinal
for which h is faster than f . Let i = p(α).
Now we have h(s, β) = f (s, β) = “no” for all
β < α and f (s, α) = “no”, but h(s, α) = s.
Since f (s, α) = “no”, s is not an i-isolated
point of Wα. Pick t 6= s such that s ≡i t and
tεWα. Then t is not an i-isolated point of Wα,
and hence of Wβ for any β < α. Thus we have
f (t, β) = “no” for all β < α and by minimal-
ity of α, h(t, β) = “no” for all β < α. Since h
is a strategy, this yields h(t, α) = f (s, α) = s.
Thus h is not sound. 2
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Let us consider the problem now over a gen-
eral Kripke structure with a countable W . Let
W∞ =

⋂
Wα : αεO.

Definition 8: < W, T1, T2 > is scattered if
W∞ = ∅.
Theorem 4: < W, T1, T2 > is scattered iff
there is a sound strategy for M which always
yields a non-trivial answer.
Proof: If < W, T1, T2 > is scattered, then
the CB strategy always yields an answer. If it
is not scattered, then clearly the CB strategy
cannot always yield an answer. For there is
a perfect core (W∞) which is never removed.
However, the CB strategy is optimal. Hence
no sound strategy can yield an answer in all
cases. 2.
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Definition 9: g is well founded if there is no
infinite chain x1, x2, ... such that g(xn+1) =
xn for all n. g is finite-one iff for all n the set
g−1(n) = {m|g(m) = n} is finite.

Some of the folowing results will depend on
the assumption that g(n) = n or g(g(n)) =
n never holds and we make this a blanket
assumption from now on. The reason this
condition is relevant is that if g(g(n)) = n or
g(n) = n, then the point (n, g(n)) might be
isolated even though g is not well founded.

38



Theorem 5: (a) The space < W, T1, T2 >
arising from g is scattered iff g is well founded.
(b) If g is well founded and finite-one, then
Wω = ∅, i.e. every state is learned at some
finite stage.
Proof: The first part has been proved al-
ready. To see the second part, notice that
König’s lemma applies to the tree of g so that
every state has only finitely many states under
it. 2

Corollary: g is well founded iff the dialogue
between Ann and Bob is guaranteed to termi-
nate (with the CB strategy).

We remark that for computable well founded
functions g, all ordinals less than Church-Kleene
ω1 can arise as ordinals of the corresponding
trees.
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The Probabilistic Case

We now show that if we are dealing with justi-
fied risk rather than knowledge, then the situ-
ation of the last section, which required infinite
dialogues, improves dramatically.
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Suppose that the number n is chosen in accor-
dance with some probability distribution, say
µ1(n) = 1

n(n+1)
. Thus µ1(1) = 1/2, µ1(2) =

1/6, µ1(3) = 1/12 etc. This µ1 induces a prob-
ability measure µ on W if we assume that the
states (a, b) and (b, a) are equally likely.

Now the game is played as follows: each person
risks $1,000 by saying “I know my number, it
is ...”. If (s)he is right, (s)he receives one dol-
lar. If (s)he is wrong, (s)he loses $1,000. It is
assumed that the parties are rational and that
rationality is common knowledge. Thus, for
example, if Ann did not guess her number yet,
Bob can assume that it was not yet profitable
for her, and conversely.

Then it will always make sense to take the risk
after a finite number of steps. I.e. after a finite
number of stages, the expected payoff will be
positive for some person.

41



Theorem 6: If some function g is well founded,
µ is a probability distribution such that µ(s) is
positive for all s, B is some bet with positive
payoff for a correct guess, and negative pay-
off for an incorrect guess, and it is common
knowledge that the parties are rational, then
after a finite number of rounds, someone will
take the risk (and will be justified in taking
the risk).

Proof: If not, then there is some x of lowest
rank in the tree of g such that the bet is never
profitable for either side. The person who sees
x knows that his number is either g(x) or else
in X = {y|g(y) = x}. However, since x has
the lowest possible rank as above, all these y,
being of lower rank, are finitely bettable, i.e. it
is justified to bet on them at some finite stage.
Hence, as time passes, as elements of X which
should have been guessed are not guessed, the
set X steadily approaches the empty set and
its probability approaches 0. Hence after some
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finite stage, its probability will be as small as
needed. At this point it will make sense for
Bob to take the risk. This contradiction proves
the theorem. 2
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Definition 10: Let M be a Kripke structure,
µ be a probability measure on W and ε be
a real number > 0. An interactive discovery
system f for M,µ is ε-good if for all s, there is
an n such that f (s, n) = s, and if n is the least
such, then µ({s})/µ({t|f (t, n) = s}) > 1−ε.

44



Theorem 7: Let M be a Kripke structure
arising from a well founded computable g. Sup-
pose that µ1 is a computable probability mea-
sure on N+ and δ > 0. Then there is a δ-good,
computable strategy f for M,µ.

Proof: Let d be an integer such that 1/d < δ.
Define strategies hA(s), hB(s) as follows:
hA(s): Let n = (s)2. Let k be the least inte-

ger greater than 2d
µ1(n)

.

Let X = {m|m < r(k) and g(m) = n}.
Then hA(s) = 1+max(hB(m) : mεX); hA(s) =
1 if X is empty.
hB(s): Let n = (s)1. Let k be the least inte-

ger greater than 2d
µ1(n))

.

Let Y = {m|m < r(k) and g(m) = n}.
Then hB(s) = 1+max(hA(m) : mεY ); hB(s) =
2 if Y is empty.
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We claim first that this gives us computable
functions hA, hB. The claim follows from the
fact that hA(s) depends only on (s)2 and on
hB(m) for m such that g(m) = (s)2. Simi-
larly for hB. Since g is well founded, this is a
legitimate definition by reursion.

We now combine hA, hB into a strategy f .
If n is odd, n ≥ hA(s) and all previous val-
ues f (s, p) have been trivial, then f (s, n) =
(g((s)2), (s)2). If some previous value has been
t then f (s, n) = t. Otherwise f (s, n) = “no”.
Similarly with n even, using hB instead of hA.

It is easiy seen that hA depends only on in-
formation that Ann has, and hB depnds only
on information that Bob has. Hence f is a
trategy.

We now show that this strategy is (1/d)-good,
this will imply that it is δ-good. Given s, let n
be the least integer such that g(s, n) 6= “no”.
Assume without loss of generality that n is
odd.
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If X is empty, then the set {m|g(m) = (s)2} is
contained in the set {m|m > r(k)} and hence
has measure less than µ1(g((s)2))/d. Thus the
probability that (s)1 = g((s)2) is larger than
1− 1/d.

If X is not empty, then n = hA(s). Sup-
pose (s)1 were such that g((s)1) = (s)2, then
if (s)1εX , we would already have a non-trivial
value earlier. Hence, the probability that g((s)1) =
(s)2, given that there have been only trivial
answers so far, is less than µ1(g((s)2)× (1/d).
Hence the probability that the state is ((g(s)2), (s)2)
exceeds 1− (1/d). 2

Theorem 8: g is well founded iff for all µ, δ,
there exist δ-good strategies.
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Agreeing to disagree

Two people A and B share a common probabil-
ity distribution on a finite space Ω. Thus they
share the probability of some event E. How-
ever, A learns that some event X is true. Thus
she revises p(E) to a = p(E|X). B learns that
some event Y is true, and so he revises his
probability to b = p(E|Y ). Naturally, these
need not be the same any more.

It is assumed that A knows that B knows the
truth value of X and B knows that A knows
the truth value of Y .
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Theorem (Aumann): If a, b are common knowl-
edge, then a = b.
Proof: A does not know the truth value of
X , but he knows the value of a. Thus it must
be that p(E|X) = p(E|X ′) where X ′ is the
complement of X . It follows that a = p(E).
Similarly, b = p(E). And hence a = b.

Theorem: In fact is is impossible that it is
common knowledge that a < b.
Proof: For in that case, p(E|X) < p(E|Y ),
p(E|X ′) < p(E|Y ′), etc. Thus we would get
P (E) < p(E) which is impossible.
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No Trade Theorem (Milgrom and Stokey): Sup-
pose A and B have the same opinion of some
object x owned by A. It is impossible that af-
ter each of A and B have received some finite
amount of information, A wants to sell x to B
at some price p and B wants to buy it at that
price.
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