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Two interpretations:

Let us consider two models M =< N,<> and M ′ =< Q,<> and two formulas, A =

(∀x)(∃y)(x < y) and B = (∀x)(∀y)(x < y ra(∃z)(x < z ∧ z < y))

Now both A,B are true in M ′, and A is true in M as well, but B is false in M . Thus we

have,

M |= A but M 6|= B.

We now talk about the game interpretations of the two formulas. In this interpretation, we

consider only formulas formed from literals using ∨,∧,∀,∃. Eloise controls ∨,∃ and Abelard

controls ∧,∀.

To be specific, we can associate two games GA and GB with A and B respectively.

In GA, Abelard chooses an element a from the domain ‖M‖, and Eloise picks an element b

from ‖M‖. If a < b then Eloise wins. And clearly she has a winning strategy consisting of

letting b = a+ 1.

In GB, since B begins with a universal quantifier, Abelard picks two elements a, b in ‖M‖.

We now have the formula a < b→ (∃z)(a < z ∧ z < b). i.e., a 6< b ∨ (∃z)(a < z ∧ c < b)

If a 6< b, then Eloise wins. If not, she has to pick a c. After that they are now at the formula

a < c ∧ c < b. Abelard can pick either a < c or c < b. If that formula is true, Eloise wins

and otherwise Abelard does.

In this case Abelard has a winning strategy since he can pick a = 1, b = 2. Since a < b,

picking that is out for Eloise. But if she picks a c, either a 6< c or c 6< b and Abelard wins.

Definition: Let A be a closed first order formula made up from literals using ∨,∧,∀,∃. M

is an interpretation of the language of A. We define the game GM
A = GA as follows:

1



1) If A is a literal, then the game is over and Eloise wins iff A is true in M .

2) If A = B ∧ C then Abelard picks one of the games GB, GC . which is then played.

3) If A = B ∨ C then Eloise picks one of the games GB, GC .

4) If A = (∃x)B(x) then Eloise picks an element a ∈ ‖M‖ and the game GB(a) is then played.

5) If A = (∀x)B(x) then Abelard picks an element a ∈ ‖M‖ and the game GB(a) is then

played.

Theorem: M |= A iff Eloise has a winning strategy for GA.

Proof: This is clear if A is a literal.

1) Suppose A is B ∧ C. Then M |= A iff M |= B and M |= C iff (induction hypothesis)

Eloise has winning strategies for both GA and GB iff she has a winning strategy for GA.

(She needs both winning strategies as it is Abelard who chooses which game to play).

2) Suppose A is (∃x)(B(x)). If M |= A then there is an element a ∈ ‖M‖ such that

M |= B(a), but then Eloise has a winning strategy for GB(a) and hence for GA. The

converse is similar.

The cases for ∨,∀ are similar. 2

Games of Partial Information

Chess is a game of full information. At each stage, each player knows the full situation.

By contrast, Bridge is a game of partial information. At the start a player knows only her

own hand. Logics corresponding to games of partial information have been investigated by

a number of researchers including Hintikka, Sandu, Hodges, etc. Such logics go back to the

so called Henkin quantifiers, but the current name for them is IF-logic, or Independence

Friendly Logic.

Consider the formula A = (∀x)(∀y)(∃z/y)R(x, y, z). We define its meaning via a game. In

this game, Abelard again picks elements a, b for x, y, but then Eloise has to choose c for z

without knowing the value of b, and still make sure that R(a, b, c) holds.

Now consider B = (∀x)(∀y)(∃z/y)(∃u/x)((x = y ↔ z = u) ∧ (z 6= c ∧ u 6= c)).

We claim that B holds in a structure M iff ‖M‖ is infinite.

For if indeed ‖M‖ is infinite, then there is a 1-1 function f from ‖M‖ into ‖M‖−{c}. Eloise

can then pick z = f(x) (not knowing y) and u = f(y). This clearly is a winning strategy.

Conversely, to win, she needs to have a 1-1 function f from ‖M‖ into ‖M‖ − {c}.

It is known from the compactness theorem that no first order formula holds exactly in infinite

models. Hence B above cannot be expressed in first order logic.
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However, we can also consider Finite Information Logic [11] in which we study games where

Eloise only has a finite amount of information about Abelard’s moves. In that case we get

a decidable sub-logic of first order logic, with the finite model property.

Instead of talking about ignorance, we could speak about knowledge, and in (∀x)(∀y)(∃z/x),

instead of saying that Eloise does not know x, we could just as easily say that Eloise’s

knowledge is restricted to the value of y. Instead of concentrating on what Eloise does not

know we concentrate on what she does. Similar restrictions might of course apply to Abelard

in case he too has a move which follows the move of Eloise. (However, since we shall define

the semantics in terms of the winning strategy of Eloise, it will turn out that the restrictions

on Abelard do not enter into the semantics. To be sure of winning, Eloise must allow the

possibility that Abelard makes a good move by luck.)

Now we introduce an innovation which will turn out to be interesting. IF-logic allows Eloise

to know the value of x, or of y or of both or neither. Could we consider other possibilities?

E.g. suppose x, y are integers. We might restrict Eloise to know the value of their sum, but

not x, y themselves. Or for another, real life example, suppose you meet on the airplane an

attractive woman who tells you only her first name (until she knows you better). Now if x

is the name variable whose value is Eloise Dzhugashvili and she only tells you ‘Eloise’, then

you do not know x but neither are you completely ignorant of it. You know it in part.

This opens up the possibility of more general kinds of knowledge of the values of variables

than allowed by IF-logic and we will see that it leads to interesting possibilities.

As usual we have variables, predicate symbols, certain special function symbols. Atomic

formulas are defined as usual. Literals are atomic formulas or their negations. For simplicity

we will apply negation only to atoms.

Definition 1 1 Literals are formulas of PI.

2a If ϕ(
→
x, y) is a formula of PI and f is one of the special function symbols, then (∃y//

f(
→
x )

)ϕ(
→
x

, y) is a formula of PI.

2b If ϕ(
→
x, y) is a formula of PI and f is one of the special function symbols,

then (∀y//
f(
→
x )

)ϕ(
→
x, y) is a formula of PI.

3a If ϕ(
→
x), θ(

→
x) are formulas of PI then ϕ(

→
x) ∨//

f(
→
x )
θ(

→
x) is a formula of PI.

3b If ϕ(
→
x), θ(

→
x) are formulas of PI then ϕ(

→
x) ∧//

f(
→
x )
θ(

→
x) is a formula of PI.

Intuitively, the ∃y in (∃y//
f(
→
x )

)ϕ(
→
x, y) is Eloise’s move but because of the restriction //

f(
→
x )

she only knows f(
→
x) when she makes her move. We may, more generally, allow her also to

know the values of two or more functions f, g of
→
x so that in the extreme case she could know

3



all the projection functions and hence know
→
x precisely. That case corresponds to our usual

first order logic. In an intermediate case, she could know some of the projection functions

on
→
x, i.e. some but not all of the variables in

→
x. That case corresponds to IF-logic.

In (∀y//
f(
→
x )

)ϕ(
→
x, y) the move is Abelard’s and he too is restricted in a similar way. (However,

this restriction will not affect the semantics which depends only on the winning strategies of

Eloise.)

Let us consider ϕ(
→
x) ∨//

f(
→
x )
θ(

→
x). Since we have a disjunction here, it is for Eloise to choose

which of the two formulas ϕ, θ to play. But when she chooses, she only knows the value f(
→
x)

or perhaps more than one such value, but her knowledge of
→
x might not be complete.

On the other hand, in ϕ(
→
x)∧//

f(
→
x )
θ(

→
x) the move is Abelard’s but the restrictions are similar

to those in 3a above.

Compositional semantics can be defined for PI in just the same way as they have been

defined for IF-logic by Hodges [6], Väänänen [12], etc. Moreover PI-logic can be interpreted

into second order logic in the same way. [7, 8, 9, 10] give a game theoretic interpretation of

various logics, including classical and intuitionistic (but not IF-logic).

Now we come to a special kind of PI-logic where the special functions f allow only a finite

amount of information about the arguments. Thus if a, b are integers and Eloise has to make

a choice based on them, she might be allowed only to know whether a < b or whether a+ b

is odd, or whatever. Knowing the precise value of a, b or even of a+ b is out of the question.

Why consider such a restricted case? We have two reasons. One is that this special case

of PI-logic which we shall call FI-logic, or finite information logic has very elegant logical

properties. The other is that since quantifiers correspond to moves in games, the games

which FI-logic represents arise all the time in social algorithms and are deeply related to

how social human interactions work.

For example a passport official at an airport only wants to know whether you have a valid

visa or not. If you do, she lets you in, if not, she sends you back on the next flight. Or perhaps

she classifies you among four classes, those who are citizens, those who come from friendly

countries whose citizens do not require a visa, those who have a visa, and the remaining who

are the ones sent back. In any case she only wants a finite amount of information about the

variable, namely you.

Or a young man looking for a date might want to know if the prospective date is blonde or

brunette. If she is blonde, he is not interested, he wants to date brunettes only. If she does

have dark hair, he wants to know if she is tall. If not, he is again not interested. So he seeks

a finite amount of information about the prospective date. Naturally she may have similar

questions about him. But each will seek only a finite amount of information.

We repeat the definitions which we had above for formulas of PI-logic, indicating where
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the difference arises between PI-logic in general and its special case, FI. Since only a finite

amount of information is available at each step, it could easily be represented by one or

more booleans, i.e. by formulas. Thus our special functions f drop out. Our main result is

Theorem 11 which says that every consistent FI-sentence has a finite model. We use a strong

form of this result to show that FI is exactly the existential-universal fragment of first order

logic, if considered as a classical logic. However, FI is actually a non-classical logic with a

rich many-valued semantics (this aspect will not be pursued in this paper). The reduction

to first order logic is non-trivial in the sense that there is a trade-off: every ∃ ∀ expression

can be exponentially longer than its FI representation.

Before we formally define the finite information logic FI in defnitions 3 and 4 and discuss its

semantics it makes sense to pay attention to what kind of θ we allow in //θ, as the following

informal result demonstrates:

Lemma 2 The following conditions are intuitively equivalent in any model A with at least

two elements, whatever sentence θ is:

1. A |= (∀x)(∃y//(x=c∨θ))(y 6= x).

2. A |= ¬θ

Proof. Let A have two elements c, d (and perhaps others). Suppose θ is true. Then the

information that (x = c ∨ θ) is true tells ∃ nothing about x. Also the information that

(x = c ∨ θ) is false tells nothing because this information is impossible, i.e. never given in

this case. Thus in this case y has to be chosen completely independently of x and ∃ cannot

possibly have a winning strategy for choosing y 6= x.

On the other hand, suppose θ is false (and ∃ knows it). Then she can make the following

inference: If I am told that (x = c ∨ θ) is true, I know that it is true because x = c, and

then I know what x is. So I can choose y = d. If I am told that (x = c ∨ θ) is false, I know

it is because x 6= c, and I can choose y = c. Thus ∃ can use the strategy, choose y = d if θ

is true and y = c otherwise. 2

In the proof we used the assumption that although the information that ∃ has is limited

as to the values of the variables, ∃ can act as if she knows “generally known” things. For

example, it follows that if ∃ has a winning strategy, she knows what it is. Also, if it is known

that ¬θ (in a given model), then ∃ knows it too. But this is only metaphorical. Clearly if

there is a strategy which works because certain sentences are true then ∃ can play it and

does not need to “know” that these sentences are true.

Lemma 2 shows that if we allow θ in //θ, we are committed to have also the negation of θ. On

the other hand, games of imperfect information may very well be non-determined. Therefore

we should be cautious with negation.
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In social software it seems that the information we use in decisions is often atomic (“man”,

“woman”) or existential (“has a ticket”, “has a visa, which is valid”) or boolean combinations

of such (“is retired or has a serious defect in vision”). Accordingly we start by allowing θ in

//θ to be any boolean combination of existential formulas.

Definition 3 The set of formulas of FI is defined as follows:

(1) Atomic and negated formulas are FI-formulas. (Allowing function symbols does no harm

as we indicate later.)

(2) If ϕ(~x) and ψ(~x) are FI- formulas and θ(~x) is a boolean combination of existential

formulas, then

ϕ(~x) ∧//θ(~x)ψ(~x)

and

ϕ(~x) ∨//θ(~x)ψ(~x)

are FI-formulas.

(3) If ϕ(~x, y) is an FI-formula and θ(~x) is a boolean combination of existential formulas,

then

(∀y//θ(~x))ϕ(~x, y)

and

(∃y//θ(~x))ϕ(~x, y)

are FI-formulas.

For simplicity we shall leave out function symbols, but as we shall indicate later, the presence

of functions need not interfere with some of our main results.

We have already given an intuitive explanation of FI. We now define a more formal semantics

for FI. Suppose A is a model and X is a set of functions s such that

(1) dom(s) is a finite set of variables

(2) s, s′ ∈ X =⇒ dom(s) = dom(s′)

(3) ran(s) ⊆ A.

Intuitively X is a set of plays i.e. assignments of values to variables. To incorporate partial

information we have to consider sets of plays rather than mere individual plays. A partition

X = X0 ∪X1 is θ(~x)-homogeneous, where θ(~x) is first-order, if for all s, s′ ∈ X

(A |=s θ(~x) ⇐⇒ A |=s′ θ(~x)) =⇒ (s ∈ X0 ⇐⇒ s′ ∈ X0).
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Let

X[a : y] = {(s\{〈y, b〉 : b ∈ A}) ∪ {〈y, a〉} : s ∈ X}
X[A : y] = {s ∪ {〈y, a〉} : s ∈ X, a ∈ A}.

We define the concept

A |=X ϕ

for ϕ ∈ FI as follows:

Definition 4 (S1) A |=X ϕ iff A |=s ϕ for all s ∈ X, if ϕ is atomic or negated atomic.

(S2) A |=X ϕ(~x) ∧//θ(~x)ψ(~x) iff A |=X ϕ(~x) and A |=X ψ(~x). (θ(~x) plays no role)

(S3) A |=X ϕ(~x) ∨//θ(~x)ψ(~x) iff there is a θ(~x)-homogeneous partition X = X0 ∪ X1, such

that A |=X0 ϕ(~x) and A |=X1 ψ(~x).

(S4) A |=X (∃y//θ(~x))ϕ(~x, y) iff there is a θ(~x)-homogeneous partition X = X0 ∪ X1, and

a0, a2 such that A |=X0[a0:y] ϕ(~x, y) and A |=X1[a1:y] ϕ(~x, y).

(S5) A |=X (∀y//θ(~x)))ϕ(~x, y) iff

A |=X[A:y] ϕ(~x, y)

(θ(~x) plays no role).

There is an asymmetry between ∧//θ(~x) and ∨//θ(~x) on one hand and between (∀y//θ(~x)) and

(∃y//θ(~x)) on the other hand. This is because in this paper we consider truth from the point

of view of ∃ only, i.e. “classically”. Thus we are concerned about the knowledge that ∃ has.

As ∃ has to be prepared to play against all strategies of ∀, ∃ has to consider also the case

that ∀ plays ”accidentally” with perfect information. If we considered FI “non-classically”

the symmetry would be preserved.

Lemma 5 Suppose A |={∅} ϕ. Then ∃ has a winning strategy in the obvious semantic game,

namely, while ∃ plays, she keeps A |=X ϕ and “the play is ∈ X” remains true.

Proof.

(G1) Suppose we are at an atomic or negated atomic formula ϕ. Since A |=X ϕ and the

play is in X, ∃ wins by (S1).

(G2) We are at ϕ(~x)∧//θ(~x)ψ(~x). Now ∀ plays choosing, say, ϕ(~x). We use (S2) to conclude

A |=X ϕ(~x).
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(G3) We are at ϕ(~x)∨//θ(~x)ψ(~x). We can by (S3) divide X = X0∪X1 in a θ(~x)-homogeneous

way and A |=X0 ϕ(~x) and A |=X1 ψ(~x). The play is in X so it is in one of X0 and X1,

but ∃ does not know in which. We let ∃ make the choice on the basis of the following

inference. If θ(~x) is true and some ~x ′ in X0 satisfies θ(~x ′), then she chooses X0. In this

case homogeneity gives that the play is in X0 and we also have A |=X0 ϕ(~x). If θ(~x) is

true and some ~x ′ in X1 satisfies θ(~x ′), then she chooses X1. Again homogeneity gives

that the play is in ∈ X1 and we also have A |=X1 ϕ(~x). Similarly, if θ(~x) is false and

some ~x ′ in X0 satisfies θ(~x ′), then she chooses X1, otherwise X0.

(G4) We are at (∀y//θ(~x)))ϕ(~x, y). ∃ knows A |=X[A:y] ϕ(~x, y) and the play so far is in X.

Whatever ∀ plays, the play is in X[A : y].

(G5) We are at (∃y//θ(~x))ϕ(~x, y). There is a θ(~x)-homogeneous partition X = X0 ∪ X1,

and a0, a1 such that A |=X0[a0:y] ϕ(~x, y) and A |=X1[a1:y] ϕ(~x, y). As in the case of

disjunction, player ∃ chooses a0 or a1 according to whether some ~x ′ in X0 satisfies

θ(~x ′) or not.

2

Examples 6 1◦ (∀x//)(∃y//P (x))(x = y) says that both P and its complement have at most

one element

2◦ (∀x//)(∃y//P (x))(x 6= y) says that both P and its complement are non-empty.

For instance, in 2◦, if both P and its complement are non-empty, then knowing the truth

value of P (x), ∃ can choose a y such that P (y) has the opposite truth value. But this

strategy (or any other) will not be available to her if either P or its complement is empty.

Lemma 7 If A |=X ϕ and X0 ⊆ X, then A |=X0 ϕ.

Proof. Immediate from the definition by induction on φ. 2

Lemma 8 Every FI-sentence is equivalent to a first order sentence (i.e. holds in the same

models).

Proof. Suppose φ ∈ FI. Let n be the length of φ. It suffices to show that if M |= φ and

player II has a winning strategy in the n-move Ehrenfeucht-Fraisse game [1, 4] on M and

M ′, then M ′ |= φ. Suppose X is a set of interpretations of a set V of variables in M and
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Π = {πs : s ∈ X} is a set of partial isomorphisms M →M ′ such that ran(s) = dom(πs) for

s ∈ X. Then {πs ◦s : s ∈ X} is a set of interpretations in M ′ of the variables in V . We write

X ′ = Π ◦X. Let us assume that player II has a winning strategy in the Ehrenfeucht-Fraisse

game on M and M ′ of n rounds. The different plays of this game, player II following her

winning strategy, form in a natural way a tree T . If t is a node of height t of the tree T , that

is, a play of i rounds, we denote by st the interpretation this play gives in M to the variables

x1, ..., xi. Respectively, s′t is the corresponding interpretation given in M to the variables

x1, ..., xi. Since player II is playing a winning strategy, the mapping st(xj) 7→ s′t(xj) is a

partial isomorphism M →M ′. It T ′ is a subtree of T , let Xi(T
′) be a set of all st for t in T ′

of height i. Let X ′
i(T

′) be the corresponding set of s′t.

Claim. For all subtrees T ′ of T : M |=Xi(T ′) φ(x1, ..., xi) ⇐⇒ M ′ |=X′
i(T

′) φ(x1, ..., xi) for

φ(x1, ..., xi) of quantifier rank ≤ n− i.

The proof of the claim goes by induction on φ. The case of atomic formulas and conjunctions

are trivial. For disjunction and existential quantifier it suffices to notice that if Xi(T
′) =

Xi,0(T
′) ∪ Xi,1(T

′) is a θ(~x)-homogeneous partition, then X ′
i(T

′) = X ′
i,0(T

′) ∪ X ′
i,1(T

′) is

likewise a θ(~x)-homogeneous partition. For this θ(~x) need not be a Boolean combination of

existential formulas as long as it is first order. For universal quantifier we let player I try all

possible elements and apply the induction hypothesis to the resulting new subtree of T . 2

Let FI(FO) denote the extension of FI where any first-order θ is allowed to occur in //θ.

Lemma 2 implies that FI(FO) contains all of first-order logic.

Corollary 9 FI(FO) = FO.

A first order formula is existential-universal ∃∀ if it is of the form

(∃x1) . . . (∃xn)(∀y1) . . . (∀ym)ϕ

where ϕ is quantifier-free. A formula is ∆1 if it is equivalent to an ∃∀-formula and its

negation is too. An example of a ∆1 formula is

(∃x1)(∃x2)(x1 6= x2) ∧ (∀x1)(∀x2)(∀x3)(x1 = x2 ∨ x1 = x3 ∨ x2 = x3).

which says that there exactly three elements. Boolean combinations of existential formulas

(and of ∆1 formulas) are, of course, ∆1.

Lemma 10 The following conditions are equivalent for any first order sentence ϕ:

(1) ϕ is equivalent to an ∃∀-formula.
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(2) If A |= ϕ and A is the union of a chain Aα (α < β) of models, then there is an α < β

such that Aα |= ϕ.

(3) If A |= ϕ, then there is C ⊆ A finite such that for all D with C ⊆ D ⊆ A we have

D |= ϕ.

Proof. Clearly (1) → (3) → (2). We prove (2) → (1). By (2) the class of models of the

sentence ¬ϕ is closed under unions of chains of models. By the  Loś-Suszko lemma, ¬ϕ is

universal-existential, whence ϕ is equivalent to an ∃∀ formula. 2

Theorem 11 Every FI-sentence has the finite model property.

Proof. We prove condition (3) of Lemma 10. We use induction on ϕ to prove:

(?) If A |=X ϕ, where X ⊆ VA, then there is a finite A0 = A0(A, X, ϕ), s.t. for all A1 ⊆ A

with A0 ⊆ A1 ⊆ A we have A1 |=X∩V A1
ϕ.

(S1) ϕ is atomic or negated atomic. We can choose A0 to be any non-empty subset of A.

(S2) Conjunction: We can let A0(A, X, ϕ∧ψ) = A0(A, X, ϕ)∪A0(A, X, ψ) and this clearly

works.

(S3) Disjunction: Suppose A |=X ϕ(~x)∨//θ(~x) ψ(~x). Let X = X0∪X1 such that A |=X0 ϕ(~x),

A |=X1 ψ(~x) and the partition is θ(~x)-homogeneous. Remember that θ(~x) is ∆1. Let

A∗
1 be finite such that A0(A, X, ϕ) ∪ A0(A, X, ψ) ⊆ A∗

1 ⊆ A and A∗
1 ⊆ A2 ⊆ A implies

for all s ∈ X
A2 |=s θ(~x) ⇐⇒ A |=s θ(~x).

For such A2 we have A2 |=X0∩V A2
ϕ and A2 |=X1∩V A2

ψ. Moreover, the partition of

X ∩ VA2 to X0 ∩ VA2 and X1 ∩ VA2 is clearly θ(~x)-homogeneous.

(S4) Universal quantification: Suppose A |=X (∀y)ϕ(~x, y). Thus A |=X[A:y] ϕ(~x, y). Choose

A0 = A0(A, X[A : y], ϕ((~x, y)). If A1 ⊆ A with A0 ⊆ A1 ⊆ A, then X[A : y] ∩
(V ∪{y})A1 = (X ∩ VA1)[A1 : y], whence A1 |=X (∀y)ϕ(~x, y).

(S5) Existential quantification: A |=X (∃y//θ(~x))ϕ(~x, y). LetX = X0∪X1 be θ(~x)-homogeneous

and a0, a1 such that A |=X0[a0:y] ϕ(~x, y) and A |=X1[a1:y] ϕ(~x, y). Remember that θ(~x)

is ∆1. Let A∗
1 be finite such that A0(A, X[a0; y], ϕ(~x, y)) ∪ A0(A, X[a1; y], ϕ(~x, y)) ∪

{a0, a1} ⊆ A∗
1 ⊆ A and A∗

1 ⊆ A2 ⊆ A implies for all s ∈ X

A2 |=s θ(~x) ⇐⇒ A |=s θ(~x).
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For such A2 we have A2 |=X∩VA2
(∃y//θ(~x))ϕ(~x, y). Why? BecauseX∩VA2 = (X0∩VA2)∪

(X1∩VA2) is a θ(~x)-homogeneous partition in A2 and A2 |=(X0∩VA2)[a0:y] ϕ(~x, y), A2 |=(X1∩VA2)[a1:y]

ϕ(~x, y).

2

The above theorem has an alternative proof using the concept of a D-structure (see [7, 8, 9,

10], which are related to [2]).

Example 12 The sentence

(∀x//)(∃y//x=x)(x ≤ y)

says that the linear order ≤ has a last element. It has no negation in FI as the negation

does not have the finite model property.

The finite model property would be true even if we allowed any ∆1 formula θ to occur in //θ.

However, allowing ∃∀-formulas θ leads us to new avenues: Let FI(∃∀) be this generalization.

Theorem 13 FI(∃∀) does not have the finite model property.

Proof. Let ϕ be the sentence

(∀x//)(∃y//ψ(x))(y 6= x)

where ψ(x) is the ∃∀-formula

x = 0 ∨ (∃u)(∀v)(v ≤ u).

The vocabulary consists of ≤ and the constant 0. Let ϕ′ be the conjunction of ϕ and the

universal (hence FI) axioms of linear order.

Claim 1 〈ω,≤, 0〉 |= ϕ′. The task of ∃ is to choose y 6= x knowing only whether ψ(x) is

true or not. She argues as follows: If I am told ψ(x) is true, I know it is because x = 0, so

I choose y = 1. If, on the other hand, I am told that ψ(x) is not true, I know x 6= 0, so I

choose y = 0.

Claim 2 ϕ′ has no finite models. Suppose A = 〈A,≤, 0〉 were one. Now ψ(x) is true

independently of x. So ∃ has no way of choosing y 6= x on the basis of whether ψ(x) is true

or not. More formally, suppose A |=X ϕ′, where X = {∅}. Then A |=X[A:x] (∃y//ψ(x))(y 6= x).

Let X[A : x] = X0 ∪ X1 be a ψ(x)- homogeneous partition and a0, a1 ∈ A such that

A |=X0[a0:y] y 6= x and A |=X1[a1:y] y 6= x. Since ψ(x) is always true, X0 = ∅ or X1 = ∅. Say

X1 = ∅. Thus 〈x, a0〉 ∈ X0, whence A |=X0[a0:y] y = x, a contradiction. 2
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Let FI(IF ) denote the extension of FI where any θ from IF-logic is allowed to occur in //θ.

We know that non-well-foundedness can be expressed in the IF-logic. Lemma 2 implies that

FI(IF ) can express also well-foundedness. Thus FI(IF ) is not included in IF-logic.

The FI as we have defined it turns out to be translatable into first-order logic:

Theorem 14 Every FI-sentence is equivalent to an ∃∀-sentence, and vice versa, every ∃∀-
sentence is equivalent to an FI-sentence.

Proof. One direction (FI 7→ ∃∀) follows from Theorem 11 and condition (3) of lemma 10.

For the converse implication it suffices to notice that following are equivalent:

A |= (∃x1) . . . (∃xn)(∀y1) . . . (∀ym)ϕ

A |={∅} (∃x1//) · · · (∃xn//)(∀y1//) . . . (∀ym//)ϕ′,

where ϕ′ is obtained from ϕ by replacing each disjunction θ(~x)∨ψ(~x) by θ(~x)∨//θ(~x),ψ(~x)ψ(~x).

Note that φ is quantifier-free, so its subformulas can occur in connection with //. 2

Theorem 15 FI has an exponential compression relative to first order ∃∀ logic.

Proof. Consider the structure A whose domain consists of all binary numerals. The pred-

icate C(x, y) means that y = x + 1 mod 2n. Of course 0 ≤ y < 2n. The predicate

Pi(x) for i ≤ n means that the i-th digit of x from the right is 1. Consider the formula

θ = (∀x)(∃y//P1(x),...,Pn(x))C(x, y)). The formula says that ∃ can choose y knowing only the

truth values of Pi(x) : i ≤ n. θ is true in A, and remains true if we only take integers < 2n.

But it is not true in any (non-empty) sub-structure of size < 2n. Such a substructure will

always contain an x such that the y such that C(x, y) is missing. Thus any ∃∀ formula which

was equivalent to θ would have to have at least 2n quantifiers. 2

However, note that if we use full first order logic to express θ we do not need exponential

growth. For the formula φ = (∀x)(∃y)(∀z)([
∧
i≤n Pi(x) ↔ Pi(z)] → C(z, y)) is equivalent to

θ. Intuitively, if ∀ is allowed to change his move (from x tz) after ∃ has played hers, but

satisfying the same booleans, then she is in effect restricted to what she could have done

had she known only the values of the booleans.

We now show that every model of a FI-formula has a finite submodel of at most exponential

size.

Theorem 16 Let A |= ϕ where the logical complexity of ϕ is n. Then A has a submodel B

of ϕ of size at most n2n.
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Proof.: Assume that ϕ is written so that all negations apply only to atoms, so that ϕ is

constructed from literals using ∃,∀,∨,∧ only. Eloise has a winning strategy for the game

corresponding to ϕ. For each move ∃y of Eloise, consider the moves ∀x//P (x) in whose scope

y lies. There are at most n of such predicates P (x) and the value of y is determined by the

truth values of these P (x). (y may be determined also by previous moves y′ of Eloise, but

these are also determined by these booleans P and therefore by all booleans, whether y is

in their scope or not.) So consider the set V of all boolean vectors governing any move of

Eloise. The cardinality of V is at most 2n. For each move ∃yi of Eloise, her strategy gives a

function fi from V into A, the domain of A. Since Eloise has at most n moves, there are at

most n functions, and the range of all these functions gives us a subset of A of size at most

n2n. Let this subset be B.

Consider the modified game where Abelard is allowed to move in A but Eloise is restricted

to move in B. Clearly Eloise is free to use her former winning strategy and wins. Consider

now a further restriction where Abelard is also restricted to B. Surely this does not harm

Eloise and she still wins. But that means that if B is the submodel corresponding to B, its

size is at most n2n and B |= ϕ. 2
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