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Not long ago, if you wanted to seize po-
litical power in a country, you had merely to
control the army and the police. Today it is
only in the most backward countries that fas-
cist generals, in carrying out a coup d’etat,
still use tanks. If a country has reached a
high level of industrialization, the whole scene
changes. The day after the fall of Khruscheu,
the editors of Pravda, Izvestiia, the heads of
the radio and television were replaced; the
army wasn’t called out. Today, a country be-
longs to the person who controls communica-
tions.

Umberto Eco
Towards a Semiological Guerrilla Wartare, 1967



The beliefs held by an agent are represented
by a set of such belief-representing sentences.
It 1s usually assumed that this set 1s closed
under logical consequence, i.e. every sentence
that follows logically from this set is already
in the set.

Sven Hansson in the
Stanford Encyclopedia of philosophy



Socrates: Do you see, Meno, what advances he has
made in his power of recollection? He did not know
at first, and he does not know now, what is the side
of a figure of eight feet: but then he thought that he
knew, and answered confidently as if he knew, and had
no difficulty; now he has a difficulty, and neither knows
nor fancies that he knows.

Meno: True.

Socrates: Is he not better off in knowing his igno-
rance’

Meno: I think that he is.



Socrates: And that is the line which the learned call
the diagonal. And if this is the proper name, then you,
Meno’s slave, are prepared to affirm that the double
space is the square of the diagonal?

Boy: Certainly, Socrates.

Socrates: What do you say of him, Meno? Were not
all these answers given out of his own head?

Meno: Yes, they were all his own.



A common semantics for the logic of knowledge uses
Kripke structures with an accessibility relation R, typi-
cally assumed to be reflexive, symmetric, and transitive.
If we are talking about belief rather than knowledge,
then R would be serial, transitive, and euclidean.

Then some formula ¢ is said to be believed (known) at
state s iff ¢ is true at all states R-accessible from s.
Formally,

s B(¢) it (Vt)(sRt —t = ¢)

e [f a formula is logically valid then it is true at all
states and hence it is both known and believed.

o I[f ¢ and ¢ — v are believed then 1 is also believed
at s.

e A logically inconsistent formula can be neither known
nor believed.



logically omniscient humans?

Suppose that

e p stands for Pandas live in Washington DC,
e ¢ stands for Quine was born in Ohio,

e 1 stands for Rabbits are called gavagai at Harvard.

Suppose that Jill believes that p is true and that ¢ and
r have the same truth values. Then she is allowing two
truth valuations, v = (¢,¢,t), and o' = (¢, f, f).

In particular she should believe ¢, i.e., (r < (p < q)

Perhaps she does. But note that she will actually have
to make the calculations rather than just sit back
and say, “Now do I believe ¢?”



The following example from Daniel Kahneman’s Nobel
lecture, 2002.

A bat and a ball cost $1.10 in total. The
bat costs $1 more than the ball. How much
does the ball cost? Almost everyone reports
an nitial tendency to answer 10 cents be-
cause the sum $1.10 separates naturally into
$1 and 10 cents, and 10 cents is about the
right magnitude. Frederick found that many
intelligent people yield to this immediate 1m-
pulse: 50% (47/93) of Princeton students,
and 56% (164/293) of students at the Uni-
versity of Michigan gave the wrong answer.
Clearly, these respondents offered a response
without checking it.



Linda 1s 31 years old, single, outspoken
and very bright. She majored in philosophy.
As a student she was deeply concerned with
wssues of discrimination and social justice and
also participated in antinuclear demonstrations.

#6 Linda is a bank teller

#8 Linda is a bank teller and active in the
feminist movement

89% of respondents rated item #8 higher
in probability than item #6.

But the set of bank tellers who are active in the feminist
movement is a proper subset (perhaps even a rather
small subset) of the set of all bank tellers, so #8 cannot
have higher probability than #6.



An agent endorses (agrees with) a sentence ¢ iff she
asserts ¢ or chooses Yes when asked, Do you think ¢ ?,
and denies (or disagrees with) ¢ iff she chooses No.
She may also choose Not sure, in which case of course
she neither endorses nor denies.

An agent may endorse X = {¢1, ¢, ..., ¢}, X im-
plies ¢, and either deny ) or at least fail to endorse
. We will say in the first case that the agent is [og-
wcally incoherent, and in the second that the agent is
an incomplete reasoner — or simply incomplete.
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If X is an inconsistent set of sentences, then X implies )
for arbitrary 1. Thus it is obvious that an agent who is
logically incoherent, but not incomplete, and endorses
X, will end up endorsing everything. Fortunately, most
of us, though we are logically incoherent, tend also to
be incomplete.

11



Imagine that Carol assigns probabilities of .3, .3, and .8
respectively to events X, Y, X UY . One could say that
these probabilities are inconsistent. But in fact noth-
ing prevents Carol from accepting bets based on these
probabilities. What makes them incoherent is that we
can make Dutch book against Carol —i.e., place bets in
such a way that no matter what happens, she will end
up losing money.

For instance we can bet $3 on X, $3 on Y, and $2
against X UY . If either X orY happens, we earn
$7 (at least), and lose (at most) $5, thus gaining $2.
If meither happens, we gain $8 and lose $6, so that
we again make a profit — and Carol makes a loss.

Thus incoherent beliefs, on this account, are unwise,
but possible.
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Interpreting Mental States through Plans and Actions

Hayek [12] considers an isolated person acting over a
period according to a preconceived plan. The plan

may, of course, be based on wrong assump-
tions concerning external facts and on this
account may have to be changed. But there
will always be a conceivable set of external
events which would make it possible to exe-
cute the plan as originally conceived.

The beliet states which are implicit in plans are more

general than the belief states which correspond to Kripke
structures,

13



Having a plan does not require that the plan be formu-
lated explicitly in language, or even that the planner
has a language. It is perfectly possible for an animal to
have a plan and to a smaller extent, it is also possible
for a pre-lingual child to engage in deliberate behaviour
which is plan-like.

14



Animals Can also have Plans!

..as has long been thought, 1s the attribu-
tion of mental states confined solely to hu-
mans?

In humans, the evidence for attribution al-
most always comes back to language. There-
fore in order to answer the question of whether
animals attribute mental states, a method for
testing must be found that does not involve
language.

Premack and Premack, [36] p. 139
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It wasn’t until an ape saved a member of
our own species that there was public awaken-
ing to the possibility of nonhuman kindness.
This happened on August 16, 1996 when an
eight-year old female gorilla named Binti Jua
helped a three-year-old boy who had fallen eigh-
teen feet into the primate exhibit at Chicago’s
Brookfield Zoo. Reacting immediately, Bint:
scooped up the boy and carried him to safety.

Frans de Waal

Next to the ridicule of denying an evident
truth is that of taking much pains to defend
it; and no truth appears to me more evident,
than that beasts are endow’d with thought and
reason as well as men.

David Hume
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It is for instance possible to say that a
chicken believes a caterpillar of a certain sort
to be poisonous,and mean by that merely that
it abstains from eating such caterpillars on

account of unpleasant experiences connected
with them.

Frank Ramsey
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Two kinds of beliefs

e Non-linguistic beliefs to be called e-beliefs
which may also be possessed by animals

e Linguistic beliefs which we will call i-beliefs
and which can only be possessed by humans; adults
and older children.

Of course the last two groups will also have non-linguistic
beliefs which must be somehow correlated with their lin-
guistic beliefs.

18



Let B be the space (so far unspecified) of belief states of
some agent. Then the elements of B will be identified
with the choices which the agent makes.

Roughly speaking, if I believe that it is raining, I will
take my umbrella, and if I believe that it is not raining,

then I won't.

But clearly the choice of whether to take my umbrella
or not is correlated with my belief only if I don’t want
to get wet. So my preferences enter in addition to

my beliefs.
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We assume that the agent has some space P of prefer-
ences, and that the choices are governed by the beliefs
as well as the preferences.

We use S for the set of choice situations,
and C' for the set of choices.

Thus the set {U, =U} could be a choice situation (with
U standing for take the umbrella) and both U and —=U
are elements of C.

An agent who does have language can also be subjected
to a purely linguistic choice. If asked Do you think it
is raining? the agent may choose from the set {Yes,
No, Not sure}.

20



Elements of B cannot be identified with propositions,
for an agent may agree to one sentence expressing a
proposition and disagree (or not agree with) another
sentence expressing the same proposition.

An agent in some state b € B may agree with “Su-
perman is strong” while disagreeing with “Clark
Kent is strong”.

On hearing, “But Superman is the same person
as Clark Kent!” she will go into state b’ in which she
will presumably drop the disagreement with “Clark
Kent is strong”.

But it is important that o' # b. The question, What
did she really believe in state b7 makes no sense.

21



An entirely different sort of incoherence arises when an
agent’s linguistic behaviour does not comport with his
choices.

If an agent prefers not to get wet (which we knew some-
how), says that it is raining, and does not take her um-
brella, she may well be quite coherent in her linguistic
behaviour, but her linguistic behaviour and her non-
linguistic choices have failed to match.

But it is going to be usually the case that the agent
will choose U in the situation, {U, —=U} iff she chooses
Yes in the situation where she hears Do you think that
it 1S raining?
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Some technical details

We assume given a space B for some agent whose beliefs
we are considering. The elements of B are the belief
states of that agent.

There are three important update operations on B com-
ing about as a result of (i) events observed, (ii) sentences
heard, and (iii) deductions made.

Elements of B are also used to make choices.

Thus our three update operations are:

Bx&—.DB

A belief state gets revised by witnessing an event.

Bx L —.,B

A belief state gets revised through hearing a sentence.

B—>d8

A deduction causes a change in the belief state (which
we may sometimes represent as an addition).

23



Finally, we also have a space S of choice sets where
an agent makes a particular choice among various alter-
natives. This gives us the map

BxS —.,BxC

An agent with a certain belief makes a choice among
various alternatives.

If we want to explicitly include preferences, we could

write,

BxPxS8S—.,BxC

While § is the family of choice sets, C' is the set of
possible choices and P is some representation of the
agent’s preferences. Thus {take umbrella, don’t
take umbrella} is a choice set and an element of S,
but take umbrella is a choice, and an element of C.

24



Thus our theory of an agent presupposes such a belief
set B, and appropriate functions —., —5, —4, —eh.
We can identify two different spaces B, B’ if they are
bisimilar — they need not be isomorphic.

We can understand an agent (with some caveats) if
what we see as the effects of these maps conforms to
some theory of what an agent wants and what the agent
thinks. And we succeed pretty well. Contra Wittgen-
stein, we not only have a theory of what a lion wants,
and what it means when it growls, we even have theories

for bees and bats.

Many beliefs are expressed (or so we think) by sen-

tences.

25



The Setting

In our setting we imagine an observer o who is pon-
dering on what some agent ¢ believes. We assume (for
convenience) that o thinks of a proposition expressed
by a sentence as a set of possible worlds where that sen-
tence is true, but that the observee 7 need not even have
a language or a notion of truth.

However, it is assumed that 7 does have some plans.
Even if 7 is just a dog digging for a bone, o understands
that ¢ has a plan and roughly what that plan is. And we
shall use this plan to make it possible for o to attribute
beliets to 2.

We also assume that there is a context C' which is the
set of relevant possible worlds, and that worlds out-
side C', even though they are there, are not considered
in deliberating about ¢’s belief or beliefs.

26



So let P be i’s plan at the moment, and let w(P) be
the set of worlds w in C' such that the plan is possible
at w.

Formally, 7(P) = {w| w € C' AN w enables P}.

Let ¢ be a sentence. Then ||¢|| = {w|w = ¢}, the
set of worlds where ¢ is true, is the proposition cor-
responding to the sentence ¢. If ¢ and ) are logically
equivalent, then ||¢|| = |]¢]].

Definition 0.1 We will say that i e-believes o,

Bi(¢) if m(P) C ||¢||. We will suppress the super-
script © when 1t 1s clear from context.

27



[t is obvious in terms of the semantics which we just
gave that the statement “The dog e-believes that there
is a bone where he is digging” is true.

Also, if an agent e-believes ¢ and 1) then the agent also
e-believes ¢ A ¢ and that if the agent e-believes ¢ and
¢ — 1) then the agent e-believes .

Oddly enough, creatures which do not use language do
not suffer from a lack of logical omniscience!

28



Suppose someone has a plan P consisting of, “If ¢ then
do a, else do 7 and another plan P’ consisting of “If ¢
then do 7, else do 0”. Now we find him doing o and also
doing § (we are assuming that the truth value of ¢ has
not changed). We could accuse him of being illogical,
but there is no need to appeal to logic. For he is doing
Dutch book against himself.

Presumably he assumed that u(al¢) > u(8|¢) but
u(a|=¢) < u(B|—¢). Thus given ¢, o was better than
(3 but with —¢ it was the other way around. Similarly,
u(y|p) > u(d|@), but u(y|—¢) < u(d|—-¢). And that
is why he had these plans. But then his choice of «,
results in a loss of utility whether ¢ is true or not. If ¢
is true then he lost out doing 0 and if ¢ is false, then he
lost out doing .

29



For a concrete example of this, suppose that on going
out I advise you to take your umbrella, but fail to take
mine. If it is raining, there will be a loss of utility for I
will get wet. If it is not raining, there will be a loss of
utility because you will be annoyed at having to carry
an umbrella for no good reason. My choice that I advise
you to take your umbrella, but fail to take mine, is not
logically impossible. It just makes no pragmatic sense.

A similar argument will apply if someone endorses ¢,
endorses ¢ — 1 and denies 1. If such a person makes
plans comporting with these three conditions, then he

will make choices which do not maximise his utility.
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A Second Notion of Belief — language enters

We now define a second notion of beliet which does not
imply logical omniscience. This is a more self-conscious,
language-dependent notion of belief.

For agents ¢ who do have a language (assumed to be
English from now on), their plan may contain linguistic
elements. At any moment of time they have a finite
stock of currently believed sentences. This stock may
be revised as time passes. These agents may perform
atomic actions from time to time, and also make obser-
vations which may result in a revision in their stock of
believed sentences.

31



Thus Lois seeing Superman in front of her will add the
sentence “Superman is in front of me”, to her stock, but,
since she does not know that Clark Kent is Superman,
she will not add the sentence “Clark Kent is in front
of me”. Someone else may add the sentence “I see the
Evening Star”, but not the sentence “I see the Morn-
ing Star” at 8 PM on a summer night. A person who
knows that ES = MS, may add the sentence, “Venus
is particularly bright tonight.” In any case, this stock
consists of sentences and not of propositions.

32



The basic objects in the agents’ plans are atomic ac-
tions and observations which may be active (one looks
for something) or passive (one happens to see some-
thing). These are supplemented by the operations of
concatenation (sequencing), if then else, and while do,
where the tests in the if then else and while do are on
sentences. There may also be recursive calls to the pro-
cedure: find out if the sentence ¢ or its negation s
derivable within the limits of my current resources,
from my current stock of beliefs. Thus if 2’s plan has
currently a test on ¢, then, to be sure, the stock of
sentences will be consulted to see if ¢ or its negation
is in the stock. But there may also be a recursive call
to a procedure for deciding ¢. If someone asks “Do
you know the time?”, we do not usually say, “I don’t”,
but look at our watches. Thus consulting our stock of
sentences is typically only the first step in deciding if
some sentence or its negation can be derived with the
resources we have.

33



Sentences and Propositions

Suppose for instance that Lois Lane has invited Clark
Kent to dinner but he has not said yes or no. So she
forms the plan,

While I do not have a definite answer one way
or another, if I see Clark Kent, I will ask him
if he is coming to dinner.

Here seeing Clark Kent is understood to consist of an
observation followed by the addition of the sentence “I
am seeing Clark Kent” to her stock.

Suppose now that she sees Superman standing on her
balcony. She will not ask him if he is coming to dinner
as the sentence “I am seeing Clark Kent” will not be in
her stock of sentences. And this is the sense in which she
does not know that when she is seeing Superman, she is
also seeing Clark Kent. If she suspects that Clark Kent
is Superman, then it may happen that her recursive call
to the procedure “decide if I am seeing Clark Kent”
will take the form of the question, “Are you by any
chance Clark Kent, and if so, are you coming to dinner?”

addressed to Superman.

34



Definition 0.2 If an agent a comes to a point in
her plan where her appropriate action s If ¢ then
do a else do 3, and she does o, then we will say
that she i-believes ¢. If, moreover, ¢ s true, and we
believe that in a similar context she would judge it
to be true only if it is true, then (within the context
of this plan) we will say that she i-knows .

A common example of such a plan is the plan to answer
a question correctly. Thus if an agent is asked “Is ¢
true?”, the agent will typically call the procedure “de-

cide if ¢ is true”, and then answer “yes”, “no”, or “I

don’t know” in the appropriate cases.
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b7

If ¢ then o else [

36



We no longer have the law that if the agent i-knows
¢ and ¢ implies 1 then the agent of necessity i-knows
v. But if the agent has the resources to decide ¢ and
the proof of ¥ from ¢ is easy, then she might well also
know 7). But her notion of “easy” may be different from
ours, and how much effort she devotes to this task will
depend on her mood, how much energy she has, etc.

37



Many Agent States of Knowledge

In a study of the genesis and development of
erooming, Plooij found that infant chimpanzees
of two to four months of age “request” groom-
ing from the mother without first “checking to
see” whether she is “looking” at them. At that
age they simply extend and arm or leg toward
the mother. At about ten and a half months,
however, the infant looks into the mother’s eyes,
establishes that she is looking at it, and then ex-
tend an arm or leg toward her. In other words,
Plooij established that making eye contact is an
early pre-condition for social interaction among
chimpanzees.

Premack and Premack, [36] p. 139
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Ann is sitting on a chair in front of which there is a vase
with a dozen roses in it. Bob can see both Ann and the
roses. Charlie can see Ann and Bob and the roses.

We could now ask:

e Does Ann know p? where p = There are roses in
front of her. Le., K,(p) ?

e Does Bob know that she knows? (K, K,(p)?)

e Does Charlie know that Bob knows that Ann knows
(KchKa(p>> ?

Both common sense and the corresponding Kripke struc-
ture tell us that the answer to all three questions is yes.
Indeed if they can see each other then p is common
knowledge among them.
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Let us now change the meaning of p. In this new exam-
ple, Ann, Bob and Charlie are all as before, but what
is in front of Ann is not a vase of roses, but a black-
board with the number 1243 written on it. Let p now
denote the fact that the number on the blackboard is
composite.

Logically the situation is not changed. Since 1243 is
composite (113 times 11), this is a necessary truth, Ann
knows it, Bob knows that Ann knows it, and Charlie
knows that Bob knows that Ann knows it.

But are we sure that this is the case? It could be that
Ann finds numbers greater than 100 to be a mystery.
Or perhaps she is actually a number theorist but sexist
Bob thinks that she is number-challenged. Or perhaps
Bob knows her quite well, but Charlie thinks that Bob
is a chauvinist who has a poor opinion of the mathe-
matical abilities of women.

So we are no longer sure that K,(p), KyK,(p) and
K. KyK,(p) are all true.

40



Consider now the following game. Ann is sitting (again)
in a chair in front of a blackboard on which the number
n is written. In front of her are three buttons, 1, 2, 3.
Bob can see her and the blackboard, and Charlie can
see both Ann and Bob and the blackboard. Bob and
Charlie also have buttons. No one can see the buttons
of the other people.
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The Game:

Ann should push button 1 if she thinks n is prime,
button 2 if she thinks it is composite, and button 3 if
she does not know.

If she presses the right button she gets one Euro. If she
guesses wrong, she pays $20 310. And if she presses 3,
there is no gain or loss.

Bob has four buttons, and he should press a button
corresponding to Ann’s if he knows which button it is,
and he presses button 4 if he does not know. If he
guesses right, he gets $1, if he guesses wrong, he pays
$10, and if he presses 4, no gain or loss.

Charlie has 5 buttons, buttons 1-4 to indicate what he
thinks Bob pressed, and button 5 if he does not know.
His payments are similar to Bob'’s.
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If p denotes the fact that n is composite, then we ought
to have K,(p), Ky K, (p) and K. KK, (p). Thus all three
should press button 2, all of them getting $1.

Will this happen? Not necessarily! As we saw, Ann
may not realize that the number is composite, or if she
does, Bob might think the number is too big for her to
factorize etc. Thus in fact we do not have a definite
map from physical situations to Kripke structures. The
physical set up leaves out the mental facts, and there
are many interpretations (not all of which are Kripke
structures) for the same physical situation.
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So how will the game be played? It depends, even if
some of the three payers are logically omniscient. But
note that Ann’s best strategy is to press button 2 re-
oardless of what Bob and Charlie press. Given that
she presses button 2, Bob’s best strategy is to press 2
also, and given that they are both pressing 2, Charlie
should also play 2.

The standard Kripke structure that we get out of the
physical situation does not necessarily represent the men-
tal situation, but it does represent the unique Nash

equilibrium.
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A Formalism:

Suppose we have a finite n-agent Kripke structure M.
The set of states is W with cardinality m. We use
this structure to construct a game G. FEach agent is
told what M loooks like. Moreover, each agent has
a set of symbols corresponding to the (finitely many)
equivalence classes of that agent. I.e. the space W
splits into finitely many pieces which are the equivalence
classes of the agent’s accessibility relation and the agent
has a symbol for each such class. Thus each agent has
his own alphabet. Let [s]; be i’s symbol (equivalence
class) for s € W. Thus s ~; t iff [s]; = [t];, When
the agent sees the symbol, he knows which equivalence
class he is in, but not where he is in that class.
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At any moment of time, some state s € W is picked
with probability 1/m. Then each agent ¢ is given the
symbol [s];. 4 is also given a finite set X; of formulas
with the following properties. Only atoms are negated
in any formula — there are no other negations in any for-
mula. The only connectives are A, V, K, L; = ~K;~.
Every knowledge formula (without common knowledge)
can be written in this way with all negations driven in
using de Morgan'’s laws, etc.

If ANB (AV B)isin X;, then so are A, B.
It K]<A> or L](A) 1S 1In Xi; then A is in X]

At time ¢, each agent 7 is asked to mark each formula
in X; of level t — 1 with a yes, or a no, or a don’t
know. The process goes on until all formulas have been
marked. (We could have made this a one shot game,
but the extended form is a bit prettier.)
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After this, each agent gets $1 for each formula cor-
rectly marked, $0 for each don’t know, and is
fined $(m x k), for each incorrectly marked for-
mula, where m is the cardinality of W, and k is the
cardinality of the finite set [ J X;. A formula marked
with don’t know is not considered marked.

A literal (atomic formula or its negation) is considered
correctly marked by ¢ iff it is true and marked yes,

or false and marked no. (“true, false” are relative to

M, s.)
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Formulas A A B and AV B are considered correctly

marked by 7 if the yes/no corresponds to the truth value
(of K;(ANA B)and K;(AV B)) at state s.

A formula K;(A) is considered to be correctly marked
by ¢ if

either K;(A) is true and A marked yes by j or

K;(A) is marked no and either A is false, or A is not

marked yes by j.

A formula L;(A) is considered correctly marked by ¢ if
either L;(A) is marked yes, it is true, and A is not
marked no by j or L;(A) is false, marked no, and A is
marked no by j.
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Each agent may have a strategy for playing this game
given by the Kripke structure and the sets X;. We will
say that an n-tuple S = (sq, ..., $,,) of strategies is safe
for 2 if + does not have a negative expected value. It is
safe if no agent makes an expected loss.

Clearly the strategy where some agent says don’t know
for all formulas, is safe for him. Indeed the don’t know
strategy is safe regardless of how the other agents play.

On the other hand, a strategy where an agent says yes
for a formula A when he does not know A (i.e., where
s = = K;(A)), can never be safe, because if he does not
know A,, then there is probability at least 1/m that he
is wrong once, and his loss of m x k will make up for all
possible gains from other cases where he is accidentally
right.
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Definition: A knowledge state for n-agents is a
set of safe strategies for them. A belief state is a set
of not necessarily safe strategies.

A state where every agent marks formulas according
to their knowledge value is safe.

Bob could have a false belief that Ann does not know
that 1243 is composite. That is not (on the face of
it) a false belief about the world, but it is a false belief

nonetheless. And if Bob has such a false belief, he
will make a bad move and pay for it in our game.

Theorem: The only Nash equilibrium is where each
agent marks each formula correctly according to its
value at s, where A is considered to be correctly marked
by A if it is marked yes and s = K;(A) or it is marked
no and s = K;(—A). (Formulas A where the agent
does not know whether A should be marked with a
don’t know).

Proof: Straightforward by induction on formula com-
plexity:.
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Definition: Let the knowledge depth d(A) be the
maximum length of a chain of embedded knowledge op-
crators (K or L) in formula A. We will say that a
strategy s of some agent is [-complete if the agent cor-
rectly marks all formulas of knowledge depth at most

.

Lemma: Suppose all agents other than ¢ are £-complete.
Then agent ¢ can safely be (¢ + 1)-complete.

Thus for agent ¢ to infer to level £ + 1 it is suflicient
that other agents do infer to level £. In the Ann, Bob,
Charlie example, if Ann correctly infers facts (that p is
true) then Bob can safely infer one level higher, and if
he does, then Charlie can safely infer two levels higher.

Thus there can be evolution towards the Nash equil-
brium as follows. Each agent can safely start by mark-
ing true all knowledge-free formulas which the Kripke
structure says they know, and marking false all knowledge-
free formulas which the Kripke structure says they know
to be false. They are not dependent on other players
being intelligent.

o1



Suppose now that all the agents proceed from some level
¢ to £ + 1. They are still safe since all agents were /-
complete. In a finite number of steps, they will arrive
at a stage where all formulas A where agent ¢ knows
whether A according to the Kripke structure, have been
marked. Now the agents have earned the maximum
they possibly could and the Nash equilibrium has been
reached.

We can make a stronger assertion. Starting with the
strategy where all agents say don’t know all the time,
there is a sequence of changes where at each stage, only
one agent changes his valuation of one formula, and
which ends up with the Nash equilibrium. Moreover, no
agent is unsafe at any stage of these transformations.
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What about common knowledge ? We could extend
the game by saying that Ann and Bob can mark the for-
mula Cy5(p) yes, provided it is true in the conventional
sense and they both mark it yes. But now there is no
individually safe way to proceed to this situation! They
must do it together.

However, if the Kripke structure M does satisty C,4(p),
then for each formula A of the form K,K,K,....Ky(p)

(for example) there is a way for the two agents to pro-
ceed to a stage where both agents mark A with yes.
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We can now consider the case where some agents are —
or are believed to be, logically deficient by other agents.
Thus suppose that of agents 1,2,3, agents 1 and 2 are
logically adequate, but they know that agent 3 has no
notion that other people even have minds (perhaps he
is autistic). All three are looking at a vase of flowers.
Let p stand for There is a vase of flowers. Then p
will be common knowledge among 1 and 2, and in fact,
that 3 knows p will be common knowledge among 1
and 2. But p cannot be common knowledge among
{1,2,3}, for 3 has no notion of what 1 and 2 are thinking]
For example, 1 cannot mark K3K1(p)) yes, because he
cannot count on 3 marking K (p) yes. Thus the formula
K1 K3K;(p) fails to be true not because of a deficiency
in 1, but because of a deficiency in 3.

Thus there will be a sort of Nash equlibrium where
agents 1, 2 are doing their best given 3’s deficiency!
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Conclusion: We have defined a more general set of
knowledge states than those provided by Kripke struc-
tures. Hopefully, this more flexible notion will allow us
to address various puzzles like that of the No Trade
theorem, or the issue of mathematical knowledge.
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