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About These Notes

Origins and Sources

The pages before you are a much abbreviated digest of the first 4 chapters of
the scriptum that I use for my Axiomatic Set Theory lectures at the University
of Vienna. The notes for those lectures are heavily based on the lectures of
Prof. Bogdan Weglorz, given at the University of Wroctaw, that I attended as
an undergraduate. His lectures were in turn based upon Kenneth Kunen’s Set
Theory and Thomas Jech’s Set Theory. Thus, the lion’s share of these notes has
as its ultimate source those two books. Bits here and there were also taken from
Karol Hrbacek and Jech’s book Introduction to Set Theory, Wilfrid Hodge’s
Model Theory, Keith Devlin’s Aspects of Constructibility, Roman Murawski’s
Filozofia Matematyki: Zarys Dziejow.

Format of Lectures and Notes

Sections with asterisks will probably not be presented, but they are good to
know, so you should read them on your own!



Chapter 1

Motivation, Language, and
Axioms

1.1 The Motivation Behind Set Theory

Mathematicians in general work within so-called “naive set theory”. That is, in
a theory which is not axiomatized, and treating its objects, “sets”, as platonic
absolute objects. Traditionally, this is how natural and real numbers are ap-
proached in grade school mathematics classes. Sets are sets, and that is all.
Unfortunately, this approach to set theory very quickly leads to contradictions.
A well known example of this is the “set of all sets”, in other words, Russell’s
Paradoz (also known as Russell’s Antinomy). Let us make it clear:

Theorem. There is no set containing all sets.
More formally:

Theorem. Let R be the set of all sets not containing themselves. Then R is
neither a member of itself, nor not a member of itself.
Le,let R={x:x¢x}. Then Re R— R¢ R.

With a naive approach, there is nothing in particular that stops us from
making assertions such as, there is a set of all sets. This example shows that
the naive approach to set theory is a bit unsafe, especially when we are talking
about sets.

The difficulties caused by a lack of formalism, as illustrated by Russell’s
Paradox, are why we will begin this lecture with a discussion of the formal
language of set theory, and a reminder of first-order formal languages.

1.2 How to Speak: The First-Order Language of
Set Theory*

First, we define our “alphabet”:

Definition 1.2.1. The basic symbols are A, —,3,(,), €, =, and v; for every nat-
ural number j.
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Intuition for Definition 1.2.1: The intuition behind these symbols is the
following. A means the conjunction “and”, — is negation “not”, 3 is the existential
quantifier “there is, there exists”, the parenthesis will help with the readability
of our sentences and formulas, € denotes the relation of membership (z € y
means z is a member of y), = is the relation of equality, and v; are variables.

Now we will form words from these letters.

Definition 1.2.2. An ezpression is any finite sequence of basic symbols, such
as € A Avg(=).

Intuition for Definition 1.2.2: Similarly to natural languages like En-
glish and German, we can put together our letters. For example we can write
“adkhkfd” and “banana”. But, not all expressions have meaning, just as in our
example. The sequence of letters “adkhkfd” means nothing, while “banana” does.

Intuition for Definition 1.2.3: The intuitive interpretation of the symbols
determine which expressions are meaningful. These meaningful expressions are
called formulas.

More precisely:

Definition 1.2.3. We definite (inductively) a formula to be an expression built
using the following rules:

1. v; € v; and v; = v; are formulas for all ¢ and j;
2. if ¢ and 1 are formulas, then so are (¢) A (¢), =(¢) and Fv;(¢) for all ;
Abbreviations. We will use the following abbreviations:

e Vu;(¢) abbreviates the formula —(3v;(—(9)));

* (¢)V () stands for =((=(¢)) A (=(¥)));

* (¢) — (¢) abbreviates (=(¢)) V (¢);

* (¢) < (¥) stands for ((¢) — (¥)) A ((¥) — ()

e v; # v; and v; ¢ v; stand for =(v; = v;) and —(v; € v;) respectively;

e we omit parentheses if their placement is clear from context;

e other letters of the Latin, Greek, or Hebrew alphabet are used as variables.
e Yz € a¢ stands for Vz (z € a — ¢)

e Similarly, 3z € a ¢ stands for 3z (z € a A @)

e Jlz¢ is an abbreviation of 3z (¢(x) A (Vy)(¢(y) — y = x)). The intended
meaning here is that there exists exactly one x such that ¢ holds.

Definitions 1.2.4. A subformula of a formula is a segment of a formula that
itself constitutes a formula.

The scope of an occurrence of a quantifier Jv; is the (unique) subformula
beginning with that Jv;. An occurrence of a variable is called bound if it lies in
the scope of a quantifier acting on that variable. Otherwise, a variable is called
free.



6 CHAPTER 1. MOTIVATION, LANGUAGE, AND AXIOMS

Example 1. Look at
(3110 (1}0 S ’Ul)) A\ (3’(/1 (’UQ S 1}1)) .

In this example, the subformulas are vy € vy, Jvg (v € v1), v2 € vy, vy (V2 € V1),
and the whole formula (Jvg (vg € v1)) A (Fuy (ve € v1)).

The scope of vy in the example, is Fvg (vy € v1).

The first occurrence of v in the example is free, as is the occurrence of vs.
The second occurrence of vy is bound, as are the occurrences of vg.

Intuition for Definitions 1.2.4: Intuitively, a formula expresses a prop-
erty of its free variables. The bound variables are just used to make existential
statements and are in a sense dummy variables.

We will sometimes present a formula as ¢(z1,...,z,) to emphasize its de-
pendence (whatever that means) on x1,...,2z,. If y1,...,y, are other variables,
d(y1,-..,yn) denotes the formula that comes from substituting a y; for each

free occurrence of x;. Such a substitution is called free or legitimate if no free
occurrence of an x; is in the scope of a quantifier 3y;. Here, the intuition is that
&(Y1,...,yn) says about yi,...,y, what ¢(xy,...,2,) said about x1,...,z,.
This may not be the case if the substitution is not free and some y; winds up
bound by a quantifier of ¢. We will always assume that our substitutions are
legitimate.

Definition 1.2.5. A sentence is a formula that has no free variables.

Intuition for Definition 1.2.5: Intuitively, a sentence states an assertion
which is either true or false.

The axioms of set theory we will examine in this lecture, ZFC, are a certain
set of sentences.

Now, we address how things can be proved.

Intuition: If S is a set of sentences and ¢ is a sentence, then intuitively,
S F ¢ means that one can prove from S by a purely logical argument in which
the sentences of S may be quoted as axioms, but may not refer to the intended
“interpretation” or “meaning” of the symbol €.

Formally, we define S + ¢ iff (= "if and only if" =<) there is a formal
deduction of ¢ from S. That is, iff there is a finite sequence ¢1,..., ¢, of
formulas such that ¢, is ¢, and for each i, either ¢; is in S, or ¢; is a logical
axiom, or ¢; follows from ¢1,...,¢;_1 by certain rules of inference.

If S is the empty set, and S - ¢, then we write - ¢ and say that ¢ is logically
valid. I F (¢ < 1) then ¢ and 1) are logically equivalent.

If ¢ is a formula, a universal closure of ¢ is a sentence gotten by universally
quantifying all free variables of ¢.

Example 2. Let ¢ be the formula
r=y—Vz(z€x < z€y).
Then, Vz Vy ¢ and Vy Vzx ¢ are universal closures of ¢.

All universal closures of a formula are logically equivalent. If S is a set of
sentences and ¢ is a formula, then S I ¢ indicates that the universal closure of
¢ is provable from S.
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We extend to formulas our notions of logical validity and logical equivalence,
by saying that a formula is logically valid if its universal closure is. Similarly
from logical equivalence. Using the notion of logical equivalence, we can make
precise the idea that bound variables are dummy variables. If ¢(z1,...,z,) is a
formula with only 1, ..., z, free and ¢'(x1,...,x,) results from replacing the
bound variables of ¢ with other variables, then ¢ and ¢’ are logically equivalent.
This justifies the use of other letters to stand in for our “official” variables.

If S is a set of sentences, we say that S is consistent (symbolically written
Con(S)) if there does not exist a ¢ such that S+ ¢ and S F —¢. If S is
inconsistent, then S I v for all ¢». Such S are thus of no interest. Notice that
S iff SU{—} is inconsistent.

The fact that formal proofs are all finite gives us the following:

Theorem 1.2.6.

1. If S+ ¢, then there is a finite Sy C S such that Sy - ¢;

2. If S is inconsistent, there is a finite Sy C S such that Sy is inconsistent.

1.3 The Axioms of Set Theory

1.3.1 Statement and discussion of the axioms of ZFC

There is more than one possible axiomatization of set theory. In this semester
we will concentrate on one - one that is generally accepted as the standard -
so-called ZFC set theory. The letters stand for Zermelo, Fraenkel, and Choice,
for two formulators of the axiom system and the 9th axiom. Zermelo formulated
all but Axioms 8 and 5 by 1908. Further additions were made by Fraenkel and
Skolem in the 1920’s.

We underline that a set is anything whose existence is guaranteed by the
following axioms.

There are 9 axioms and axiom schema of ZFC set theory, 10 if you count
the Oth axiom. Different people number them differently!

Axiom 0 (Set Existence).
Jz (x = z).

Intuition: This axiom says that our universe, or domain, of sets is not
empty - that we are actually talking about something.

Under most developments of classical formal logic, this axiom can be derived
from the logical axioms. Alternatively, it can be derived from Axiom 6 (Infinity)
below. Thus, this axiom does not need to be explicitly stated. We do so here
for emphasis.

Axiom 1 (Extensionality (or Equality)).
VeVy (y=x) o Vz(z €z < 2z €y)).

Intuition: The intuition behind the Axiom of Extensionality is that a set
is determined by its members. Note that the implication (y = z) — Vz(z €
x > z € y) is a theorem of logic, so really only the opposite implication is the
important bit.
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Axiom 2 ((Restricted) Comprehension Axiom Schema (or Separation Axiom
Schemay)).

For each formula ¢ € L(€) without y free , the universal closure of the
following is an axiom:

Ve (x ey —x€zNd).

Note that in the above definition, y need not actually be used in ¢, just if it
is there it has to be bound.

Axiom 2 is not just one axiom, but rather a schema, a recipe or model, for
making infinitely many axioms, one for each ¢ in which y is not a free variable.

Intuition: The idea behind this axiom is the formalization of the construc-
tion of sets of the form {z : P(x)}, where P(z) is some property of . Since we
have formalized the notion of a property via formulas, one may simple-mindedly
expect an axiom of the form

yVr(x €y« @).

This would be the axiom scheme of (full) Comprehension. But, if we take ¢ to
be the formula = ¢ z, then we get Russell’s Paradox! So, it would be a mistake
to take full comprehension as an axiom!

So, instead, we use the property given by ¢ to “separate”’ from a set (z
as written above) a subset having this property. We assert that y exists, and
denote it by {z : x € z A ¢}. This y is then unique by Axiom 1, Extensionality.
While the variable y is presumed not to be free, ¢ may have any number of
other variables free. The free variables are considered to be parameters in this
definition of a subset of z.

The requirement that y is not free eliminates the possibility of self-referential
definitions of sets. For example: JyVz (x € y < x € z Az ¢ y), which would be
inconsistent with the existence of a non-empty z.

If z is a set, then thanks to the restricted Comprehension axiom, we can
form a set {z € z : * # x}, which is a set with no member elements. By
the Set Existence axiom, some set z exists, so there is a set with no elements.
By Extensionality, the set with no elements is unique. So we can make the
following;:

Definition 1.3.1. () is the unique set y such that Va (z ¢ y).

We can also prove using the restricted Comprehension axiom that there is
no universal set, no set containing all sets.

Theorem 1.3.2.
-3z V¥V (r € ).

Proof. Assume we do have such a universal set z. If there is such a set z that
Va (z € z), then by the restricted Comprehension axiom schema, we can form
the set {x € z : ¢ x}. Because the set z is universal, this new set can be
written {x : x ¢ x}. This is a contradiction with Russell’s Antinomy. O30

Abbreviations. At this point, we can also define some further abbreviations.

o Let A C B abbreviates the formula Vz(z € A — z € B).
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From the axioms of logic, we have that A C A and () C A.

The empty set ) is the only set that can be proven to exist from the axioms
0, 1, 2 so far. If we assume that the empty set is the only set in our domain,
with € interpreted as the (vacuous) membership relation, then it is easy to see
that the axioms so far hold in this interpretation. But, so do other (unwanted!)
statements, such as Vz(z = (). Thus axioms cannot refute Vz (z = 0)). So, we
need more axioms!

We give three further axioms for building sets, then will discuss them.

Axiom 3 (Pairing).
VeVy3z(z € z Ny € 2).

Intuition: The pairing axiom is meant to allow us to combine two sets.

By axioms 3,1,2 (Pairing, Extensionality, and restricted Comprehension), for
all sets z and y there exists exactly one set whose elements are only x and y.
We call this set {z,y}. The set {z} = {z,z} is the set whose unique element is
x. This is an easy EXERCISE.

We can now define:

Definition 1.3.3. A (Kuratowski) ordered pair is defined to be

(,y) = {{=}, {z, y}}.
Clearly, (x,y) = («/,y') — © = 2’A\y = y'. The“clearly” is an easy EXERCISE.
Axiom 4 (Union).
VFIAVY Vz (r €Y ANY € F -z € A).

Intuition: In the Union Axiom, we think of F as a family of sets, and
postulate that every member of F is a subset of some set A, which will be called
the union.

Together with Replacement and Extensionality, the union axiom gives the
smallest and unique set with the property mentioned above in the intuition.
Thus we define:

Definition 1.3.4. The union of a family of sets F, written | J F is defined to
be
U]:z{xeAzﬂye]:(xEy)}.

Definition 1.3.5. If F is a non-empty set, then we can also define the inter-
section of F, (F to be

ﬂ}":{x:VyG}"(xEy)}.

This intersection set exists since for each b € F we have ((F ={zx € b: Vy €
F(z € y), thus we can use restricted Comprehension. Uniqueness, as usual,
follows from Extensionality.

If F =0, then |JF = 0. In this case, (| F would have to be the set of all sets,
which we have shown does not exist. So, the assumption that F is non-empty
is a vital one.

Abbreviations. We have the following abbreviations:
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e AUB = J{A, B};
e ANB={A4,B};
e A\B={xec A:x ¢ B}.

Axiom 5 (Replacement Axiom Schema).
For each ¢ € £(€) without Y free, the universal closure of the following is
an axiom:

Ve € Ay p(x,y) — Y Ve € Ady € Y ¢(z,y).

Intuition: This, like axiom 2 (restricted Comprehension), is an axiom
schema, and so gives us infinitely many axioms - one for each ¢. The intu-
ition behind this axiom is that ¢ defines a function on A. Then, there should
exist a set that is the image of the function, i.e., Y = {y : 3z € Aé(x,y)}. This
Y should be a set, and of size not greater than A.

Definition 1.3.6. The Replacement Schema allows us to define the cartesian
product A x B of finitely many factors. We do this in a couple of steps. First,
for every y € B we have Vo € A3z (z = (z,y)). This allows us to define, using
replacement, the set

prod(A,y) ={z:3x € Az = (z,y)}.

Now, Vy € B3z (z = prod(4,y). Again, thanks to the axiom of replacement,
we can define

Prod(A4, B) = {prod(4,y) : y € B}.

Finally, we define
Ax B =|JProd(4,B).

Other important notions can be defined already at this point in the devel-
opment of the theory.

Definitions 1.3.7. A relation is a set R all of whose elements are ordered pairs.
For a given relation R we define the domain and range of R:

dom(R) = {x : 3y ((x,y) € R)},

mg(R) = {y: 3z ((z,y) € R)}.

For a relation R we define its inverse
R~ ={(z,y) : (y,z) € R}.

Remark 1.3.8. The construction of the domain and range does not require the
aziom of replacement. Notice that both are subsets of |J R.
The definitions of range, domain, and inverse make sense for any set R.

However, if R is a relation, then we have some nice properties. For example,
R C dom(R) x rng(R). Also, R = (R™1)~%

Note that traditionally we often write xRy instead of (z,y) € R.
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Definitions 1.3.9. f is called a function iff f is a relation and

Va € dom(f) 3y € rng(f) ((z,y) € f).

We write f : A — B to mean that f is a function such that dom(f) = A4
and mg(f) = B.

If f: A— B and z € A, then f(z) denotes the unique y such that
(z,y) € f.

If C C A, then f | C = fNC x B is the restriction of f to C.

Further, f"C =rmg(f [ C) = {f(z) : x € C'}. Sometimes this is also noted
as f[C] (also f«C or f — (C)).

A function f : A — B is called 1-1 (“one-to-one”) or an injection if f~*
is a function. The function f is called onto or a surjection if rng(f) = B. A
function that is both a surjection and an injection is called a bijection.

We can use functions to compare relations.

Definition 1.3.10. If R and S are relations and A and B are sets, then (A, R)
and(B, S) are isomorphic (“similar”) if there exists a bijection (remember: 1-1
and onto function) f: A — B such that

Vr,y € AzRy <= f(z)Sf(y).

This function is called an isomorphism. We denote the existence of such an
isomorphism as (4, R) = (B, S)

So far, the axioms we have presented only allow us to build finite sets (what-
ever finite formally means). This means we cannot define, say, the set of all
natural numbers. The next axiom, the axiom of infinity rectifies this problem.

Axiom 6 (Infinity).
(D exAVycx(yU{y} €x)).

Abbreviations. o Let S(z) = x U {z}. We call S the successor function
(for reasons that will become clear later.)

So, we can restate the axiom of Infinity as
D exnVyexzS(y) €x)).

We call a set x that satisfies the axiom of infinity an inductive set. Later,
we will define rigorously what “infinite” means, and that an inductive set is
necessarily infinite.

Axiom 7 (Powerset).
VeIyVz(z Cax — z €y).

Set theory, unlike other most other branches of mathematics, has at its
roots the work of one man: Georg Cantor. Cantor made the observation in
1873 that there are “more” transcendental numbers, and so more real numbers,
than there are natural numbers. Zermelo later developed the axioms we are
studying to take care of the paradoxes that appeared because of Cantor’s less
formal approach.

The infinity axiom only allows us to get sets that are the same size as the
natural numbers. We need the powerset to get bigger infinities, such as the
infinity that is the size of the real numbers.
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Axiom 8 (Foundation (also: Axiom of Regularity).
Ve(Qyex -y ex(-Fz(z€yNzen)))

The Axiom of Foundation is an axiom that people tend to forget about.
Nevertheless, it is very important in certain inductive constructions. We will
concentrate more on this axiom later in the semester.

Axiom 9 (Axiom of Choice).
VF((VSeF(S#0) — (3fVSeFf(S)es))

Intuition: The idea behind the axiom of choice is that for any family of
sets that are non-empty, there is a function that picks out one element out of
each member of the family.

There are many equivalent formulations of the Axiom of Choice. We’ll show
some of these later. This was at one time a bit of a controversial axiom (though
most mathematicians nowadays accept the axiom as useful and “correct”). A
lot of modern mathematics doesn’t work quite so well if the axiom of choice is
not assumed. For example, a lot of analysis and topology gets very ugly and
messy very quickly without this axiom. We’ll point out where it is used in the
development of set theory as we go along.

1.3.2 Partial Axiom Systems

Certain theorems can be proven using only part of the full ZFC system of axioms.
Here we list certain standard partial systems.

ZFC All the axioms presented here. 0-9
ZF Axioms 0-8. Here the Axiom of Choice is omitted.

ZF~ Axioms 0-7. So, in particular, the Axiom of Foundation and Choice are
omitted.

ZF~ — P Axioms 0-6. So, Choice, Foundation, and the Powerset Axiom are omitted.

ZF — P Axioms 0-6 and 8. So, no Choice or Powerset.

The systems ZFC~, ZFC~ — P, and ZFC — P are defined in the obvious
way.

We will usually note when a theorem can be proved within one of these
partial systems.
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Orders and Ordinals

2.1 Orders

We now concentrate on a particular kind of relation: that of the ordering.

Definition 2.1.1. A linear ordering (or total ordering) is a pair (A, R) where
Ais a set and R is a relation that linearly orders A. That is, R is

e transitive, i.e. Vx,y,z € AzRy NyRz — zRz;
o irreflexive, i.e. Vo € A—(zRx);
e linear, i.e. Vx,y € AzRyV x =yV yRz.

Notice that we are not assuming that R C A x A. Thus, if (A, R) is a linear
ordering and B C A, then (B, R) is also a linear ordering.
We will be particularly concerned with a particular type of linear ordering:

Definition 2.1.2. A relation R is a well-ordering on A if (A, R) is a linear
ordering and every non-empty subset of A has a R-least element.

Examples of well-orderings include: (N, <) and ({0, 1,2}, <). The following
are NOT well-orderings:(Z, <),(Q, <), and (R, <).

A basic tool for studying well-orderings is the set of predecessors of an ele-
ment:

Definition 2.1.3. Let (A4, R) be an ordering. If z € A, then the initial segment
determined by x is defined as

pred(A,z, R) = {y € A: yRx}.
A basic property of well-orderings is as follows:
Lemma 2.1.4. If (A, R) is a well-ordering, then for all x € A, (A,R) %
(pred(4, =, R), R)

Proof. Assume, to the contrary, that f : A — pred(A, z, R) is an isomorphism.
Then f(z)Rz, by definition of an isomorphism. Let z be the R-least element of
the set X = {y € A : f(y)Ry}, which exists because we have assumed that R
is a well-ordering. But then f(z)Rz. Thus immediately we have ff(z)Rf(2).
Thus, f(z) € X, which means that z wasn’t the R-least element in X after all.
A contradiction. Os14

13
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A further very important property of well-orders is given by:

Lemma 2.1.5. If (A, R) and (B,S) are isomorphic well-orderings, then the
isomorphism between them is unique.

Proof. For a contradiction, let f and g be two different isomorphisms between
the isomorphic well-orderings (A, R) and (B,S). Let X = {y € A : f(y) #
g(y)}. Since we have assume that f # g, it must be that X # (. Let z be
the R-least element of the set X. Since f(z) # g(z), then either f(z)Sg(z) or
g(z)Sf(z). Let us assume that f(z)Sg(z). Let t € A be such that g(¢t) = f(2).
Then, g(t) # g(z), and therefore ¢ # z, so further, we have f(t) # g(t) = f(2).
So, g(t)Sg(z), which gives tRz because g is an isomorphism. This means that ¢
is R-smaller than z and ¢ € X. Contradiction. Ooqs

This leads us to the fact that any two well-orderings are comparable.

Theorem 2.1.6. Let (A, R) and (B, S) be two well-orderings. Then, ezactly
one of the following holds:

1. (A, R) = (B, S);
2. 3y € B((A,R) = (pred(B,y, 5), S));
3. 3z € A((pred(4A,z, R),R) = (B, S)).
Proof. Let
f={(v,w):veAAwe BA (pred(A,v, R), R) = (pred(B,w, 5), S)};

here f is an isomorphism from some initial segment of A onto some initial
segment of B. Use the previous lemmas to show that these initial segments
cannot both be proper. The details here are left as an EXERCISE. o6

At this point, we can mention a statement that is equivalent to the Axiom
of Choice, Axiom 9. This statement is often given as THE statement of the
Axiom of Choice.

Axiom (9’, Well-ordering Principle (Zermelo’s Theorem)).
VA3R (R well-orders A).
Theorem 2.1.7. The following statements are equivalent:
AC Aziom of choice
WOP Well-ordering Principle

We postpone the proof of Theorem 2.1.7 until the next section.

2.2 Ordinals

We begin with some definitions:

Definition 2.2.1. A set z is transitive if every element of z is also a subset of
z.
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Examples of transitive sets are: 0, {0}, {{0},0}, and {{{0}},{0},0}. On the
other hand, {{0}} is not transitive.

Definition 2.2.2. A set ais called an ordinal if it is transitive and well-ordered
by €.

There is a formal subtlety here: formally, the statement “« is well-ordered
by €” means that (o, €,) is a well-order, where €,= ({{z,y) € a X a: x € y}).
We make this distinction because one must differentiate between the relation
€, which is a relation in the sense of our formal language of set theory, and the
relation €, that well-orders . We need the latter to be a set, and hence part
of the domain of things our formal language talks about, that is €, is a relation
in the sense that it is a set composed of ordered pairs.

When we talk about ordinals, we do not explicitly mention €,. So, we
will write o & (A, R) instead of {(«, €,) = (A, R), and when § € «, we write
pred(«, §) instead of pred(«, 3, €,).

Theorem 2.2.3.

1. If a is an ordinal and y € «, then y is also an ordinal and y = pred(a, y);
2. If « and B are ordinals and o = 3, then o = (;

3. If a and [ are ordinals, then exactly one of the following holds: o € (3,
B € a, ora=p0;

4. If a, B, and ~y are ordinals, a € B and B € v, then o € ~y;

5. If C is a non-empty set of ordinals, then 3o € CVB € C(a € BV a=[).

Proof. (1): Let y € . Then y C « because « is transitive. If y itself is not
transitive, then there is some x € y such that x ¢ y. Then, let z € x be such
that z ¢ y. But, since both z and y are elements of «, then either z = y or
y € z, because « is ordered by €. Both of these possibilities contradict the fact
that € well-orders « (for example x € y € z but « ¢ y!). Therefore, y must be
transitive. Because y C «, € well-orders y.

(2): Notice first that because « is a well-ordering, either a = 0 or 0 € a.
Now, if @ & 3, then by Lemma 2.1.5, the isomorphism f : o — (3 is unique.
Of course, f(#) = 0. If f is not the identity mapping, then let v be the first
element of « such that f(vy) # 7). It is easy to check that such a thing does not
exist (there will be a loop). I leave the details as an EXERCISE.

(3): To prove this, use (1), (2), and Theorem 2.1.6. If more than one of
the possibilities were to occur, then this would imply the existence of an = such
that € x, which would in turn imply that € is not irreflexive.

(4): This is an obvious result of the other things we have shown.

(5): Thanks to (3), it suffices to show that 3z € C (x N C = 0). Let z € C
be arbitrary. If x N C # 0, then, since x is well-ordered by € (because it is an
ordinal, and C is a set of ordinals), there is a €-least element y of 2 N C. Then
ynC =0. Lo2.3

Theorem 2.2.3 implies that the set of all ordinals, if it existed, would itself
be an ordinal. This is the so-called Burali-Forti paradox. Precisely:
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Theorem 2.2.4 (Burali-Forti paradox).
-3z VYV (z is an ordinal — x € 2).
Proof. If there were such a z, then we would have a set ON such that
ON = {z : x is an ordinal }.

Then ON is transitive by (1) of Theorem 2.2.3 and well-ordered by € (by (3), (4),
and (5) of the same Theorem). Thus ON would be an ordinal. But, as pointed
out in the proof of Theorem 2.2.3, no ordinal is a member of itself. Ooo4

Lemma 2.2.5. If A is a transitive set of ordinals, then A itself is an ordinal.

The proof of the above lemma, is clear from the definitions and is left as an
EXERCISE.
The following gives us a main point of ordinals.

Theorem 2.2.6. If (A, R) is a well-ordering then there exists a unique ordinal
C' such that (A, R) = C.

Proof. Uniqueness is a result of Theorem 2.2.3 (2).
Existence: Let B = {a € A : 3z (x is an ordinal A pred(4,a,R) = z}.
Then, we can define on B a function f such that for every a € B,

f(a) = the unique ordinal z such that pred(4,a, R) = x.

Let C = rng(f). By the Replacement Axiom, C is a set. Using Lemma 2.2.5,
one can see that C' is an ordinal (just need to check transitivity!). One can also
easily see that f is an isomorphism between (B, R) and C'. Now, either A = B,
in which case we are done, or there is some b € A such that B = pred(4, b, R).
In the latter case, this would mean that b € B, which is not possible. oo

Remark 2.2.7.

1. The proof of Theorem 2.2.6 used the aziom of Replacement in an essential
way to justify the ewistence of the set f. Formally: let ¢(a,x) be the
formula asserting that (pred(A,a, R),R) = x. Then, Ya € B3z ¢(a,x).
So, by Replacement (and restricted Comprehension) one can form the set
C ={z:3a € B¢(a,z)}, then we use restricted Comprehension to define
fcBxC.

2. If one drops the aziom of Replacement from ZFC, then one can develop
much of usual mathematics, but one cannot then prove Theorem 2.2.6.

3. Theorem 2.2.6 allows us to use ordinals as representatives of well-order
types.

Definition 2.2.8. If (4, R) is a well-ordering, then type({A, R)) is the unique
ordinal o such that (A, R) & a.

Definition 2.2.9. If X is a set of ordinals, then sup(X) = |J X and, if X # 0,
inf(X) =NX.
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Notation: From now on, we will use small Greek letters to stand for or-
dinals. So, for example, we will write Ja ¢ to mean 3z (z is an ordinal A ¢).
Also, since € orders the ordinals, we will write o < 3 to mean o € 3, and o <
to mean o € BV a = f.

Lemma 2.2.10.

1. Vo,f(a<fB < aCp).

2. Of X is a set of ordinals, then sup(X) is the smallest ordinal that is >
than all the ordinals in X. Similarly, if X # 0, then inf(X) is the smallest
ordinal in X.

The proof of the above lemma is left as an EXERCISE.

2.3 The Axiom of Infinity and the fundamentals
of Peano Arithmetic

The first few ordinals are the natural numbers, which are used to count finite
sets. If we assume the Axiom of Choice, Theorem 2.1.7 (AC < WOP) (which
we have not yet proved) means that we can well-order every set. Theorem 2.2.6
promises that we can count each well-ordered set with an ordinal. So, assuming
AC, we can count each set with an ordinal.

We can extend the definition of many of the standard arithmetic operations
that are familiar from the natural numbers to the ordinals.

Definition 2.3.1. We define the successor of an ordinal:
S(e) = aU{a}.
A simple lemma, the proof of which is left as an EXERCISE:
Lemma 2.3.2. For any ordinal «,
o S(w) is an ordinal;
o a< S(a);
o V(B < S(a) < [ <a).

Definition 2.3.3. An ordinal « is called a successor ordinal if 36 (v = S(f).
An ordinal « is a limit ordinal iff o # () and « is not a successor ordinal.

Now we can formally define the natural numbers:
Definition 2.3.4. 0 =0, 1 = 5(0), 2= 5(1), 3= 5(2), 4= 5(3),... etc.
So,0=0,1= {0}, 2=1{0,1}, 3= {0,1,2}, ..., etc.

Definition 2.3.5. An ordinal « is a natural number iff VG < a(8 = 0V
0 is a successor ordinal)
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Intuition: The natural numbers are obtained by applying the successor
function S to () finitely many times. If 8 is the smallest ordinal which cannot
be obtained in this manner, then 3 cannot be a successor. So, neither (3, nor
any ordinal greater than 3, can be a natural number.

Many mathematical arguments use the concept of the set of natural numbers.
It is the Axiom of Infinity that allows us to define this set. Recall that it is:

Jz (D exAVyex(yU{y}er)).

Intuition: If a set z satisfies the Axiom of Infinity, then “by induction”;
contains all of the natural numbers.

More formally: Suppose « satisfies Infinity, and suppose n is a natural num-
ber and n ¢ z. By assumption, 0 € z, so n # 0. This means that n = S(m)
for some m. Then, m < n, m is a natural number, and m ¢ x. From this we
get that m \ x # 0. Let k be the smallest element of m \ z. If we apply this
same argument to k, we get an [ < k such that [ € m \ z, which leads to a
contradiction.

By the axiom of Comprehension, there exists a set of natural numbers. (for-
mal version of below definition: w = {z € z : z is a natural number.}

Definition 2.3.6. w is the set of natural numbers.

The set w is an ordinal by Lemma 2.2.5. All ordinals smaller than w (i.e.
the elements of w, are either 0 or successors. So, w is a limit ordinal (since
otherwise it would itself be a natural number), and hence is the smallest limit
ordinal. So, in essence, the Axiom of Infinity is equivalent to the existence of a
limit ordinal.

The set of natural numbers w satisfies the Peano Postulates (Peano Axioms):

Theorem 2.3.7. w satisfies the Peano Postulates:

1. 0 € wy

2. ¥n ew(Shn) €w);

3. ¥Yn,m € w(n#m— Sn)#S(m));

4. (Induction) VX Cw((0 € X AVne X (S(n) € X)) —» X =w).
Proof.

1. 0 is a natural number.

2. For every natural number n, S(n) is also a natural number.

3. If S(n) = S(m), then we have nU {n} = m U {m}. Then we have n =
sup(n U {n}) =sup(m U {m}) = m.

4. Assume X # w satisfies the induction requirements. This means that
w\ X # 0. Then, let n = min(w \ X). Then it must be that n # 0, since
this would mean that X = w. So, this means that n = S(m) for some m.
Then, m € X because we assumed n to be minimal not in X. But, by
assumption, n = S(m) € X, a contradiction.

O2.3.7
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Now that we have the natural numbers and the Peano postulates, we could
for the moment forget about ordinals, and develop elementary mathematics
from here: construct the integers, the rationals, then use the Power-Set axiom
to develop the real numbers. The first step to doing this would be to define +
and -. We will not do that, but instead we will define + and - on all the ordinals.

2.4 Ordinal Addition and Multiplication

Now we define some basic arithmetic operations on the ordinals.

Definition 2.4.1. o+ § = type({a x {0} U 8 x {1}, R)), where the relation R
is defined as follows:

R:{<<C70>7<U70>>3C<7)<Q}U
{6, 1), (n, 1)) : ¢ <m<B}U
(a x {0}) x (B x{1}).

Intuition: When learning addition in first grade, the analogy is that 2 + 5
means that if I lay down 2 pieces of chocolate followed by 5 carrots, I will have a
row of 7 sweet things. The idea here is the same. Less formally, the mess above
just means that the elements « x {0}, ordered like «, precede the elements of
B x {1}, ordered like §.

Lemma 2.4.2. For arbitrary ordinals o, 3, and v, we have:
1. (Associativity of addition) o+ (B+ ) = (a+8) +7;

a+0=qa;

a+1=>5();

a+S(8) =Sa+p5);

if 0 is a limit ordinal, then o + 8 = sup{a+ (: { < §}.

AN

Note that + is not always commutative!! For example w+1 # 14w = w.
However, on the natural numbers, the operation is commutative.

Proof. The proof is comes straight from the definition. For example, for (1),
notice that both a+ (84 +) and (a+ 3) ++ are isomorphic to the set o x {0} U

Bx {1} Uy x {2}. Ug.a.2
Now, we define ordinal multiplication (-).

Definition 2.4.3. For ordinals o and 3, we define a - § = type((G x «, R)),
where R is the lexicographic relation on § x «. lL.e.

(CmRC )y e (C<VE=¢An<n)).

Intuition: Again, the intuition is the same as in elementary school: 4 -5 is
counting 4 chairs 5 times.

From the definition, we can easily get the following lemma (the proof is left
as an EXERCISE).
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Lemma 2.4.4. For arbitrary ordinals «, 3, and vy, we have the following:
1Loa-(B-y)=(a-B) v
2. a-0=0;

3. a-1l=a;

>

aS(f) = af +a;
5. if B is a limit ordinal, then o - 3 = sup{a( : ( < B};

6. a(B+7) =af +ay.

Note that ordinal multiplication is NOT COMMUTATIVE! For example:
2w = w # w2. Similarly, multiplication is not distributive from the right:
(14 1)w = w # w+ w. However, on the natural numbers, the operation is both
commutative and distributive.

Natural numbers let us deal with finite sequences:

Definition 2.4.5. (a) A™ is the set of all functions from n into A.
(b) A<¥ =J{A™ : n e w}.

With this definition, A x A is not the same thing as A%. However, there is
a 1-1 correspondence between them.

Note that it is not obvious that the above definition 2.4.5 makes sense
without the Power-set axiom. This is done thus: Let ¢(n,y) be a formula that
says that Vs (s € y <= s is a function from n into A). Then, using induction
on n (via the Peano Axioms, for example), one shows that, using Extensionality,
Vn 3y ¢(n,y). At the inductive step, we use the Replacement Axiom as well as
identifying A"*! with A" x A. Again, by Replacement, we can form the set
{y: (3n € w)dn,y)} = {A" : n < w}. Finally, using the Union Axiom, we
have A<%.

One generally thinks of the elements of A™ as sequences of elements of A of
length n.

Definition 2.4.6. For every n, (zg,21,...,Zn—1) is a function s with domain
n, such that s(0) = zq, ..., s(n — 1) = z,_1.

Note that in the case of n = 2, the above definition does not agree with our
earlier definition of the Kuratowski ordered pair. The Kuratowski definition is
useful for introducing basic properties of relations and functions. On the other
hand, the definition above is more convenient when dealing with sequences of
varying lengths. In cases where it matters, we will explicitly indicate which
definition we are using.

Generally if s is a function such that dom(s) = I, then we can think of I as
an index set, and of s as a sequence that is indexed by I. Thus, we will often
write s; instead of s(3).

Definition 2.4.7. If s and ¢ are sequences such that dom(s) = a and dom(t) =
3, then the function st with domain a + (3 is defined by (s7t | a) = s and

(s7t)(a+¢) =t(¢) for all ¢ < 3.
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2.5 Classes, Transfinite Induction, and Transfi-
nite Recursion

As we have established, sets of the form {z : ¢(x)} do not have to exist. It is
however, quite convenient to think about such collections. Since they lie outside
of the domain that is describable with our axioms, one should never use them
in formal proofs.

Informally, we call collections of the form {z : ¢(z)} classes. Here, we allow
¢ to have other variables than z, and think about them as parameters on which
our class depends. A proper class is a class that is not a set (because it is “too
big”). The Axiom of Restricted Comprehension says that a subclass of a set is
a set. Boldface letters are often used to denote classes. Two classes, which we
have shown to be proper classes are given in the following:

Definition 2.5.1.
V={z:z=x}

ON = {z : z is an ordinal.}.

Formally, proper classes do not exist, and expressions containing them must
be thought of as abbreviations for expressions not involving them. For example,
z € ON is an abbreviation of the formula “z is an ordinal”. The expression
ON =V abbreviates the (false!) sentence Vx (x is an ordinal <= z = x).

Formally, there is no difference between a formula and a class; the difference
is only in the informal presentation. So, we could, instead of the above definition,
consider the class ON an abbreviation of the formula ON(z) which says that
“z is an ordinal”. The usefulness of thinking about ON as a collection of sets
is, for example, such that we can write ON Ny instead of the formal {z € y :
x is an ordinal.}. Any of our defined predicates and functions can be thought of
as a class. For example, we can think of the union operation as defining a class
UN = {{(z,y),2) : z = x Uy}. Intuitively, UN : V x V — V. This motivates
using an abbreviation like UN | (a x b) for

{{{z,y),2):z2=xzUyAz Ealy€Eb}.

This kind of abbreviation obtained with a class is very useful when discussing
general properties of classes. Asserting that a statement is true for all classes
is equivalent to asserting that a statement is a theorem schema. An example of
this are the principles of induction and recursion on ON.

Theorem 2.5.2 (Transfinite Induction on ON). If C C ON and C # 0 then
C has a least element.

Proof. The proof is exactly like the proof of Theorem 2.2.3(5), which stated the
same thing for C being a set. Fix a € C. If « is not the least element of C, then
a N C is a nonempty set by Replacement. By Theorem 2.2.3(5), let 3 be the
smallest element of N C. Clearly, § is then the smallest element of C. [y 5.2

Mathematically, Theorems 2.2.3(5) and 2.5.2. are very similar. Formally,
there is an enormous difference between them. Theorem 2.2.3(5) is the abbrevi-
ation of one provable sentence. On the other hand, Theorem 2.5.2 is a theorem
schema which represents infinitely many theorems.
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It is possible, of course, to state Theorem 2.5.2 without classes. To do
this, we would have to say: for each formula C(z, z1, ..., z,), the following is a
theorem:

Vz1,...,2n (V2 (C — z is an ordinal) A 3z C) —
(@ (CAYY (Cy, 21, 20) — 3 > 2)))).

Note that here we think of C as defining {z : C(z, 21,...,2,)}, with 21,..., 2,
as parameters.

The fact that we can use parameters in the definition of classes implies that
theorems about all classes (like our theorem schema (Theorem 2.5.2) has as one
special case, the universal statement about all sets. To see this, let C(z, z) be
the formula x € z. Then, our schema takes the form:

Vz ((z is a non-zero set of ordinals) — (Jz € zVy € z (y = x))),

which is exactly Theorem 2.2.3(5).

What is our point here? Well, a proof “by transfinite induction on o estab-
lishes Va () by showing, for each a, that (V8 < ) ¥(8)) — 9(a). Then, the
fact that Vo 1p(or) must hold, for otherwise Jar —)(«), and the least a such that
—p(ar) will lead to a contradiction.

A similar result says that one can define a function of a recursively from
information about the function below a.

Theorem 2.5.3 (Transfinite recursion for ON). If F :V — V| then there is
a unique G : ON — V such that

Va (G(a) = F(G | a)). (2.1)

Proof. To show uniqueness, assume that there are functions G; and Gg that
both satisfy 2.1. Then, it is possible to prove that Va (Gi(a) = Ga(a)) by
transfinite induction on . We leave the details of this as an EXERCISE.

To show existence: Call g a §-approzimation of the class G iff g is a
function with domain § and Va < § (g(a) = F(g | «)). Similarly to the proof
of uniqueness, if g is a d-approximation and ¢’ is a ¢-approximation, then
gl (0Nd") =g [ (6N¢"). Next, by transfinite induction on §, we can show that
for each 4, there exists exactly one d-approximation. Finally, we define G(«) as
g(a), where g is the §-approximation for some (any) 6 > . Os5.3

To state Theorem 2.5.3 one has to work a lot harder: For a given formula
F(z,y) (which could also have other free variables), we can explicitly define a
formula G(z,y) (and the explicit manner in which to do this is the content of
the proof of Theorem 2.5.3), so that the expression

VeyF(z,y) — VaIly G(a,y) AVadz Iy (G(a,y) AF(z,y) Ae =G | a))

is a theorem. Note: Here x+ = G [ « is an abbreviation of the expression
“z is a function A dom(z) = a AVS € dom(z) G(3, z(8))”.

Fortunately, it is rare that we need to translate mathematical language with
classes to mathematical language without classes! The point is, it is possible,
and this is how you do it.
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2.6 More ordinal arithmetic

In this section we will take advantage of transfinite recursion to define some
further ordinal arithmetic operations. It is possible to define + and - inductively
too. To see this, and for details on why these definitions are equivalent, look at
Heike’s notes.

Where transfinite recursion is really useful is in the definition of ordinal ex-
ponentiation. This is because the purely combinatorial definition is very messy.

Definition 2.6.1. o is defined by recursion on 3 by
1. o =1;
2. aftt =al . oy
3. If 8 is a limit, o = sup{a‘ : ¢ < B}.

Lemma 2.6.2. If a > 0 and v is arbitrary, then there exist a unique 3 and a
unique p < o such that vy =« - 5+ p.

Proof. Let 3 be the greatest ordinal such that « - 3 < . The details are left as
an EXERCISE. U2.6.2

2.7 Proof of AC & WOP

Ok, now we can return to the proof that the well-ordering principle is equivalent
to the axiom of choice.

Proof. AC=WOP: Assume that the axiom of Choice holds. Let S be any set.
We will show that S can be well-ordered. To do this, we find an ordinal o and
a one-to-one a-sequence

A0, A1,y Gy (v <a)

which enumerates S.

Let F be a choice function on the family of all non-empty subsets of S.
We use this to construct the desired sequence by transfinite recursion: Let
ap = F(S). Let ay = F(S — {ag : B < v}). The construction stops when the
elements of S are all used up.

WOP=-AC: Let F be any family of sets that are non-empty. By assump-
tions, each member S € F of the family can be well-ordered. For each S € F,
Define f(5) to be the smallest element of S. This satisfies the requirements of
a choice function. 017



Chapter 3

Cardinal Numbers

3.1 Definition and Very Basic Properties of Car-
dinals

A fundamental property of a set is its size: how big is it? We use cardinal
numbers to describe this aspect of a set.
We compare the sizes of sets using injective functions.

Definition 3.1.1.

1. A < B iff there is a 1-1 function from A into B.
2. A ~ B if there is a 1-1 function from A onto B.

3. A< Bif A< B and B £ A.

It is easy to see that the use here of < is transitive, and that ~ as used here
is an equivalence relation on sets.

One of the most important theorems of the theory of cardinal numbers is
the following:

Theorem 3.1.2 (Cantor, Bernstein, (Schroder) Theorem). If A < B and B <
A then A~ B.

Theorem 3.1.2 is a theorem in the partial system ZF~ — P.

Proof. Let f: A— B and g : B — A be injective functions. We use these to
build a bijection between A and B.

First, let Cy = A\ rng(g). Inductively define C,,11 = ¢” f”Cy,. (The C; are
progressively smaller sets.)

We define a function h: A — B by

f(l’) S Un<w C"’
o ={ 5 TEhE e,

This is a well defined function, since if « ¢ Cy, then x € rng(g).
We show that h is injective: Let x # ' be given. When « and 2’ are in the
same case of the function (i.e. both z,2’ € J,,., Cy or z,2" € A\ U, Cn),

n<w

24
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then there is nothing to prove — f is an injective function, on the one hand, and
because ¢ is a function, g~ ! is also always injective.

Assume therefore that = € C,, for some m and 2’ ¢ J,,_, C,. Then in this
case, h(z) = f(z) € f7C,y,, by definition. On the other hand, h(z') = g~ 1(2') ¢
/7 Cp,, because otherwise, we would have 2’ € ¢” f7C,, = Cpyp1-

We now show that h is surjective: Let y € B. Assume thaty € |J, ., f7C.
Then y € rng(h). Now, assume that y ¢ (J,,,, ["Cn. Then g(y) ¢ U,c., Cns1
and g(y) ¢ Co. This means that h(g(y)) = g~ (g(y)) = v. Os.1.2

Intuition for the definition of cardinality: One finds the size of a finite set
by counting its elements. If a set A can be well ordered, then A ~ a for some
ordinal o. The smallest such ordinal « is called the cardinality of the set A.

Definition 3.1.3. If A is a set that can be well ordered, then |A| is the smallest
ordinal « such that A ~ a.

If we write down a statement using |A| (such as |A4| > «), then we are
assuming that A can be well-ordered. If we assume the Axiom of Choice, then
every set A can be well-ordered, and hence |A| is defined for every set. Since
A =~ B implies |A| = |B| and |A| &= A, assuming the Axiom of Choice, |A| picks
a unique representative of each ~-equivalence class.

Regardless of the assumption of the Axiom of Choice, || is defined for every

ordinal «, and |a] < a.
Definition 3.1.4. « is a cardinal if o = |a].

Lemma 3.1.5. If |o| < 8 < a, then |G| = |«|.

Proof. 5 C a,s0 8 < . And, a = |a] C 3, so @ < §. By Theorem 3.1.2, we
get the result. U315

Lemma 3.1.6. If n € w, then
1. n#n+1;
2. Va(a=n—a=n).

Proof. (1): This is proved by induction on n.
(2): This is a corollary of Lemma 3.1.5. Os.1.6

Corollary 3.1.7. w is a cardinal, and each n € w is a cardinal.

Definition 3.1.8. We say that a set A is finite if |A] < w. We say that A
is countable if |A| < w. Infinite means not finite. Uncountable means not
countable.

Later, we will show that you need the Powerset Axiom for an uncountable
set to exist.
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3.2 Basic Cardinal Arithmetic

Let us make a notational convention that x and A denote cardinals.

We can define arithmetic on cardinals. We’ll use circled symbols to distin-
guish cardinal addition and multiplication from ordinal addition and multipli-
cation.

Definition 3.2.1.
K®A=|rkx{0}UXX{1}];

K® A= |k X Al

Unlike the addition and multiplication of ordinals, cardinal addition and
multiplication are commutative. In addition |k + A| = |[A+ k| = K ® A and
|k - Al = |A-k| =K ®A So, for example, we have w @1 = |1+ w|=w <w+ 1.
Similarly w ®2 =12 -w|=w < w- 2.

Lemma 3.2.2. For every n,m € w, we haven @ m = n+m < w. Similarly,
we haven®@m =n-m < w.

Proof. First, using induction on m, prove that n+m < w. Then, show n-m < w
by induction on m. The rest follows from Lemma 3.1.6 (2). O399

From this point on, we will concentrate on @ and ® in the context of infinite
cardinals.

Lemma 3.2.3. Every infinite cardinal is a limit ordinal.

Proof. If kK = a + 1, then since we have 1 + a = «, we thus have k = |s| =
la+1] =14+ a] =|a| < @ < k. A contradiction. O3.9.3

Note that the principle of transfinite induction can be applied to prove results
about cardinals, since every class of cardinals is a class of ordinals. The following
theorem is an example of this.

Theorem 3.2.4. If k is an infinite cardinal, then K @ kK = K.

Proof. We proceed by transfinite induction on . Assume the hypothesis holds
for all infinite cardinals smaller than x, where x is an infinite cardinal. Then,
for @ < k we have

la x al = |a] @ |a| < k.

Note that for finite @ we apply Lemma 3.2.2.
Now, we define a well-ordering < on « x x in the following manner: (o, §) <
(v, 0) iff
max(a, #) < max(vy,0)V
(max(a, 8) = max(v,d) A ({a, B) precedes (v,0) lexicographically.)

Then, every (o, ) has no more than |(max(ca, ) + 1) x (max(«a, 5) +1)| < k
< -predecessors. (For intuition, see Figure 3.1.) So, type(k X k, <) < K, so
|k x k| < k. Since clearly |k X k| > K, we have equality. Osz.2.4

Corollary 3.2.5. Let k and X be infinite cardinals. Then,
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Figure 3.1: A tiny initial portion of the well-ordering <. This shows that, in the worst
case, the predecessors of a given pair are contained in the square defined by that pair.

1. K& A =Kk®A=max(k,\);
2. |[k<¥| <w®k = k. (This was defined in Definition 2.4.5.)

Proof. We prove only (2): We use the proof of Theorem 3.2.4 to define, by
induction on n, a 1-1 map f, : " — x. This yields a 1-1 map f : |J, x" —
w X k. This gives us |k<“| < w ® kK = K. Us.2.5

3.3 The influence of the Powerset Axiom
We begin the discussion of Axiom 7
VeIyVz(z Cax— z €y).

with the following definition:
Definition 3.3.1. The set

Px)={z:2zCx}
is called the power set of the set x.

The existence of a power set is guaranteed by the Power Set Axiom and the
Restricted Comprehension Schema. The operation &() allows us to build sets
of greater cardinalities.

Theorem 3.3.2 ((ZF™) Cantor). = < Z(x).

Proof. This is a proof in ZF~. Let f: 2z — Z(z). We will show that f
cannot be surjective. Let

u={yex:y¢ f(y)}e P().

Then, there is no y € x such that f(y) = u — otherwise, if f(y) = w, then we
would have y € u <= y ¢ f(y) = u, which would be a contradiction. 332

With the help of the Axiom of Choice, one can deduce from Theorem 3.3.2
that there exists a cardinal > w, in particular, |2 (w)|.
One does not actually need the Axiom of Choice to reach this conclusion:
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Theorem 3.3.3 ((ZF ™) Hartogs, 1906).
Va 3k (k> a and k is a cardinal).

Proof. This is a proof in ZF~. Let @ > w. Let W = {R € Z(a x a) :
R well orders a}. Let S = {type({a, R)) : R € W}. The set S exists by
the Replacement Axiom, and is a set of ordinals, so has a supremum. Then,
sup(S) ¢ S, since V3 € S (B + 1 € S). Thus it is clear that sup(S) is an ordinal
> Q.

Now we show that sup(S) is a cardinal: If sup(S) were not a cardinal, then
there would be a 5 < sup(S) such that 8 ~ sup(S). Let such a # be minimally
chosen. Then, § is a cardinal. Since 8 < sup(S), there is a well-ordering R of
a, such that 8 < type(a, R). Thus, we have |8] < |«|.

Let f: 8 — sup(S) be a bijection, and define Rg C § x 8 by YRy <=
F(7) <sup(s) f(7'). Then 3 can be well ordered using type(3, Rz). (And nat-
urally, o can also be well-ordered, using a similar argument) This contradicts
the fact that sup(S) ¢ S and the definition of sup(S). O3.3.3

Definition 3.3.4 ((ZF™)). Define a™ to be the smallest cardinal > .
K is a successor cardinal iff Kk = AT for some cardinal \.
K 1s a limit cardinal iff k is not a successor cardinal and x > w.

Definition 3.3.5. N, = w,, is defined by transfinite recursion on « by:
1. g =wp =w;
2. o1 = war1 = (No)™;
3. For v a limit, R, = J{Ry : a <7}

That funny letter in the previous definition is aleph, the first letter of the
Hebrew alphabet.

Lemma 3.3.6.
1. Every X, is a cardinal.

Every infinite cardinal is equal to X, for some .

a < fB— N, <Ng.

o

R, is a limit cardinal iff o is a limit ordinal. R, is a successor cardinal
iff a is a successor ordinal.

Proof. (1) and (3) are both proved by induction on «. The successor steps
should be clear. For the limit step, note that every limit of cardinals is itself
a cardinal. We prove this in general: Let x = sup{s; : ¢ € I} and let x; be
pairwise different cardinals. With perhaps some reordering, let the k; be in a
strictly <-increasing sequence. Then, [ is an ordinal number, say I = 3. Thus,
{ki i € I} C ON and so is well-ordered and so we do not have to use the
Axiom of Choice here. So, with these assumptions, x; < k; for i < j < f.
So, by a previous Lemma,  is an ordinal because it is a supremum of a set of
ordinals. By the definition of supremum, x is the smallest ordinal larger than
all the ;. Thus, every £’ < k (in the ordering of ordinals) is < k; for some
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i € 3. Thus «' < K; < kiy1 < k. Therefore, k' % k. Therefore, k is a cardinal
number.

(2) is proved by transfinite induction along the ordinals, and is a direct
consequence of the definition of the Ns.

(4): The statement also holds for the third case in our trichotomy (limit,
successor, 0): Rg and 0 are both the only members of the third case. Inductively,
we get the truth of the statement for the successor case from (R,)"T = Roqq.
Similar reasoning to that in part (3) of this proof yields the limit case. 336

Many important facts about cardinals do, however, heavily rely on the Axiom
of Choice.

Lemma 3.3.7 ((ZFC™)). If there exists a function f from X onto Y, then
Y| <|X].

Proof. Let R be a well-ordering of X (as guaranteed by the Axiom of Choice).
Define g : Y — X so that g(y) is the R-least element of f~!({y}). Then, g is
a 1-1 function, so ¥ < X. Oz 37

Note: As in the Cantor’s Theorem 3.3.2, one can prove, even without the
Axiom of Choice, that there exists a mapping from Z(w) onto wy, but one
cannot prove the existence of a 1-1 function from w; into & (w).

Lemma 3.3.8 ((ZFC7)). If k > w and | X,| < & for all o < K, then we have
[U{Xa:a <k} <k

Proof. Let F = {{f : the function f : X, — &k is injective.} : @ < k}. By
the assumption of the Axiom of Choice, we can well-order F: Let h = {{«a,{f :
the function f : X, — & is injective.}) : @ < &}, i.e., h well-orders F with
ordertype k.

In addition, from the assumption of the Axiom of Choice, we have a choice
function for F. Taking into account h, these choices can be well-ordered. Thus,
we have an injective function g : Kk — |JF. The function g is defined so that
for a < K, we have g(a) : Xo — kK.

Then, we have the following injection: ¢’ : |J,.,. Xa — & X &, defined by
g (z) = (a, g()(z)), where o = min{ < k : x € Xg}. .

The fact that k ® k = k gives us the final result. 338

The use of the Axiom of Choice in the preceding Lemma is vital. It is
possible to show (Azriel Levy did this) that without the Axiom of Choice, it is
consistent with ZF that both #(w) and w; are countable unions of countable
sets.

3.4 Cardinal Exponentiation

Definition 3.4.1 (ZF~). AP = BA = {f : fis a function A dom(f) = B A
mg(f) € A},

This set exists, because, for example, A C Z2(A x B). Thus, A exists by
the Powerset and Comprehension Axioms.

Definition 3.4.2 (ZFC™). &* = | k.
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Both notations AZ and B A appear in the literature. In this lecture, to avoid
misunderstandings, x* when we are talking about cardinals, and *x when we
are talking about functions.

Lemma 3.4.3. If A\ > Rq and 2 < k < ), then 'k = 22 = P()\).

Proof. The fact that *2 ~ 22(\) follows from the identification of sets with
their characteristic functions. Further, we have *2 < 2k ~ *\ < PAXN) =
P\ = 2N Us.a3

So, cardinal exponentiation is not the same as ordinal exponentiation. For
example with ordinals, 2 is w, but 2% = |2 (w)| > V. In future, if ordinal
exponentiation is meant, I will explicitly say so. So exponent notation will mean
cardinal exponentiation by default.

The same rules from normal arithmetic apply here too:

Lemma 3.4.4 (ZFC™). If k, A\, and u are cardinals, then k** = Kk @ k* and
(MNP = rA®H,

Proof. Without assuming the Axiom of Choice, it is possible to show that if

the sets B and C are disjoint then we have PV A ~ B A x A and C(BA) ~

CxB

Definition 3.4.5 (AC).
1. CH (the Continuum Hypothesis) is the statement 2% ~ ;.

2. GCH (the Generalized Continuum Hypothesis) is the statement Vo (28 =
Nyy1)-

Cantor showed that 2% > X, ; (Theorem 3.3.2), but couldn’t do any more
than that. This problem drove set theory for a good portion of the first half
of the 20th century. Gédel showed in 1938 that if ZFC is consistent, then so is
ZFC + CH. But! Cohen showed in 1963 that if ZFC is consistent, then so is
ZFC 4+ —CH. So, the continuum hypothesis is independent of ZFC.

3.5 Cofinalities and different kinds of Cardinals

Now, what exactly is GCH good for? Well, for one, x* becomes easy to compute.
We show this, but first we need some definitions.

Definition 3.5.1. If f : @ — (3, f maps « cofinally iff rng(f) is unbounded
in 8. The cofinality of (B, written cf((), is the least o such that there is a map
from « cofinally into 3.

So, cf(8) < B and, if § is a successor ordinal, then cf(5) = 1.

Lemma 3.5.2. There is a cofinal map f : cf(8) — [ which is strictly increas-

ing (i.e. (<v— f(¢) < f(v)).
Proof. Let g : cf(3) — ( be any cofinal map. We define f recursively by

f(p) = max(g(p),sup{ f(¢) +1: ¢ < p}) < B.

Us.5.2
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Lemma 3.5.3. If « is a limit ordinal, and f : o — 3 is a strictly increasing
cofinal function, then cf(a) = cf(8).

Proof. The fact that cf(a) < cf(3) follows by composing a cofinal map from
cf(a) into a with f.

We show cf(a) > cf(5): Let g : cf(8) — B be a cofinal mapping. Put
h(¢) = min{n : f(n) > g(¢)}. Then, h is a cofinal function because f is
strictly increasing and cofinal. Thus, ho g : cf(8) — « gives the desired
inequality. Osz5.3

Corollary 3.5.4. cf(cf(8)) = cf(8).

Proof. We use Lemma 3.5.3 on a strictly increasing function f : cf(8) — f,
whose existence is guaranteed by Lemma 3.5.2. Os.5.4

Definition 3.5.5. An ordinal S is regular iff 8 is a limit ordinal and cf(3) = 5.
So, by Corollary 3.5.4, cf(3) is regular for every limit (.
Lemma 3.5.6. If an ordinal B is reqular, then it is a cardinal.

Proof. We prove this by contradiction. Assume that there is o < 3 such that
there exists an onto function f: & — 3. Then, we would have cf(8) < a < .
This would imply that ( is not regular, a contradiction. Os 56

Definition 3.5.7. An infinite cardinal « is regular if cf(k) = k. It is singular
if cf(x) < k.

Lemma 3.5.8. w and all infinite cf(3) are regular.
Lemma 3.5.9 (ZFC™). For every cardinal k, k™ is regqular.

Proof. We prove this by contradiction. Assume that there is a cofinal mapping
f:a— kt, where @ < k. Then we have k™ = J{f(¢) : ¢ < a}. But then,
the union of < k sets of cardinality < « is, by Lemma 3.3.8 also of cardinality
< k (and in particular # 7). Contradiction. Os5.9

Without the assumption of the Axiom of Choice, it is consistent that c¢f(N;) =
w. For a long time, it was not known if one can prove in ZF that there exists
a cardinal of cofinality > w. This was finally done by M. Gitik in 1980. He
built a model of set theory without Choice containing a singular cardinal of
uncountable cofinality.

Limit cardinals are often not regular. For example cf(X,,) = w. More gener-
ally, we have the following;:

Lemma 3.5.10. If « is a limit ordinal, then cf(R,) = cf(«).
Proof. This results from Lemma 3.5.3. Os.5.10

So, the question is, are there regular limit cardinals X,? If R, is a regular
limit cardinal, then X, = «a. But, the condition X, = « is not enough to
guarantee that N, is a regular limit cardinal. To see this, define o9 = Ny,
Ont1 = Ry, . Let o = {0, : n < w}. Then, « is the first cardinal satisfying
N, = @, but cf(a) = w.

Regular limit cardinals, despite the problem stated above, play a very vital
role. They are among the so-called “large cardinals”. We define:
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Definition 3.5.11.

1. k is weakly inaccessible iff k is a regular limit cardinal.

2. (AQ) k is strongly inaccessible iff k > w, k is regular, and
YA < k(2 < K).

So, a strongly inaccessible cardinal is a weakly inaccessible cardinal. Under
the assumption of GCH, the two notions coincide. It is consistent that 2% is
weakly inaccessible. It is also consistent that it is larger than the first weakly in-
accessible cardinal. One cannot prove in ZFC that weakly inaccessible cardinals
exist.

By modifying an argument of Cantor, we have (w,,)* > w,. More generally:

Lemma 3.5.12 (ZFC™ Koénig’s Lemma 1905). If k is an infinite cardinal, and
cf(k) < A, then K™ > k.

Proof. Let f : A\ — & be a cofinal mapping. Let G : kK — k. We show that
G cannot be onto: Define h : A — & so that h(a) is the smallest element of
the set K\ {G(p)(a) : p < f()}. Then, h ¢ rng(G). For if otherwise, h = G(u)
for some p. Take « such that f(«) > p (this is possible because f is a cofinal
mapping). Then G(u)(«) # h(«). Thus G(u) # h, a contradiction. Os.5.12

Corollary 3.5.13 (AC). If A > w, then cf(2}) > \.

Proof. By the properties of cardinal arithmetic, we have (2*) = 22@A = 24,
Now, compare this to Lemma 3.5.12 with x = 2*. Os.5.13

Lemma 3.5.14 (ZFC™ +GCH). Assume that k, A > 2 and at least one of them
is infinite. Then,

1. k<A — kM =AF;
2. k> \>cf(k) = k* =kT;
3. X <cf(k) — K = k.
Proof.
1. This part results from Lemma 3.4.3.

2. By Lemma 3.5.12 we have k* > k. On the other hand, we have x* < k" =
2% = KT,

3. IF X\ < cf(k), then *rk = [ J{*a : a < K}, but [*a| < max(a, \)F < k.
Us.5.14
Finally, we give a definition which may be useful later.
Definition 3.5.15 (AC). A</ ={*A:a < 3}.

Note: If £ > w, then |[k<“| =k and

|x<*| = sup{x’ : 0 < A\A 0 is a cardinal.}.



