Combustion

• The best method to reduce the pollution in local issue is to do the complete combustion.

General Equation:

$$C_{x}H_{y} + (x + \frac{y}{4})O_{2} + 3.76(x + \frac{y}{4})N_{2} \rightarrow xCO_{2} + (\frac{y}{2})H_{2}O + 3.76(x + \frac{y}{4})N_{2}$$

$$(A/F)_{actual} > (A/F)_{stoichiometric} \rightarrow Lean mixture$$

 $(A/F)_{actual} < (A/F)_{stoichiometric} \rightarrow Rich mixture$

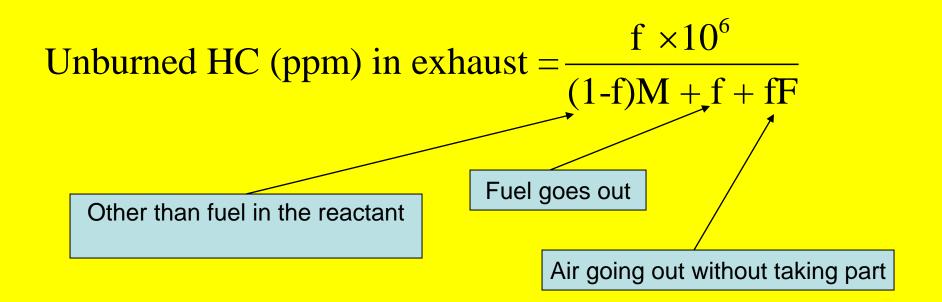
Example: A/F ratio for n-heptane

$$C_{x}H_{y} + (x + \frac{y}{4})O_{2} + 3.76(x + \frac{y}{4})N_{2} \rightarrow xCO_{2} + (\frac{y}{2})H_{2}O + 3.76(x + \frac{y}{4})N_{2}$$

HC	Moles of O ₂	Moles of N ₂	Mass of O ₂	Mass of N ₂	A/F ratio (mass/m ass)
C ₇ H ₁₆ Mol wt =100	11	41.4	352	1158	1510/10 0=15.1

Equivalence ratio= $\frac{(\text{Fuel-Air ratio})_{\text{actual}}}{(\text{Fuel-Air ratio})_{\text{stoichiometric}}}$

Concentration of Unburned Hydrocarbon (C_xH_y)


$$C_{x}H_{y} + (x + \frac{y}{4})O_{2} + 3.76(x + \frac{y}{4})N_{2} \rightarrow xCO_{2} + (\frac{y}{2})H_{2}O + 3.76(x + \frac{y}{4})N_{2}$$

Reactants	Products
$(x + \frac{y}{4}) \text{ moles of } O_2$ $3.76(x + \frac{y}{4}) \text{ moles of } N_2$ $\sum = 4.76(x + \frac{y}{4}) \text{ moles } = F(\text{say})$	x moles of CO ₂ $\frac{y}{2} \text{ moles of H}_2\text{O}$ $\frac{3.76(x + \frac{y}{4}) \text{ of N}_2}{\sum = (x + \frac{y}{2}) + 3.76(x + \frac{y}{4}) \text{ moles} = M(\text{say})}$

Example:

If 'f' fraction of C_xH_y escaped unburned inspite of supplying stoichiometric amount of air. Find concentration of C_xH_y in the exhaust.

Soln: F = Reactants and M = Products

Suppose f=0.001, then unburned concentration=19.2

CO Formation

- In this system of combustion, the compounds are: CO, CO₂, O₂
- Equilibrium Mole Fraction:

$$CO_{2} \longleftrightarrow CO + \frac{1}{2}O_{2}$$

$$K=3\times10^{4} \exp(-67,000/RT)$$

$$= \frac{X_{CO}(X_{O_{2}})^{1/2}}{X_{CO_{2}}}$$
(1)

$$\frac{x_{CO_2} + x_{CO} + x_{O_2}}{x_{CO_2} + x_{CO} + x_{O_2}} = \alpha = \frac{\text{moles } O_2}{\text{moles } C}$$
(3)

Using eqn 1 and 3, K can be obtained as function of x_{co} and α . Choosing T and α , x_{co} can be solved. Some of the results are reported as follows:

α	T, K			
	2000	3000	4000	
2	0.0157	0.383	0.630	
3.125	0.0015	0.213	0.448	
5	0.00074	0.125	0.302	

Temp up(\uparrow) \Rightarrow CO(\uparrow) $\alpha(\uparrow) \Rightarrow$ CO(\downarrow)

NO_x Formation

First Route: Thermal NO_x (formed during the combustion of all fuels in the regions of peak flame temperature)
Second route: Fuel NO_x (during the oxidation of nitrogencontaining compounds in the fuel)
Most of the NO_x are from thermal route. High temperature and high O₂ concentration favor NO formation and preventing one or both of the conditions is the basis of most thermal NO_x control technology.

Equilibrium:

$$\frac{1}{2}N_{2} + \frac{1}{2}O_{2} \square NO$$

$$K = \frac{x_{NO}}{(x_{N_{2}})^{1/2}(x_{O_{2}})^{1/2}} = 4.69 \exp\left(-\frac{21600}{RT}\right) \qquad (1)$$

$$x_{N_{2}} + x_{NO} + x_{O_{2}} = 1 \qquad (2)$$

$$\beta = \frac{Moles \text{ of } N}{Moles \text{ of } O}$$

$$= \frac{x_{NO} + 2 x_{N_{2}}}{x_{NO} + 2 x_{O_{2}}} \qquad (3)$$

β	T, K			
	2000	3000	4000	
4	0.00785	0.045	0.1	
40	0.00295	0.0152	0.02	

Temp up(\uparrow) \Rightarrow x_{NO}(\uparrow) $\beta(\uparrow) \Rightarrow$ x_{NO}(\downarrow) NO₂ Equilibrium:

$$\frac{1}{2}N_{2} + \frac{1}{2}O_{2} \mapsto NO \qquad (1)$$

$$NO + \frac{1}{2}O_{2} \mapsto NO_{2} \qquad (2)$$

$$K_{1} = \frac{x_{NO}}{(x_{N_{2}})^{1/2}(x_{O_{2}})^{1/2}} = 4.69 \exp\left(-\frac{21600}{RT}\right) \qquad (3)$$

$$So, K_{2} = \frac{x_{NO_{2}}}{(x_{NO})(x_{O_{2}})^{1/2}} = 2.54 \times 10^{-4} \exp\left(-\frac{13720}{RT}\right) \qquad (4)$$

$$x_{NO_{2}} + x_{NO} + x_{O_{2}} + x_{N_{2}} = 1 \qquad (5)$$

$$\beta = \frac{Moles \text{ of } N}{Moles \text{ of } O}$$

$$= \frac{2 x_{N_{2}} + x_{NO} + x_{NO_{2}}}{x_{NO} + 2x_{NO_{2}} + 2x_{O_{2}}} \qquad (6)$$

$$x_{NO} = K_1 (x_{N_2})^{1/2} (x_{O_2})^{1/2}$$
$$x_{NO_2} = K_1 K_2 (x_{N_2})^{1/2} (x_{O_2})$$

At 3.3% O2 and 76% N2 Assume N2 and O2 not change

β	T, K			
	298	1273	1873	
4	3.6 x 10 ⁻¹⁰	9.69 x 10 ⁻⁶	2.64 x 10 ⁻⁵	
40	5.59 x 10 ⁻¹¹	1.49 x 10 ⁻⁶	4.05 x 10⁻ ⁶	

Temp up(
$$\uparrow$$
) \Rightarrow x_{NO₂}(\uparrow)
O₂(\uparrow) \Rightarrow x_{NO₂}(\uparrow)

Virtually all NOx is NO

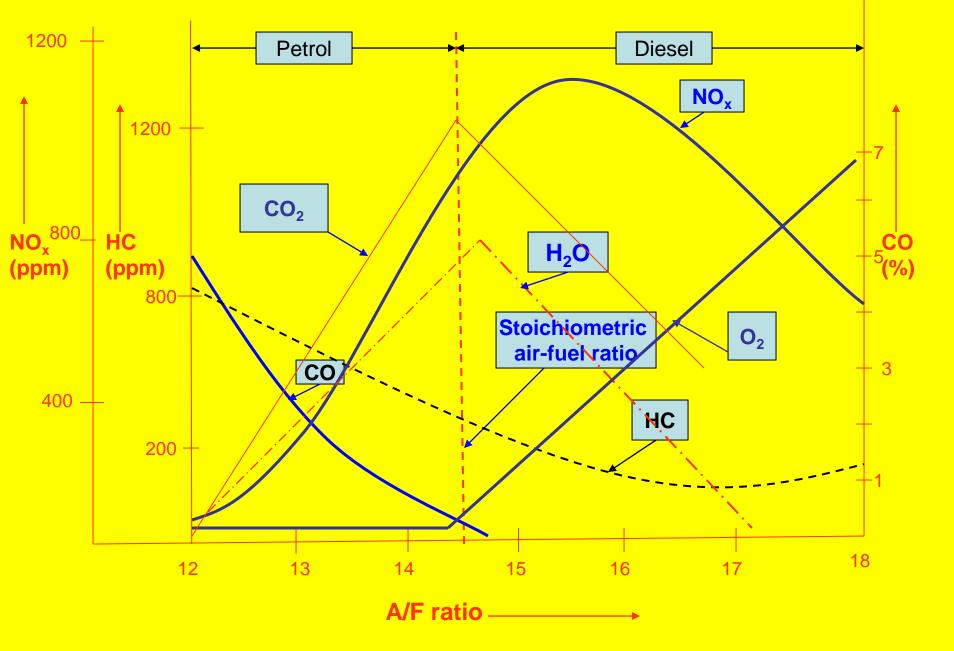


Fig: Exhaust hydrocarbon, carbon monoxide, nitric oxides etc as a function of air-fuel ratio.

Heating value, Btu/Ib ^g						% by wieght of U.S. electric generat			
Average Ultimate analysis, weight %, dry basis, typical values wet									
Material	С	н	0	N	S	Ash	Dry basis ^h	basis, as delivere d, U.S,1991 a	ion coal, 1997 ^a
Wood ^b	52.3	6.3	40.5	0.1	<0.1	0.8	9050		
Peat ^c	57.0	5.5	31.0	1.5	0.2	4.8	9300		
Lignite (also called brown coal)⁴	55.0	4.4	13	1.0	1.7	24.9	9727	6372	8.4
Subbituminou s caol ^e	72.5	6.1	17.2	0.7	0.4	3.1	13006	8741	40.3
Bituminous coal ^f	75.8	5.0	7.4	1.5	1.6	8.7	13600	11964	51.2
Anthracite coal	82.1	2.3	2.0	0.8	0.6	12.2	13258		0.1

^{*h*} The dry basis heating values are computed from the equation

(Higher heating value, Btu/lb) = 14544C+62028(H-O/8)+4050S

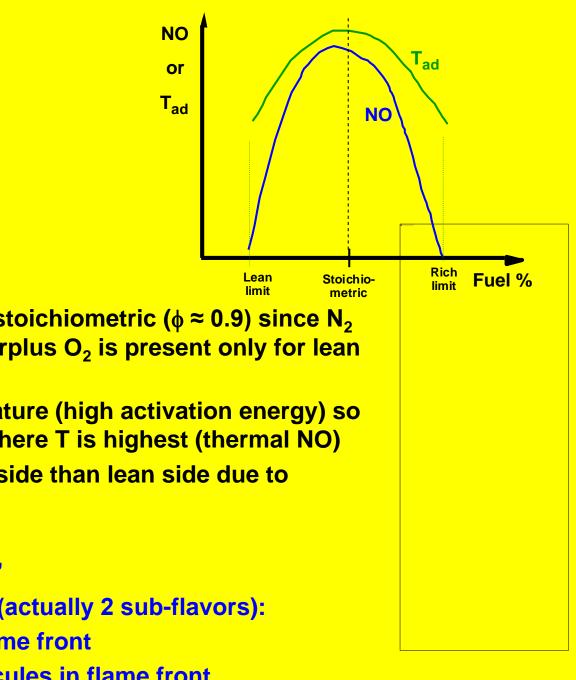
Solid Fuel

Pollutant Emissions from the Internal Combustion Engine

The type and quantity of exhaust contaminants from an internal combustion engine depend on a number of factors, including the following:

- 1. Air-fuel ratio.
- 2. Ignition timing.
- 3. Compression ratio.
- 4. Combustion chamber geometry.
- 5. Engine speed.
- 6. Type of fuel.

Description of pollutants


- Mantra "emissions are a NON-EQUILIBRIUM PROCESS"
- If we follow two simple rules:
 - Use lean or stoichiometric mixtures
 - Allow enough time for chemical equilibrium to occur as the products cool down
- ... then NO, CO, UHC and C(s) (soot) are practically zero
- So the problem is that we are not patient enough (or unable to allow the products to cool down slowly enough)

Pollutants in the Combustion Processes

- Nitrogen oxides
- CO
- Hydrocarbons
- Soot

Nitrogen oxides

 $\phi = [(fuel/air)_{act}/(fuel/air)_{stoich}]$

- Typical experimental result
 - Peak NO slightly lean of stoichiometric ($\phi \approx 0.9$) since N₂ is plentiful at all ϕ , but surplus O₂ is present only for lean mixtures
 - Very sensitive to temperature (high activation energy) so peak still close to $\phi = 1$ where T is highest (thermal NO)
 - Slower decrease on rich side than lean side due to prompt NO formation
- Two flavors of NO
 - "Thermal" or "Zeldovich"
 - "Prompt" or "Fenimore" (actually 2 sub-flavors):
 - Due to O atoms in flame front •
 - Due to CH & C₂ molecules in flame front •

Zeldovich mechanism

 Extremely high activation energy due to enormous strength of N≡N bond (≈ 220 kcal/mole)

(1) $O + N_2 \rightarrow NO + N$ (E₁ = 76,500 cal/mole) (slow)

(2) $N + O_2 \rightarrow NO + O$ (E₂ = 6,300 cal/mole) (faster)

 $N_2 + O_2 \rightarrow 2 \text{ NO}$

- Zeldovich NO occurs in the burned gases downstream of the flame front, not in the flame front itself.
- ...but this doesn't tell the whole story experiments show that some NO forms *inside the flame* ("Prompt" NO)
- Plot [NO] vs. distance from flame, extrapolate back to flame front location, [NO] there is defined as prompt NO
- Experiments show that prompt NO is more prevalent in hydrocarbon flames (not CO, H₂), and for fuel-rich flames (even though less O in rich mixtures, thus Zeldovich less important)

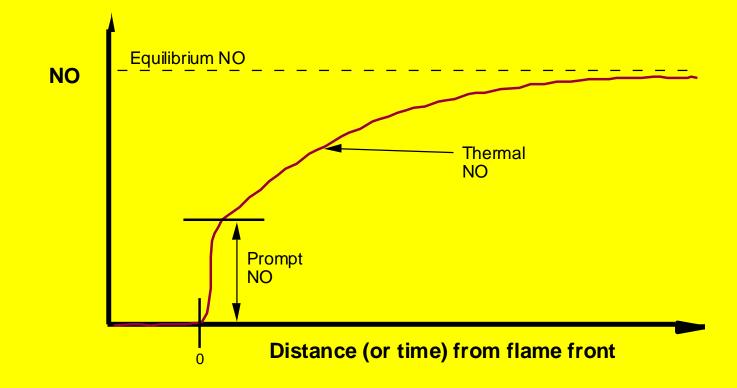
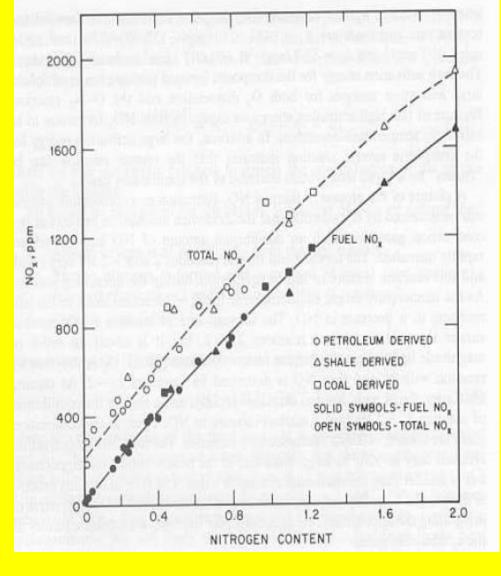
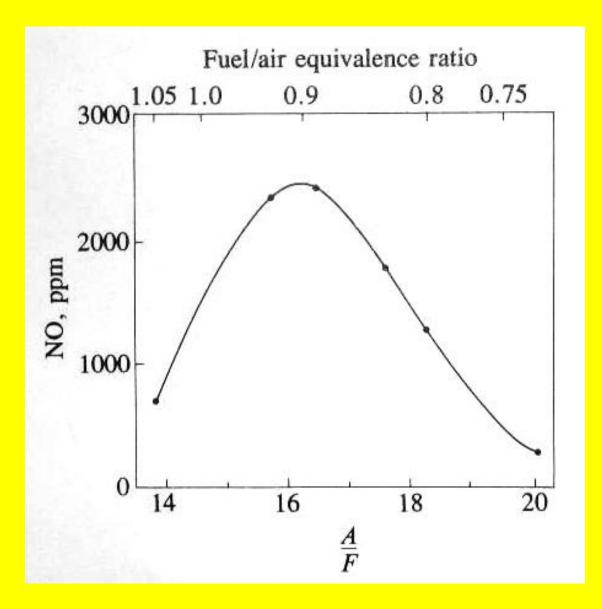


Figure showing the formation of thermal and prompt NO_x

Prompt mechanism

Fenimore (1971) proposed either


•(a) CH + N₂ \rightarrow HCN + N followed by (e.g.) N + O₂ \rightarrow NO + O (E = 20,130 cal/mole; much faster than N₂ + O due to lower E)


Or

• (b) $C_2 + N_2 \rightarrow 2CN$ followed by $CN + O_2 \rightarrow CO + NO$

Fuel NO_x Formation

- Fig 1 → the correlation between NO_x emissions and fuel nitrogen content for liquid fuels burned under fuel lean conditions.
- The lower lower curve shows the fuel nitrogen conversion as determined by substituting an argon/oxygen mixture for the combustion air.
- The difference between the two curves in the Fig. represents the <u>thermal NO_x</u>.

Unburned hydrocarbons (UHC)

- In the engine, emissions of UHCs come from
 - Raw unburned fuel
 - Fuel that didn't burn all the way to CO_2 and H_2O
 - Lubricating oil (especially in 2-stroke engines using fuel + oil mixtures)
- Other than tailpipe, UHCs may come from
 - Crankcase fumes (older engines without crankcase gas recycling)
 - Fuel tank (older cars without evaporative emission controls)
 - Filling station (in regions without 2nd hose to recover gas tank vapors)
 - Tires (!!!)

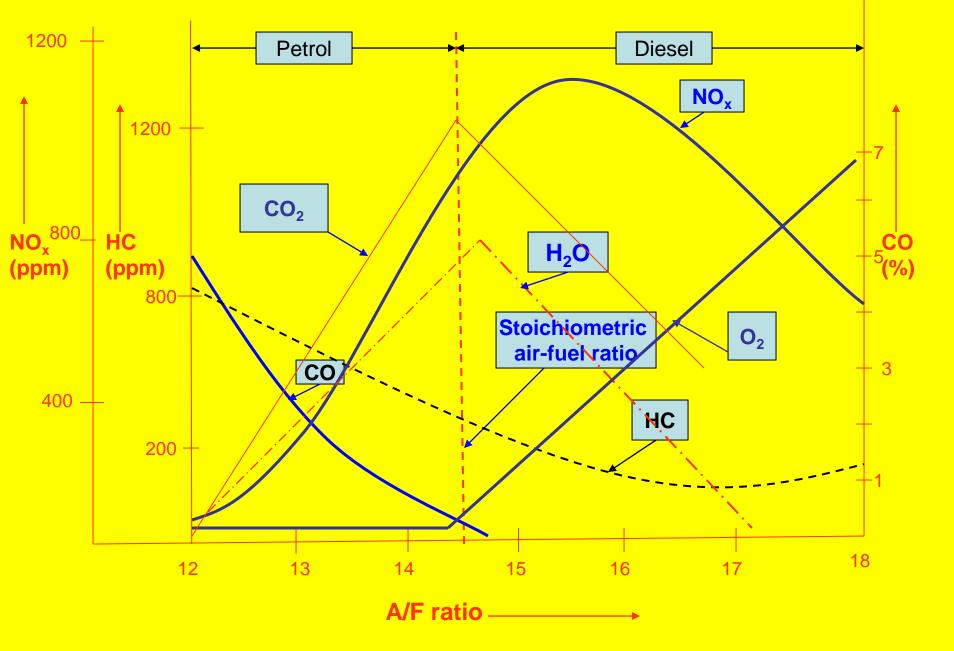
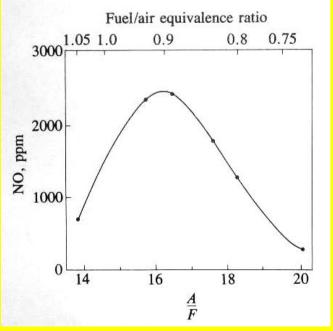


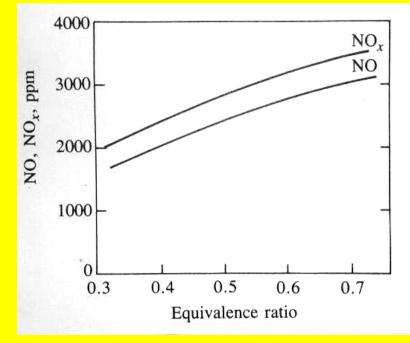
Fig: Exhaust hydrocarbon, carbon monoxide, nitric oxides etc as a function of air-fuel ratio.

Summary of the figure 1:

- The petrol driven vehicles have A/F ratio ranging from 12-15.
- The diesel engine has A/F ratio greater than 15.
- After stoichiometric, O₂ content increases.
- When A/F ratio low, HC emission high
- In petrol engine, the major pollutant come out is HC.
- NO_x decreases as larger air is consumed.


Pollutants from Engines

Petrol/gasoline engine	Diesel engine		
HC	NO _x		
CO	Soot		
Soot	HC		


How to reduce NO during combustion?

- Premixed every parcel of gas experiences same peak temperature lean mixtures will have much lower NO
- Non-premixed flames

 - Always have fuel-rich, "warm" regions Fenimore NO

Premixed-charge Heywood (1988)

Non-premixed-charge Heywood (1988)