
Atmospheric Chemistry of CO and NOx
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This OH radical fundamental is responsible for the photo chemical/chemical 
reactions:

CO + OH. → CO2+ H.

H. + O2 + M →HO2
. + M
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HO2
. → hydroperoxyl radical
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Or Simply combine:-

HO2
. + NO → NO2 + OH.

OH. radical regenerated.
This is one more route for NO oxidation 

to NO2



Finally, OH and  NO2 may react to form nitric acid,

OH. + NO2 → HNO3

All the reactions involved in the CO-NOx chemistry are summarized 

in the following table:
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Summary

• The basic reaction mechanism of the CO/NOx system
exhibit many of the key features of those involving much
more complex organic molecuels.

• In particular, the role of OH as the oxidizing species and the
NO to NO2 conversion by HO2 are central to virtually every
atmospheric organic/NOx mechanism.

• It is useful to proceed to a molecule that is somewhat more
complicated than CO to see how the similar NOx

mechanism develops.



Atmospheric Chemistry of HCHO and NOx

• Formaldehyde (HCHO) is a primary pollutant and also an oxidation  

product of hydrocarbons.

• These are basically emitted from automobiles.

• Formaldehyde undergoes two routes for the primary reactions in the 

atmosphere: (i) Photolysis and (ii) Ordinary chemistry
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Summary
• All reactions are because of photochemistry and reaction with OH.

• HCHO/HC/CO  → HO2
.

• HO2 to oxidize NO to NO2 .

• NOx removal from system is through OH. to HNO3
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All the reactions involved in the CO-NOx chemistry are 

summarized in the following table:
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Here the CO-OH reaction is omitted from the previous Table, as  it is 

generally slower than those involving HCHO. Applying the PSSA, then:



CASE 1: (Figure 1)

[NO2]0=0.1, [NO]0=0.01, 

[HCHO]0=0.1. 

Then during first two minutes:

[NO2]=0.069, [NO]=0.0405, 

[O3]=0.032

Over the 600 minute period, it can 

be observed that after the first 20 

minutes NO2 continually 

decreases , since even though 

NO is continually  being 

converted to NO2 by O3, there is 

such an excess of NO2 that the 

NO2-OH reaction is removing 

NO2 to HNO3 at rate such that it 

dominates the NO2
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The behavior (concentration in ppm) of the system as a function of its 

initial conditions for HCHO and NOx are calculated by using the models 

and explained in the figures
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This figure shows the concentration versus time for the 

initial conditions: [NO2]0=0.1, [NO]0=0.1, [HCHO]0=1.0
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This figure shows the concentration versus time for the initial 

conditions: [NO2]0=0.1, [NO]0=1.0, [HCHO]0=1.0



• The conversion of NO to NO2 and the formation of O3 are 

therefore driven by HCHO through its production of HO2
.

Thus, the theoretical maximum amount of O3 that could be 

produced in this system is:

[O3]=[HCHO]0 + [NO2]0

• When all the NOx is converted to HNO3, the system ceases 

reacting. In  a sense, a given system can be characterized 

by its ability to produce O3. 

• The effect of [HCHO]0 on NO2 dynamics is shown in the 

following figure.
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Oxidation of Methane
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Then hydroxyl radicals react with CH  and CO 

present in the atmosphere
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The peroxy radicals in turn, participate in a chain-propagating

sequence that converts NO to NO2 and in the process, produces 

additional OH and peroxy radical species:
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So that the CH  and CO-OH reactions may be writte
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The major chain terminating steps include nitric acid and hydrogen 

peroxide formation,
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The CH O  radical can react with either NO or HO , 

the later reaction bei

OH  + NO  HNO

HO HO H O +O
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The following figure shows the atmospheric degradation path for 

methane.
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Generalized –Chemistry for O3 formation
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Figure: Formation of ozone
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Peroxyacetyl Nitrate (PAN): Consider Acetaldehyde (CH3CHO)

CH3CHO + h v       CH3O2. + HO2 . +CO …. and

Aromatic Chemistry
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CH CHO + OH CH CO H O

                             (Acetyl radical)

CH CO  + O  CH COO

                            (Acetyl peroxy radical)

CH COO  + NO  CH COO NO
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cetyl Nitrate)

Peroxybenzyol- Nitrate (PBN)
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Pungent smell, 

Eye irritation,

Decomposes very 

quickly in the 

atmosphere



Chemistry of Sulfur Dioxide

Gas-phase reaction
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(Rate limiting step, does not happen so ea
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Aqueous-phase reaction
HSO3

-

SO2

SO4
2-

Through series of complex reactions, e.g. H2O2, O3, O2 → eventually 

oxidized to SO4



Chemistry of Iron (Fe)

Fe:    

0.19 – 0.51 μg/m3

1.1 – 2.1 μg/m3  (Urban)

Fe2O3 + SO2→ SO4    (Gas-solid phase interaction)

Solid particle with Fe

Aqueous phase

Dissolved O2 can oxidize 

the SO2 in presence of Fe



Conc

Time

7 AM 8 AM 12 Noon 2-3 PM 6 PM

CO
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HC

NO2 O3
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Isopleths

In ppb

NOx

(ppb)

50

200

VOC (ppb)

400

300

200

150

200 1000

(VOC/NOx)=15

(VOC/NOx)=4

VOC 

limited

NOx

limited

KNEE 

Region

EKMA (Empirical Kinetic Modeling Approach)
Low VOC/NOx ratio ?

i.e. low O3 VOC limited

High VOC/NOx ratio?

Low O3 consumed by organic radicals



Assignment/Example 

 
Alkylperoxy nitrate decomposes in the following way 
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Assume that RO2NO2 are decomposing in a chamber and its decay is 

observed. We wish to estimate k1 from the experiment.  Assume RO2 and 

NO2 are at pseudo-steady state and [RO2]=[NO2]. Show that first order 

rate constant for RO2 NO2 decay is related to fundamental rate 

constants of the system in the following way 


