Atmospheric Chemistry of CO and NO_x

 $O_3 + hv \rightarrow O + O_2$ $\lambda > 315 \text{ nm}$

 \rightarrow O(¹D)+O₂ λ <315 nm

 $O+O_2 \rightarrow O_3$ quickly combines (no net change)

O(¹D) can have two routes:

(i) $O(^{1}D)+M \rightarrow O+M$ $O+O_{2} \rightarrow O_{3}$ (ii) $O(^{1}D)+H_{2}O \rightarrow 2OH^{-}$ (hydroxyl radical)

This OH radical fundamental is responsible for the photo chemical/chemical reactions:

 $CO + OH \rightarrow CO_2 + H$ $H + O_2 + M \rightarrow HO_2 + M$

 $HO_2 \rightarrow hydroperoxyl radical$

Or Simply combine:-

$$CO+OH^{-} \longrightarrow CO_2+HO_2$$

 $HO_2 + NO \rightarrow NO_2 + OH$

OH radical regenerated.

This is one more route for NO oxidation to NO_2

Finally, OH and NO_2 may react to form nitric acid, OH· + $NO_2 \rightarrow HNO_3$ All the reactions involved in the CO-NO_x chemistry are summarized

in the following table:

Reaction		Rate Constant ^o	
1.	$NO_2 + h\nu \rightarrow NO + O$	Depends on light intensity	
	$O + O_2 + M \rightarrow O_3 + M$	$6.0 \times 10^{-34} (T/300)^{-2.3} \text{ cm}^6 \text{ molecule}^{-2} \text{ sec}^{-1}$	
	$O_3 + NO \rightarrow NO_2 + O_2$	$2.2 \times 10^{-12} \exp(-1430/T)$ cm ³ molecule ⁻¹ sec ⁻¹	
	$O_3 + h\nu \rightarrow O(^1D) + O_2$	$0.0028k_1$	
	$O(^1D) + M \rightarrow O + M$	$2.9 \times 10^{-11} \mathrm{cm^3}$ molecule ⁻¹ sec ⁻¹	
	$O(^{1}D) + H_{2}O \rightarrow 2OH^{1}$	$2.2 \times 10^{-10} \mathrm{cm^3}$ molecule ⁻¹ sec ⁻¹	
7.		2.2×10^{-13} cm ³ molecule ⁻¹ sec ^{-1.6}	
	$HO_1 + NO \rightarrow NO_2 + OH$	$3.7 \times 10^{-12} \exp(240/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ sec}^{-1}$	
	$OH' + NO_2 \rightarrow HNO_3$	$1.1 \times 10^{-11} \mathrm{cm^3}$ molecule ⁻¹ sec ⁻¹	

Summary

- The basic reaction mechanism of the CO/NO_x system exhibit many of the key features of those involving much more complex organic molecuels.
- In particular, the role of OH as the oxidizing species and the NO to NO₂ conversion by HO₂ are central to virtually every atmospheric organic/NO_x mechanism.
- It is useful to proceed to a molecule that is somewhat more complicated than CO to see how the similar NO_x mechanism develops.

Atmospheric Chemistry of HCHO and NO_x

- Formaldehyde (HCHO) is a primary pollutant and also an oxidation product of hydrocarbons.
- These are basically emitted from automobiles.
- Formaldehyde undergoes two routes for the primary reactions in the atmosphere: (i) Photolysis and (ii) Ordinary chemistry

Route (i):

HCHO + hv \rightarrow H[·]+ CHO[·] (Formyl radical) H[·]+ O₂ \rightarrow HO₂[·] <u>HCO[·]+ O₂ \rightarrow HO₂[·] + CO Overall: HCHO + hv $\xrightarrow{O_2}$ \rightarrow 2HO₂[·]+ CO \rightarrow H₂ + CO</u>

Route 2: HCHO + OH⁻ $\xrightarrow{O_2}$ HO₂⁻ + CO + H₂O

Summary

- All reactions are because of photochemistry and reaction with OH
- HCHO/HC/CO \rightarrow HO₂·
- HO₂ to oxidize NO to NO₂.
- NO_x removal from system is through OH¹ to HNO₃

All the reactions involved in the CO-NOx chemistry are summarized in the following table:

Reaction		Rate Constant
1. NO ₂	$+hv \rightarrow NO + O$	Depends on light intensity
2. O+	$O_2 + M \rightarrow O_1 + M$	See Table 4.2
and the second se	$NO \rightarrow NO_2 + O_2$	See Table 4.2
4. HCH	$10 + hr \xrightarrow{4a} 2HO_2 + CO$	Depends on light intensity
	$\xrightarrow{4b}$ H ₂ + CO	Depends on light intensity
5. HCH	$10 + OH \rightarrow HO_2 + CO + H_2O$	$1.1 \times 10^{-11} \mathrm{cm^3}$ molecule ¹ sec ¹ "
6. HO ₃	$+ \text{NO} \xrightarrow{6} \text{NO}_2 + \text{OH}_2$	See Table 4.2
7. OH·	$+ NO_2 \xrightarrow{7} HNO_3$	See Table 4.2

Here the CO-OH reaction is omitted from the previous Table, as it is generally slower than those involving HCHO. Applying the PSSA, then:

$$\begin{bmatrix} O_3 \end{bmatrix}_{ss} = \frac{k_1 \begin{bmatrix} NO_2 \end{bmatrix}}{k_3 \begin{bmatrix} NO \end{bmatrix}}$$
$$\begin{bmatrix} OH \end{bmatrix}_{ss} = \frac{2k_{4a} \begin{bmatrix} HCHO \end{bmatrix}}{k_7 \begin{bmatrix} NO_2 \end{bmatrix}}$$
$$\begin{bmatrix} HO_2 \end{bmatrix}_{ss} = 2k_{4a} \left\{ 1 + \frac{k_5 \begin{bmatrix} HCHO \end{bmatrix}}{k_7 \begin{bmatrix} NO_2 \end{bmatrix}} \right\} \begin{bmatrix} HCHO \end{bmatrix} / k_6 \begin{bmatrix} NO \end{bmatrix}$$

rate equations for NO2, NO, and HCHO are, as a result,

$$\frac{d[\mathrm{NO}_{2}]}{dt} = \frac{2k_{4a}k_{5}[\mathrm{HCHO}]^{2}}{k_{7}[\mathrm{NO}_{2}]}$$
$$\frac{d[\mathrm{NO}]}{dt} = -2k_{4a}\left\{1 + \frac{k_{5}[\mathrm{HCHO}]}{k_{7}[\mathrm{NO}_{2}]}\right\}[\mathrm{HCHO}]$$
$$\frac{d[\mathrm{HCHO}]}{dt} = -\left\{k_{4a} + k_{4b} + 2k_{4a}\frac{k_{5}[\mathrm{HCHO}]}{k_{7}[\mathrm{NO}_{2}]}\right\}[\mathrm{HCHO}]$$

The behavior (concentration in ppm) of the system as a function of its initial conditions for HCHO and NO_x are calculated by using the models and explained in the figures

CASE 1: (Figure 1)

[NO₂]₀=0.1, [NO]₀=0.01, [HCHO]₀=0.1.

Then during first two minutes:

[NO₂]=0.069, [NO]=0.0405, [O₃]=0.032

Over the 600 minute period, it can be observed that after the first 20 minutes NO_2 continually decreases, since even though NO is continually being converted to NO_2 by O_3 , there is such an excess of NO_2 that the NO_2 -OH reaction is removing NO_2 to HNO_3 at rate such that it dominates the NO_2

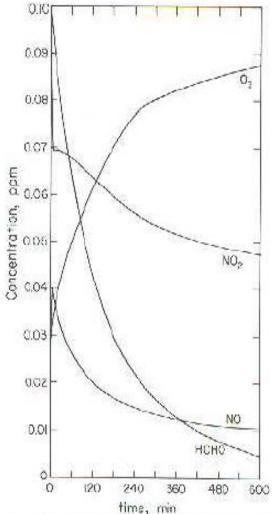
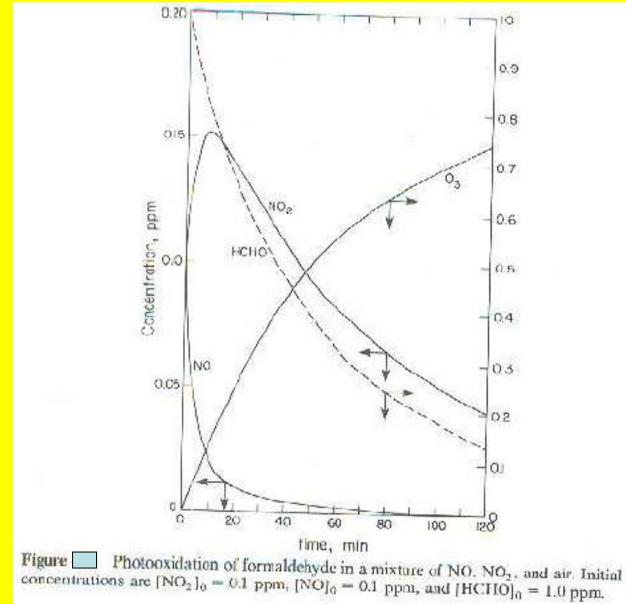
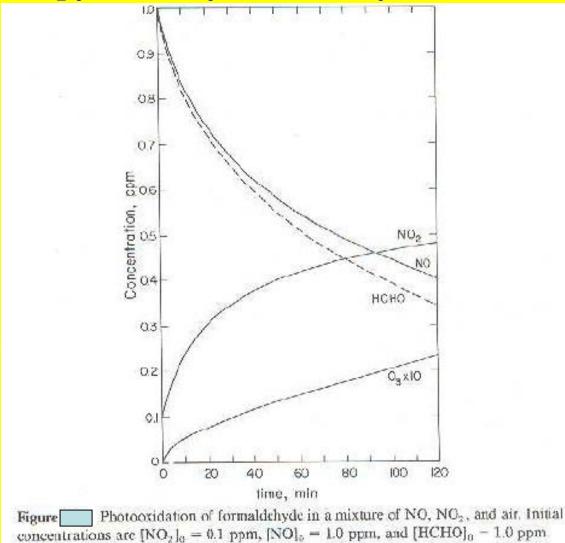
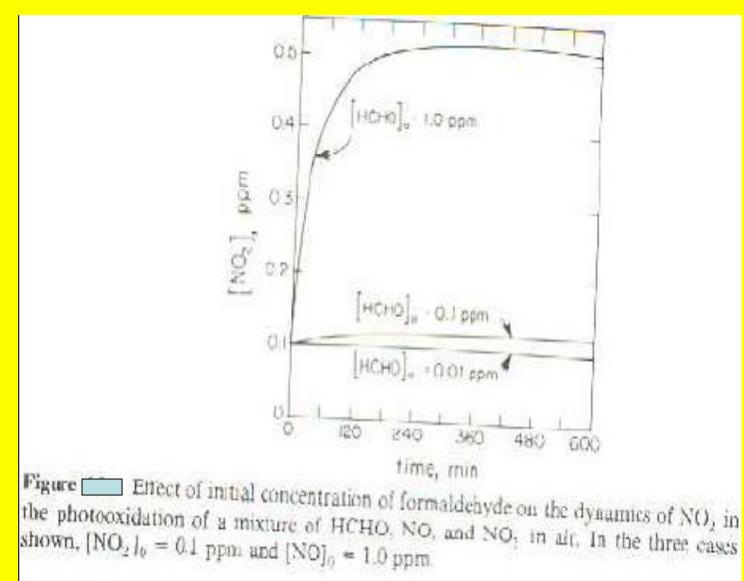




Figure \square Photooxidation of formaldehyde in a mixture of NO, NO₂, and air. Initial concentrations are [NO₂]₀ = 0.1 ppm, [NO₃]₀ = 0.01 ppm, and [HCHO]₀ = 0.1 ppm.

This figure shows the concentration versus time for the initial conditions: $[NO_2]_0=0.1$, $[NO]_0=0.1$, $[HCHO]_0=1.0$


This figure shows the concentration versus time for the initial conditions: $[NO_2]_0=0.1$, $[NO]_0=1.0$, $[HCHO]_0=1.0$

The conversion of NO to NO₂ and the formation of O₃ are therefore driven by HCHO through its production of HO₂. Thus, the theoretical maximum amount of O₃ that could be produced in this system is:

 $[O_3] = [HCHO]_0 + [NO_2]_0$

- When all the NO_x is converted to HNO₃, the system ceases reacting. In a sense, a given system can be characterized by its ability to produce O₃.
- The effect of [HCHO]₀ on NO₂ dynamics is shown in the following figure.

Oxidation of Methane

 $O_3 + hv \rightarrow O_2 + O(^1D)$

 $O(^{1}D) + H_{2}O \rightarrow 2OH^{-}$

Then hydroxyl radicals react with CH₄ and CO

present in the atmosphere.

 $CH_4 + OH^- \rightarrow CH_3^+ + H_2O$

(methyl radical)

 $CO + OH^{-} \rightarrow CO_{2} + H^{-}$

Then instantaneously the following reaction takes place

 $H' + O_2 + M \rightarrow HO_2' + M$

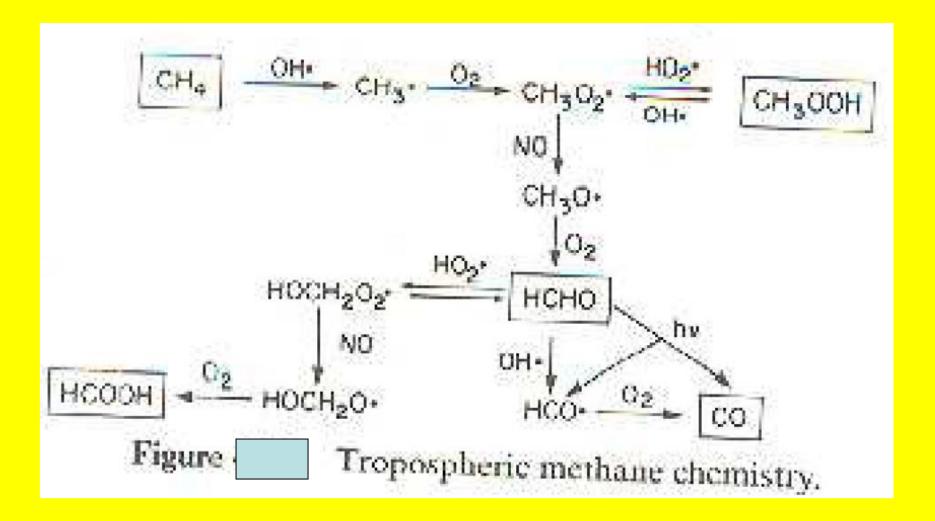
 $CH_3^+ + O_2^- + M \rightarrow CH_3O_2^+ + M$

(methylperoxy radical)

So that the CH_4 and CO-OH reactions may be written simply as: $CH_4 + OH^2 \rightarrow CH_3O_2^2 + H_2O$ $CO+OH^2 \rightarrow HO_2^2 + CO_2$

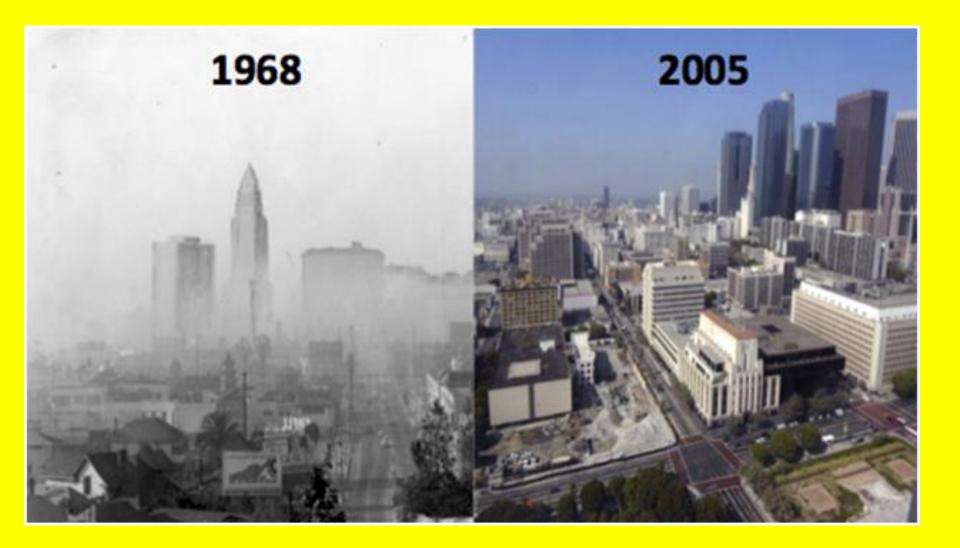
The peroxy radicals in turn, participate in <u>a chain-propagating</u> sequence that converts NO to NO₂ and in the process, produces additional OH and peroxy radical species:

> $CH_{3}O_{2}^{+} + NO \rightarrow NO_{2} + CH_{3}O^{+}$ (methoxy radical) $HO_{2}^{+} + NO \rightarrow NO_{2} + OH^{+}$ $CH_{3}O^{+} + O_{2} \rightarrow HCHO + HO_{2}^{+}$ (Hydroperoxyl radical)

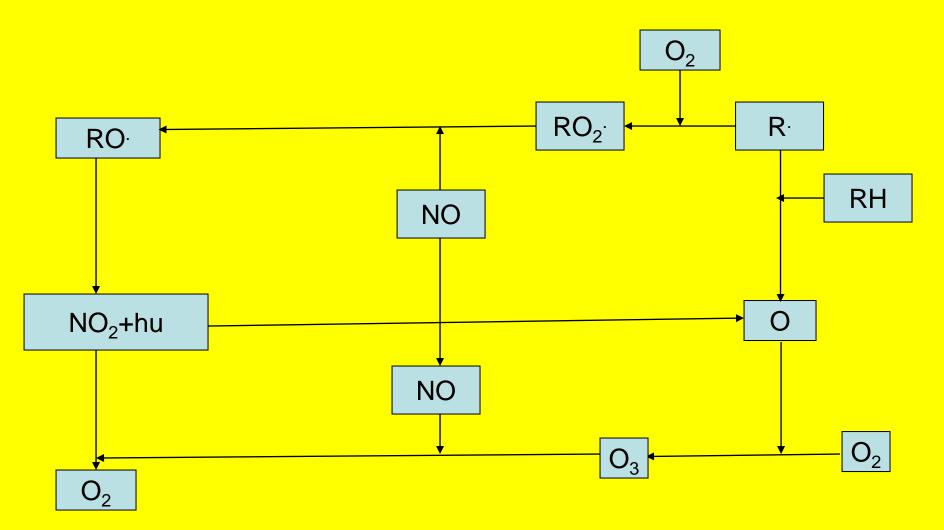

The major chain terminating steps include nitric acid and hydrogen peroxide formation,

 $OH^{-} + NO_{2} \rightarrow HNO_{3}$

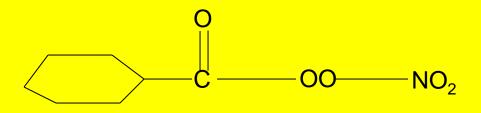
 $HO_2^+ + HO_2^+ \rightarrow H_2O_2^+ + O_2^-$


The CH_3O_2 radical can react with either NO or HO_2 , the later reaction being: $CH_3O_2 + HO_2 \rightarrow CH_3COOH+O_2$

The following figure shows the atmospheric degradation path for methane.


Generalized – Chemistry for O₃ formation

 $NO_2 + h\nu \rightarrow NO + O$ $O+O_2 \rightarrow O_3$ $O_3 + NO \rightarrow NO_2 + O_2$ $RH + OH^{-} \rightarrow R^{-} + H_{2}O$ (general HC) $R^{-} + O_{2} \rightarrow RO_{2}^{+}$ (peroxy radical) $RO_{2} + NO \rightarrow RO + NO_{2}$ $RO^{-} + O_{2} \rightarrow RCHO + HO_{2}^{-}$ (It follows aldehyde chemistry) \rightarrow Eventually will lead to CO₂ \rightarrow Stabilize NO₂ to HNO₃ \rightarrow Form H₂O₂ (highly oxidizing agent)


Figure: Formation of ozone

Aromatic Chemistry

Peroxyacetyl Nitrate (PAN): Consider Acetaldehyde (CH3CHO) $CH_3CHO + OH^2 \rightarrow CH_3CO^2 + H_2O^2$ (Acetyl radical) $CH_3CO^2 + O_2 \rightarrow CH_3COO_2^2$ (Acetyl peroxy radical) Pungent smell, $CH_3COO_2^+ + NO_2 \rightarrow CH_3COO_2NO_2^-$ Eye irritation, (Peroxyacetyl Nitrate) Decomposes very quickly in the atmosphere

Peroxybenzyol- Nitrate (PBN)

Chemistry of Sulfur Dioxide

Gas-phase reaction

 $OH^{-} + SO_{2} \rightarrow HOSO_{2}^{-}$

(Rate limiting step, does not happen so easily)

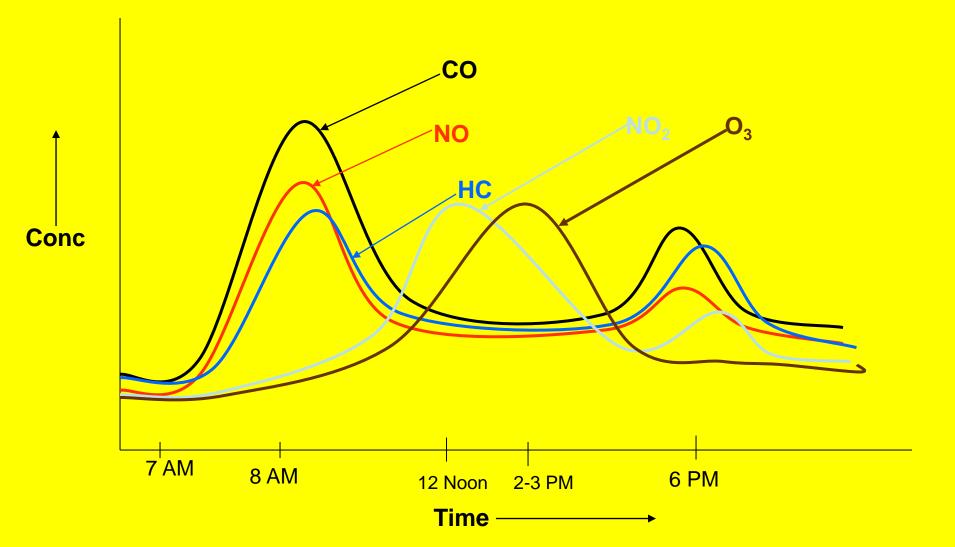
 $HOSO_2^{+}O_2 \rightarrow HO_2^{+}+SO_3^{-}$

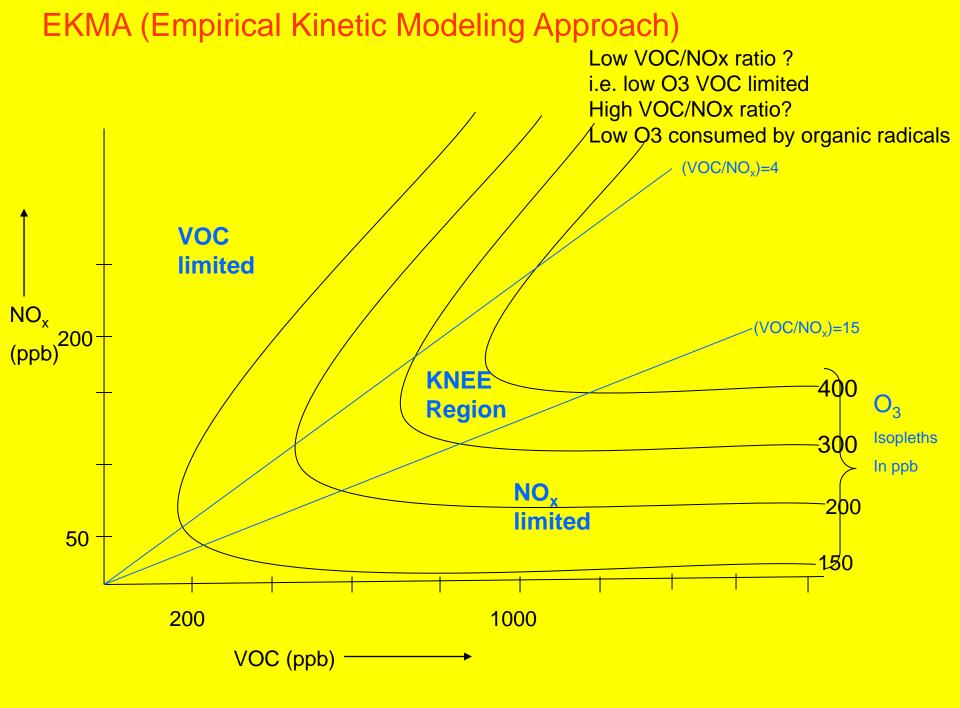
 $HO_2^+ + NO \rightarrow NO_2^- + OH^-$

 $SO_3 + H_2O \rightarrow H_2SO_4$

Aqueous-phase reaction $HSO_3^ SO_2^ SO_4^{2-}$

Through series of complex reactions, e.g. H_2O_2 , O_3 , $O_2 \rightarrow$ eventually oxidized to SO_4


Chemistry of Iron (Fe)


<u>Fe</u>: 0.19 – 0.51 μg/m³ 1.1 – 2.1 μg/m³ (Urban)

 $\bigcirc \qquad \mathsf{Fe}_2\mathsf{O}_3 + \mathsf{SO}_2 \rightarrow \mathsf{SO}_4 \quad (\mathsf{Gas-solid phase interaction})$

Dissolved O₂ can oxidize the SO₂ in presence of Fe

Assignment/Example

Alkylperoxy nitrate decomposes in the following way

$$RO_2NO_2 \xrightarrow{k_1} \leftarrow K_2 RO_2 + NO_2$$

$$RO_{2} + RO_{2} \xrightarrow{k_{3}} 2RO + O_{2}$$
$$RO + NO_{2} \xrightarrow{k_{4}} RONO_{2}$$

Assume that RO_2NO_2 are decomposing in a chamber and its decay is observed. We wish to estimate k_1 from the experiment. Assume RO_2 and NO_2 are at pseudo-steady state and $[RO_2]=[NO_2]$. Show that first order rate constant for $RO_2 NO_2$ decay is related to fundamental rate constants of the system in the following way