Lack of Oxygen Leads to

- Breathlessness
- Headache
- Dizziness
- Irritability
- Nausea
- •Vomiting
- Mental Fatigue

- Bluish Tinge on the Skin, Nails, Lips
- Even Death

Health Issues – Respiratory System

- COPD (Chronic Obstructive Pulmonary Disease)
- Asthma
- Pneumonia
- Lung Cancer
- Tuberculosis
- Genetically Induced

Air Pollutants Affecting Human Health

- Fine Particulate Matter
- •Carbon Monoxide -
- Oxides of Nitrogen
- •Sulfur Dioxide -
- •Hazardous Pollutants

Attached to Particulates -

Respiratory System

- Hemoglobin
- Lung Cleansing
 - Lung Cleansing

Respiratory, Cardiovascular and Other Organs

Deposition

- Particles less than 1 micron are settled in the alveolus
- Macrophages have a major role in cleaning them

Hierarchy of Air Pollution Health Effects

Air Pollutants Affecting Human Health

- Fine Particulate Matter
- •Carbon Monoxide -
- Oxides of Nitrogen
- •Sulfur Dioxide -
- •Hazardous Pollutants
 - **Attached to Particulates -**

- **Respiratory System**
- Heamoglobin
- Lung Cleansing
 - Lung Cleansing

Respiratory, Cardiovascular and Other Organs

Health Effects - Carbon Monoxide

- CO binds with hemoglobin at the same sites as O₂, but with about 200 times more the affinity.
- CO is thus extremely toxic because it destroys the O₂ carrying capacity of the blood
- The LC(50) in rats is 1807 ppm for 4 hours [NIOSH 1993].

Health Effects - Oxides of Nitrogen

• Effecting Mucociliary Mechanism - mucus and cillia

– exposure to 6ppm for 6 weeks

Mucociliary Escalator?

Health Effects - Oxides of Nitrogen

Destroying the cleaning mechanism of Macrophages

leads to accumulation of bacteria and resulting to Pneumonia and Tuberculosis

Health Effects - Oxides of Nitrogen

Adverse Health Effect	Concentration at which Effect was Observed NO _X (ug/m ³)	Averaging Time
Increase Mortality	-	-
Aggravation of Asthma	>1000	Annual
Acute Respiratory Disease	150-280	Annual
Increased Chronic Bronchitis	150-280	Annual
Primary Standard (USEPA)	80	Annual
Primary Standard (India- CPCB)	80	24 hours

Criteria Document for NO₂ Source USEPA 1974

Health Effects - Sulfur Dioxide Effects are Similar to that of Oxides of Nitrogen

- Effecting Mucociliary Mechanism
- Destroying the cleaning mechanism of Macrophages
 - leads to accumulation of bacteria and resulting to Pneumonia and Tuberculosis

Macrophages - white blood cell that surrounds and kills microorganisms, removes dead cells, and stimulates the action of other immune system cells.

Health Effects - Sulfur Dioxide

Adverse Health Effect	Concentration at which Effect was Observed SO ₂ (ug/m ³)	Averaging Time
Increase Mortality	300-400	24 hours
Aggravation of Asthma	180-250	24 hours
Acute Respiratory Disease	90-100	Annual
Increased Chronic Bronchitis	95	Annual
Primary Standard (USEPA)	80	Annual
Primary Standard (India- CPCB)	80	24 hours

Criteria Document for SO₂ Source USEPA 1974

Diesel Engine Particulate Emissions

Hazardous Air Pollutants in Particulate Matter

Surface area (Smaller the Size more the HAPS)

•Elemental Carbon (more adsorption of HAPS)

Respiratory Diseases

Chronic Obstructive Pulmonary Disease (COPD)

Chronic Obstructive Pulmonary Disease (COPD) is Common Disease of the lungs, affecting millions of people

Causes of COPD

Constituent	Weight (mg/Cigarette)	% of total effluent
Particulate Matter	40.6	8.2
Nitrogen	295.4	59.9
Oxygen	68.8	13.4
Carbon Monoxide	16.2	3.2
Carbon Dioxide	68.1	13.6
Hydrogen	0.7	0.1
Argon	5.0	1.0
Methane	1.3	0.3
Water vapor	5.8	1.2
Hydrocarbons	2.5	0.5
Carbonyl Compounds	1.9	0.4
Hydrogen cyanide	0.3	0.1
Other Toxic trace elements	1.0	0.2

Composition of Cigarette Smoke

•Source: USEPA – Hazardous Air Pollutant Survey

Tobacco Smoke – Aromatic Fraction

Compound	Concentration (ppm)
Carbon Monoxide	42,000
Carbon Dioxide	92,000
Alkanes	87,000
Alkenes	31,000
Formaldehyde	30
Acetaldehyde	3200
Acrolein	150
Methanol	700
Acetone	1100
Methyl, Ethyl ketone	500
Ammonia	300
Methyl nitrile	200
Hydrogen Sulfide	40
Hydrogen Cyanide	1600
Methyl Chloride	1200

Area Affected & Mechanism

 Inner lining of bronchial tubes secretes special substance called mucus

•Mucus helps trapping the dust from air

•Mucus is continuously expelling from lungs

Inner lining of normal Bronchi

Excess mucus in Smoker's lung

- The Cilia also becomes unable to expel the dirt accumulated in the lungs.
- This causes thick sputum to develop, which cannot be coughed out easily

Excess mucus and inflammatory edema in bronchi leads to obstruction

- Inflammation causes thickness of the bronchial tubes and alveoli.
- This causes narrowing of the inside of these tubes and a decrease in the capacity of lungs to exchange oxygen and CO₂

Destruction of alveolus walls, reduction in lung capacity

non-smoker city dweller's lung

smoker's lung with COPD

- Versatile heavy metal
- Extensively used
- Cheap, useful, easy to mine, physical properties - ubiquitous in air, food, water and soil
- Cumulative Neurotoxin, no known biological function
- one of most hazardous substances (ATSDR)

Health Effects of Lead

Gametotoxic – Effects on Cell

Embryotoxic – Effect on Embryo

Carcinogenic – Effect on cell growth and character

Teratogenic – Effect on embryo –producing abnormal species

Effects of Lead

- Damage Central Nervous System
- Causes reduction in IQ and attention span
- Affects mental and physical development
- Reading and learning disabilities, hyperactivity and other behavioral problems
- Impairs formation of Hemoglobin, thus Anemia
- Irreversible brain damage
- Even death at higher concentration

Who is more susceptible?

Children have greater sensitivity

- Greater lead intake per unit body weight
- Greater net respiratory intake
- Greater absorption and retention in digestive system
- Certain incompletely developed defence mechanism

Expectant mothers and their unborn babies

- Miscarriages
- Still Birth
- Death of new born

Lead continues to be in environment after several years of unleaded gasoline (Morisawa *et al.* 2001) – Why?

After phaseout of lead from gasoline:

- Immediate drop in air
- Exposure continues
 - ✓Food
 - ✓Water
 - ✓Soil
 - ✓Air ???

PBPK Model for Lead

Source: Morisawa et al., 2001