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Abstract. This paper addresses the problem of estimating the model
parameters of a piecewise multi-linear (PML) approximation to a prob-
ability density function (PDF). In an earlier paper, we already intro-
duced the PML model and discussed its use for the purpose of designing
Bayesian pattern classifiers. The estimation of the unknown model pa-
rameters was based on a least squares minimisation of the difference
between the estimated PDF and the estimating PML function. Here, we
show how a Maximum Likelihood (ML) approach can be used to estimate
the unknown parameters and discuss the advantages of this approach.
Subsequently, we briefly introduce its application in a new approach to
histogram matching in digital subtraction radiography.

1 Introduction

In an earlier paper [1], we already addressed the problem of estimating the class-
conditioned probability density function (PDF) f(Z|w € (2), appearing in the
expression of a Bayesian discriminant function d;(z) = P(w € 2){(Z|lw € §2).
We cited different approaches [2,3,4,5,6] to the solution of this problem and pro-
posed an alternative representation of approximated PDFs f;(Z) defined in a
bounded domain I. In this approach, the domain is divided into cells on the
basis of a multidimensional rectangular point lattice. The probability densities
inside the cells are obtained by a multi-linear interpolation of function values
at the lattice points (i.e. inside a cell, and along any line segment parallel to
one of the main axes of the coordinate system, values are obtained by linear
interpolation). In [1], we showed that in a low-dimensional feature space, this
interpolation model allows a fast approximation of a PDF value in any point of
I, and unlike other models, the speed of the calculations is independent of the
model complexity. The piecewise multi-linear (PML) function f;(Z), which maps
the points of the domain I to the interpolated values, and which serves as an
approximation of f(Z|w € (2;), is reformulated as a weighted sum of PML basis
functions. This allows the application of a procedure to optimise the approxi-
mation. In [1], we considered the minimisation of the least squares (LS) fitting
criterion

C = /w (H(zlw € ) — £(z))*dz . (1)
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In the present paper, we will prove that the approximating function f;(z), ob-
tained in this way, satisfies

/ f(z)dz =1 . (2)
zel

We will also prove that this property holds both for the “theoretical” approxi-
mating function f;(z) — which paradoxically requires the knowledge of the exact
PDF f(Z|w € £2,) — and its estimation f,(z), derived from the data in a learning
set of patterns vectors. Although (2) suggests that the approximation has the
same properties as a probability density function, another fundamental property
of PDF’s, namely positivity, unfortunately is not always satisfied, as is illustrated
by some of the examples given in [1]. If this positivity is crucial, one may consider
to search for a solution by finding a minimum of C' in (1) under the constraint
of positivity. Unfortunately, this solution not only is suboptimal but also, may
no longer satisfy (2).

An alternative is to use another meaningful optimisation criterion. In the
present paper, we suggest a Maximum Likelihood approach (see e.g. [2,7]). We
show how this criterion can be applied, by reformulating the basic problem in an
appropriate way, and demonstrate that the corresponding solution satisfies all
properties of a PDF. We then present very briefly results obtained by a new ap-
proach to the problem of histogram matching in digital subtraction radiography,
based upon the piecewise linear (PL) approximation of the PDFs underlying the
histograms.

2 Fundamental Considerations

Preliminary remark: since the present paper does not relate data with pattern
classes, we will omit the class index ¢, in our notations. The approximated PDF
will be denoted by f(Z), its approximation will be referred to as f’(z), and the
estimator of this approximation will be indicated by f/ (Z).

2.1 Fundamental Properties of the Approximating Functions
Obtained by Applying the Least Squares (LS) Fitting Criterion

The properties of the approximating functions, proven here, are based on the
existence of a decomposition of any given constant function into a given set of
basis functions v¢;, j € {1,...,m}. Obviously, this is the case with any PML
model.

We will prove two fundamental properties regarding the approximation of a
probability function f(Z), defined in a finite domain I, using weighted sums of
basis functions. This approximation is given by

F(@) =3 oy . 3)
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where the weight coefficients a; minimise the criterion

C- / 7) — ' (7))2d7 . )

Theorem 1. If there exists a set of coefficients b;, i € {1,...,m}, satisfying
St bii(T) = 1, VT € 1, then the approzimation ' (T) satisfies fiel f'(z)dz= 1.

Proof. Substituting {'(Z) in (4), by the right hand side of (3), and equating to
zero the derivative of C, with respect to a;, one obtains

Z% T); (T)dT = I1/J¢(T)f(f)df, Vie{l,...,m} . (5

zEe

Now, multiplying both sides of this equation by b;, calculating the sum over
i € {1,...,m} for both expressions, and rearranging the order of summation
and integration operations yields

/_GIZajwj(f)Zbiwi(f)dEZ/ <sz¢l ) 7)dz, Vie{l,...,m} .

Substituting the first sum by the left hand side of (3), this equation simplifies to
/ f'(z)dz = / fz)dz =1,
zel Tel
since b;, i € {1,...,m}, satisfy >7" bjo);(T) =1, VT € I. 0

When a representative learning sample of pattern vectors T; is available, the
coefficients o; can be estimated by replacing the expression at the right hand
side of (5) — which represents the expectation of the value of the basis function
1;(T) — by the sample mean value of this function, which gives

m IR 1 P . i -
;aj/EEI%(x)%(x)dx—p;%( ), Vie{l,...,m} . (6)

Here, p is the sample size and a; are the estimations of the original coefficients o;
n (3). When the coefficients «; in the decomposition of the PDF are substituted
by the coefficients a;, the resulting function becomes an estimator for f'(7):

T) =) ay(@) - (7)
j=1

A second theorem shows that the property, proven previously for f'(Z), also holds
for ' (T):
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Theorem 2. If there exists a set of coefficients b;, i € {1,...,m}, satisfying
S bii(T) = 1, VT € 1, then the estimated approzimation f'(T) satisfies
Lo f'(@)dz = 1.

Proof. Summation over ¢ € {1,...,m} of both sides of (6), after multiplication

with b;, and rearranging the order of summation and integration operations,
yields

/_ , Z a;¥;(T) Z bivi(T)dT = % Z (Z bﬂ/h‘(@)) , Vied{l,...,m}
el j= i=1 =1 \i=1

After the substitution of the first sum by the left hand side of (7), this equation

yields:
~ 1<
/ f@dz=-> 1=1,
TEl p =1

since b; satisfy Y ;" bji;(T) = 1, VT € I, including the learning pattern vec-
tors ;. O

2.2 Derivation of a Maximum Likelihood Model for Estimating the
Coefficients of the PML Approximation

Let us assume that the basis functions v; satisfy
VTel:;(T)>=0 and / Yi@dz =1 . (8)
zel

In other words, the 1; behave like probability density functions. If the second
condition does not hold for basis functions 1/1‘;- in the decomposition

m

@) =) )@ ,

j=1

it is sufficient to multiply these with an appropriate scale factor s, i.e. ¥;(T) =
sY%(T), so that (8) is satisfied, and to replace the coefficients o; by a; which
will satisfy a; = a’;/s for the solution.

Therefore, consider a probability density function, of the following form

F(E) = assy(@) |

where the ¢;(T), j = 1,... m, satisfy (8) and «; are the weighting coefficients of
the mixture of these density functions. It is obvious that for a random vector T
that satisfies the distribution f (%), a; can be considered as the prior probability
by which the vector will be attributed to component j of the mixture — satisfying

Zajzl . (9)
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The function 9, can be considered as the probability density of T, conditioned
by the knowledge that the vector is attributed to component j of the mixture,
Le: ¥;(T) =1 (T))).

When a sample {Z1,...,7,} of independent observations of the random vec-
tor T is given, together with a predetermined set of probability density functions
¥;(T), j = 1,... m, of the mixture, the weighting coefficients «; can be esti-
mated using a maximum likelihood approach. It is obvious that the likelihood
to be maximised is

P m
L=1]>_a@) ,
1=1j=1
or equivalently, the log-likelihood to be maximised is
p m
log L =Y log ) é;; ()
=1  j=1

The maximisation for the values of &; must be subject to the constraint (9),
and, therefore, involves the use of a Lagrange multiplier \. We thus search for
the solution of

p m m
D log D (@) +AY a;—A| =0, Vie{l,...,m} ,
=1  j=1 j=1
which yields
wz xl .
-\ = , Yie{l,...,m}
Z 1%1/’](@)

Multiplying both sides of this equation with &;, we obtain a set of equations
which allow us to calculate the value of A:

— Ay = ZEO‘”/’Z W vieq,....m) . (10)

=1 05; (T1)

Indeed, summing both sides of these equations over index i € {1,...,m}, inter-
changing the order of the summations ), and ), in the right hand side, and
using (9), gives: —\ = Y_7_, 1 = p. Substituting this result in (10) finally yields
a set of equations from which the values of &; can be solved. We have

Zzazwz Z) , Vie{l,...,m} . (11)

j=1 Q; (@)

This set of equations is immediately formulated in a form, appropriate for
the application of a recursive solution procedure. In such approach, one starts
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with a tentative set of coefficients &y, @ € {1,...,m}, and plugs it in the right
hand side of (11), yielding a new set of estimates for the coefficients &;. This
is repeated till a convergence criterion is satisfied. When the starting values of
the coefficients are all positive, it is obvious from (11), that they remain positive
during the whole procedure, since the functions v; are also positive. It is also
evident from (11) that the sum of the coefficients &; is one. For this reason and
because of (8), the proposed ML solution will satisfy all properties of a PDF.

An interesting set of equations, similar to the equations derived by Duda
and Hart ([2], pp. 192, 193), can be derived from (11), by replacing the functions
1;(T) with their expression as conditional probabilities, namely f (Z|5), and using
the Bayes theorem:

1 p
& =—> P(i[T) .
pl:l

We indeed see that the coefficient &; can be considered as the mean posterior
probability to attribute the observed random vectors T; to component i of the
mixture probability density model.

3 Some Numerical Experiments

The mathematical models have been implemented in Matlab. Some numerical
experiments have been performed to validate the developed software technically,
and to observe the behaviour of both the LS and the ML approach. One of the
experiments consisted of estimating the PDFs of two univariate distributions.
The first distribution is uniform in an interval [0,1]. The second distribution
behaves like a Gaussian distribution in an interval [0, 1] and is zero elsewhere.
Fig. 1 shows the results of the experiments. In [1], we already reported the
decrease in quality of the results when there is some mismatch between the
estimated PDF and the approximation model. The figure shows that for the LS
technique the values of the approximating function may be indeed negative in the
neighbourhood of rapid changes. As predicted theoretically, the approximating
function obtained from the ML approach continues to behave well.

4 Application in Digital Subtraction Radiography

Digital subtraction radiography (DSR) is a potentially sensitive method for re-
vealing subtle changes in radiolucency between radiographs acquired separated
in time. The power of the DSR method stems from its ability to remove so-called
structural noise, arising from the invariant structures in the images, leading to
a distinctive improvement in the visual acuity of real changes.

The particular application of DSR that we consider here as an illustration
of the new method for piecewise linear approximation of a PDF is that of intra-
oral radiography, and more specifically its application to the detection of ap-
proximal caries. Basically, dental caries is a slowly progressing demineralisation
of the tooth surface that starts at the surface, and gradually penetrates the
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Fig. 1. Graphical representation of the results of the numerical experiments.
Solid lines correspond to the real PDF. Top row: results for a uniform distri-
bution, bottom row: results for a (partially) gaussian distribution, left column:
results for the LS method, right column: results for the ML method

tooth. Given the treatment ramifications of advanced caries, detection in its
early development stage is of prime importance. However, common radiographic
examination has been found to yield an insufficient sensitivity for the early de-
tection of approximal caries. Given this observation, DSR is investigated as a
more accurate diagnostic method.

Decisive to the success of the DSR method, however, is the ability with
which the exposure geometry and the development conditions can be reproduced.
Whereas the first requirement can be met by the use of mechanical stabilisation
devices or by employing mathematical methods of retrospective geometric cor-
rection, changes in the exposure and development conditions necessarily call for
a numerical contrast correction procedure. This involves the transformation of
the gray value histograms such as to resemble each other as closely as possible.

The standard method of contrast correction used in intra-oral DSR is that,
proposed by Ruttiman and co-workers [8], which finds the optimal transfor-
mation by equating the cumulative distributions of the respective histograms.
Actually, this method has been proposed as a more consistent approach to the
problem of contrast correction, compared to an earlier described parametric
method [9], based on matching the first and second order moments of the re-
spective distributions.

More recently, a particular interesting method has been suggested by
Bidasaria [10], in which the original gray values in the images are randomised in
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Fig. 2. Plots of desired histogram (solid line) with, (a) Actual starting histogram,
(b) Matched histogram from piecewise linear approximation, (¢) Matched his-
togram using the method of Ruttiman
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the discretisation intervals, to obtain a piecewise constant approximation of the
histograms. Histogram matching then follows immediately.

In our approach, the histogram of image 1, say, is transformed into that of
image 2, by first decomposing the histograms into the basis set of triangular
functions characterising the PL approximation, prior to using the method of
direct histogram specification (DHS) [11] via the uniform distribution. Upon
a suitable choice of the points at which the cumulative distribution function
(CDF) of image 2 is evaluated, the use of a continuous representation allows
to circumvent the explicit inversion of the the transformation to the uniform
distribution of histogram 2. Our approach, consisting of a PL approximation,
differs fundamentally from that of Bidasaria [10] in which a step approximation
of the histogram is proposed. In the preliminary results of this paper, we have
shown as in Fig. 2 that our approach yields results comparable to those obtained
from the method of Ruttiman et al. [3]. Our approach is a first step towards the
use of alternative representations of histograms, as found in [12,13].

5 Discussion and Conclusions

In [1], we introduced the basic concepts and notations for a Piecewise Multilin-
ear (PML) approximation of probability density functions. We showed how to
formulate this model, which is basically an interpolation model, as a weighted
sum of basis functions, where the weights are the model parameters. We also
proposed a solution methodology for estimating the model parameters from a
representative learning set of patterns, based on a least squares (LS) fitting
criterion.

For a broad class of models that includes the PML model, we show in this
paper that the optimal approximation of the PDF by the weighted sum of basis
functions, as well as the estimate of this approximation from a learning set
of patterns, satisfy the property that their integral over the definition domain
equals unity, thus meeting a basic property of a PDF (Theorems 1 and 2). To
cope with the problem that another property of PDFs — namely positivity — is
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not always satisfied by the LS fitting solution, we introduce another approach,
which is based on a Maximum Likelihood (ML) criterion. The ML estimate
satisfies all properties of a PDF and hence, can be used in applications where
these properties are required. Subsequently, we have demonstrated an application
of the PL approximation to the problem of contrast correction in DSR.
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