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Abstract- The present work is about the application of a approximation solutions to the scattered fields, or, (b) the 
Tikhonov regularized Gauss-Newton scheme to the solution of partially nonlinear Born iterative type approach wherein the 
the nonlinear minimum norm reconstruction problem of GPR interior fields inside the objects at each iteration are kept fixed 
tomography, with the aims of ( 4  setting of a regularization at those estimated at the previous step, or, (c) the nonlinear 
parameter sequence to achieve Convergence, (b) eValUatiOn of an disto~ed-~om/Newton-~antorovich or contrast-source- 
iteration matrix at a given nominal parameter estimate, and (c) inversion wherein the interior fields are predicted at 
study the effects of curvatures in parameter and objective- the present step based upon the integral equation model of 

scattering. function spaces on the convergence. 

Typically, nonlinear optimization based schemes such 
nonlinear inverse problems; Gauss-Newton method. as the Gauss-NewtodNewton-Kantorovich or conjugate- 

gradient methods are employed to solve the above 
I. INTRODUCTION reconstruction problem. The present work is about the 

application and analysis of a Tikhonov regularized Gauss- 
Newton (GN) scheme to the solution and analysis of the 

minimum norm reconstruction problem Of GPR 
tomography, in the light Of a perturbation-theory based 
framework [4] of Jerry Eriksson and Per-Ake Wedin for almost 
rank-deficient problems9 that both parameter and 

characteristics of the problem, but also the predicted efficiency 
of the GN-method. 

Keywords-GPR Tomographjj ; almost rank deficient problents ; 

A. The GPR tomographj, problem 
The inverse scattering problem being presently considered 

is to recover a subsurface object’s electrical permittivity (E(r), r 
e R?), and conductivity ((T(r), &), from the measurements 
at various frequencies, on a receiver surface outside the object, 

incident radiation with the object in question. In the present 
work, the scattering process in GPR tomography is assumed to 

of the scattered field obtained from the interaction of an function ’pace curvatures, which not Only Some 

be modelled (in the scalar approximation) by the 2D Helmholtz 
equation. The Helmholtz equation for the complex amplitude 
u(r,rn,o) at a point r=(x,z), of a inonochromatic wave of 
angular frequency w, due to a source at r ,  propagating 
through a medium of complex wave number k(r,w), is given 
by 

A U( r,rn,w) + k’(r,o) U( r,rn,U) =jn(rn,U) (1) 
where, A is the Laplacian operator, jn(rn,m) is the assumed 
current distribution corresponding to the n-th transmitter. The 
fields U( r,r,,w) are assumed to be outgoing and satisfying the 
Sommerfeld radiation conditions at infinity. The complex 
wave-number, k(r,w), is given by 

k2(r,o) = 02b E(r) (l+i o(r, a)/( o E(r))) (2 )  
where po is the magnetic permeability of free space. 

B. 

tomography either utilize (a) the 

Setting and brief ofpresent work 
Major reconstruction approaches [ 1],[2], [3] in diffraction 

linearised Born or Rytov 

The layout of the paper is as follows. Section 2 outlines 
the Tikhonov regularized GN scheme to solve the 
reconstruction problem. In the analysis phase, the iteration 
matrix at a point close to the solution point is given in section 
3, as are the curvatures in the parameter and objective function 
spaces, and their implications. Section 4 treats the numerical 
experiments on reconstructions, and, section 5 presents the 
conclusions. 

11. TIKHONOV REGULARIZED GN RECONSTRUCTION 
SCHEME 

The nonlinear reconstruction problem of GPR tomography 
can be stated as the solution to the following nonlinear 
minimum norm problem 

min 1 1  f - c such that (1/2)115(f) 112’ is minimal (3) 

where f is the row-ordered object parameter vector, with 
pointwise values corresponding to 

f(r)=(k’(r,w)-k,,~b’(r,o))/ kamb’(r,w) (4) 
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with k(r,w) being the wave-number in the actual physical 
setting of the object(s) of interest embedded in an ambient 
medium corresponding to a wave-number kalnb(r,w), c being a 
known constant, and, 

i(f)=g - A(f) (5) 
where g is the concatenated measured scattered field data for a 
frequency set, and, A(f) is the measurement functional 
corresponding to the tomographic process, obtained in the 
present work via the integral equation framework of scattering, 
using the method of moments [ 5 ] .  

To solve the above minimum norm problem, an iterative 
scheme based upon the GN approximation is utilized. The 
multi-frequency GPR tomography problem has an almost 
rank-deficient Jacobian matrix (w.r.t c(f)) J(f) of at the 
solution point of G(f)=O. It is well-known that the GN-method 
is a very efficient approach for many parameter estimation 
problems. However, for ill-conditioned inverse problems, the 
curvatures become too large, and first order methods such as 
the GN-method will not converge. Using Tikhonov 
regularization, a stable solution may be found which greatly 
improves the condition of the problem and also the 
convergence rate for the GN-method. The corresponding 
Tikhonov regularized (with regularization parameter p) 
nonlinear least-squares problem is 

min f /I (5(f), p(f- CNT112' 

min p II ( J(f)P + em> PU- c + P))T1122 

(6) 
To solve this problem, an iterative scheme based upon the GN 
approximation solves, at the current iterate f, 

(7) 
The next iterate is given by f k + I  = + ak pk, where the step- 
length ak is chosen such that the objective functional is 
sufficiently reduced. The search direction p computed from (7) 
can be written as 

p = - B (c(a), P - c ) ~  (8) 
with the matrix B=((JTJ + p21 )-'JT, p2(JTJ + $1 )-I). 

111. LOCAL CONVERGENCE OF THE T~KHONOV 
REGULARIZED GN SCHEME 

In this section, the Tikhonov regularized GN scheme is 
analyzed for convergence by evaluating an iteration matrix at 
the current iterate, which is then subsequently decomposed to 
yield contributions to the rate of convergence from various 
sources. The analysis in what follows is on the lines of that in 

A. The local iterationkonvergence matrix 

defined by 

~41. 

The objective is to study the local convergence of a method 

= 6 - Bk h(P), where h(f)=(&(f), p (f - c ) ) ~  

Note that (a) B (J, I)T = I , and, (b) if fo is a fixed point of the 
above algorithm, then B(fo)h(fo)=O is satisfied. 

Making a series expansion of h(fo) around h(P), we get 

(9) 

h(fo)= h(P) + (J, (fo- P) + O(llfo- Pl/z' ) (10) 

Thus it  follows that upto 1" order terms 

Bk h(fo)= Bk h(tk) + (fo- f) (1 1) 

Hence from (9), 

P"-fo 

It can be obtained that 

= - (Bk- B(fo))h(fo) +2"dorder terms 

-(&- B(fo))h(fo)= - (JTJ + p21 fo (12) 

6J = J - Jo = ((P- fo)T HI . . . (tk- fo)T HI,JT 

where 

(13) 
with H,= &,"(tk), the Hessian matrix corresponding to the i-th 
measurement. Hence, we can write 

fk+l-fo = K(P) (b- fo) + 2"d order terms (14) 
where the spectral radius of the local iteration matrix K(P) 
determines the rate of convergence. 

B. 

matrix, J, in the form J = JI + J2 , as follows 

Decomposition of the convergence matrix 
Define the singular value decomposition of the Jacobian 

J=U S VT = (Ul, U,) diag(SI, S,) (VI, V,)T (15) 

with S1=diag(ol, ..., or), and S2 =diag(o,', ..., on), where r is 
a rank of interest at a particular iteration, usually considered as 
the number of singular values above the value of p. 

(JTJ + p21 )-I into terms corresponding to 
the subspaces defined by the assumed value of r, we have 

First, splitting 

p2 ( J ~ J  + p2i ) - I =  p2 v1 svl vIT + v2 sv2 V; 

= P2 E(P) + " (16) 

where Svl  diag{l/[oi2(l+(p/ ol)*)], ..., I/[o?(l,+ (plq) ' ) ] ) ,  
and Sv2 diag{ 1 /[ 1+ (eel/ p) '1, . . ., 1/[ 1 + (on/ p) -1). 

Defining RI=Range(J1), Sl-Null-space(JIT), M ,=Range(J IT) 
and N1=Null-space(Jl), we observe that at a solution, 
JT 5 + p2 (f - c) =O , and thus JIT 5 + p2 PM,(f - c) =0, 
where PMl is the orthogonal projector onto MI.  We thus have 

5 5(f) =PRI 5 + Psl 5 = - p2 (J1')T(f - c) + PSI 5. 
Hence we obtain from (12), (1 3), (14) and (16), 

K(f) = Kl(f) + K2(f) + K3(f) + Wf) 
where 

Ki(f) = -E@) HTn Psi 5 7 Kdf) = N(P) HTQ ((J ~ + ) ~ ( f  -C)) 

K3(f) = HTn ((Ji+IT(f- C)) and, 

(17) 

&(f) =-U p2) N(p) HTn PSI 5 
where HT=(HIT,. . ., H,:), and the "inner product" 
asHTnqGC,H:ql. 

In the above expression for K(f), we observe that the first two 
terms correspond to the errors due to the normal curvatures in 
the objective-function and parameter spaces respectively, the 
third term is typically small when close to convergence, and the 
fourth term limits the decrease in the value of the 
regularization parameter. 

is defined 
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It can be seen that the GN scheme converges iff p(K)<l, where 
p( .) denotes the spectral radius (maximum absolute 
eigenvalue) of its matrix argument. 

1V. SIMULATIONAL STUDIES 

A .  Niimerical Aspects 
The computational aspects related to the physical modeling 

of the tomographic process are the computation of the 
scattered fields given a nominal parameter estimate, and the 
corresponding Jacobian and Hessian matrices. In our work, we 
form the measurement equation ( 5 )  by discretizing the 
integral equation of scattering using a method of moments 
pulse-basis point-matching procedure [5]. The Green function 
used is the half-space Green function [6], with air and ground 
being the two spaces. The Jacobian and Hessian calculations 
are made in the “fully-nonlinear” regime wherein the interior 
fields are predicted at the present step taking into account their 
variation with the nominal estimate. 

In the nonlinear optimization scheme to solve the minimum 
norm problem (3), the setting of the regularization parameter p 
is done by initializing it to a suitably “large” value and then 
reducing it in steps corresponding to a reduction in objective 
function value in the line-search step, when the step-size is 
large enough (i.e., the step-size a should be close to 1). 

B. Testcases 
Numerical results (obtained in Matlab) are presented for 

two 2D shallow-sub-surface mine-like test objects of circular- 
cross-section (center at 4 cm depth and radius of 3.4 cm, with 
settings given in Table l), embedded in a half-space (air- 
ground) ambient medium. Scattered data at multiple- 
frequencies (0.7, 0.9, 1.1, 1.3 GHz) and multiple-angle plane 
wave incidence (15 angles in [-d3,x/3]) is used in our studies. 

TABLE 1. PHANTOM PARAMETERS 

Phantom 

f=0.6644+i 0.0588 

g l .222  140.02667 
Wet sand (4.5,0.03) (10,0.01797) 

Reconstructions are performed for these two phantoms for 
exact (noiseless), and mildly noisy data (exact data is added to 
0-mean Gaussian noise of std-deviation of one-tenth of its 
max-amplitude). The a-priori constraints used in our 
reconstructions are of the bound and support of the object 
parameters. In the exact data case, tight support constraints are 
used (this being a benchmarking example), while in the mildly 
noisy case, more relaxed support constraints are employed. 
Reconstructions of the real parts of the complex parameter 
estimates in Figs. 1,3,5,7 show acceptable reconstructions w.r.t 
the parameter values in Table 1. Corresponding plots of the 
decrease of residual and regularization parameter with iteration 
number are shown in Figs. 2,4,6,8. 

The spectral radii of the individual components of the 
convergence matrix are defined as k, = p(K,), i=l,. . .,4, where 

K, are as defined in (17). Due to paucity of space, we write 
results for the two phantoms in the reconstruction from exact 
data, in the form of vectors with entries [Iteration, p. kl ,  k2, k3, 
k4, p(K)]. Corresponding to P1, we obtained [4, 0.025, 0.0026, 
0.6139, 0.4461, 0.0063, 0.68581, [S, 0.00625, 0.0122, 0.5795, 
0.1741, 0.0405, 0.58731, and [lo, 0.00625, 0.0122, 0.5795, 
0.1741, 0.0405, 0.58731, and corresponding to P2, [4, 0.05, 
0.0120, 1.5126, 0.7140, 0.0328, 1.57081, [8, 0.05, 0.0120, 
1.5143,0.7136,0.0328, 1.57251, and [10,0.05,0.0120, 1.5143, 
0.7136,0.0328, 1 .5725]. 

We observe that the convergence rate component, kl 
corresponding to the objective function residual is small in both 
cases, indicating that the residual aspect is having a high 
convergence. The term kz being larger shows that the major 
influence on the lack of convergence for phantom P2 comes 
from the parameter space, which is quite understandable 
considering the higher nonlinearity in P2. Also, k3 being large 
and being small indicates that the value of the regularization 
parameter has not attained its minimum possible value. 

V. CONCLUSIONS 
We have demonstrated the application and analysis of a 

Tikhonov regularized minimum-norm formulation of a 
nonlinear almost-rank-deficient reconstruction problem of GPR 
tomography by (a) obtaining sequences of regularization 
parameters that yield acceptable reconstructions for test cases 
considered, and, (b) better understanding the scheme’s 
convergence behaviour by looking separately at convergence 
rates in parameter and objective function spaces. 
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Figure 1. Plot of Re(f) vs. (XJ) for PI with exact data Figurc 5 .  Plot o f  Re(f) vs. (x,z) for PI with noisy data 

Figure 2. Plots of residual and regularization parameter vs. iteration for P1 
with exact data Figure 6.  

with noisy data 
Plots of residual and regularization parameter vs. iteration for P1 

Figure 7. Plot of Re(f) vs. (x,zj for P2 with noisy data 
Figure 3. Plot of Re(f) vs. (x.z) for P2 with exact data 

Figure 8. 
with noisy data 

Plots of residual and regularization parameter vs. iteration for P2 

Figure 4. Plots of residual and regularization parameter vs. iteration for P2 
with exact data 
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