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A Nonlinear Iterative Reconstruction and Analysis

Approach to Shape-Based Approximate
Electromagnetic Tomography

Naren Naik, Jerry Eriksson, Pieter de Groen, and Hichem Sahli

Abstract—A nonlinear Helmholtz-equation-modeled electro-
magnetic tomographic reconstruction problem is solved for the
object boundary and inhomogeneity parameters in a damped
Tikhonov-regularized Gauss—Newton (DTRGN) solution frame-
work. In this paper, the object is represented in a suitable
global basis, whereas the boundary is expressed as the zero level
set of a signed-distance function. For an explicit parameterized
boundary-representation-based reconstruction scheme, analytical
Jacobian and Hessian calculations are made to express the changes
in scattered field values w.r.t. changes in the inhomogeneity pa-
rameters and the control points in a spline representation of the
object boundary, via the use of a level-set representation of the
object. Even though, in this paper, a homogeneous dielectric is
considered and a spline representation has been used to represent
the boundary, the formulation can be used for a general global
basis representation of the inhomogeneity as well as arbitrary
parameterizations of the boundary, and is generalizable to three
dimensions. Reconstruction results are presented for test cases
of landminelike dielectric objects embedded in the ground under
noisy data conditions. To confirm convergence and, at times, to
know which of the obtained iterates are closer to the actual
unknown solution, using a perturbation theory framework, a local
(Hessian-based) convergence analysis is applied to the DTRGN
scheme for the reconstruction, yielding estimates of convergence
rates in the residual and parameter spaces.

Index Terms—Boundary reconstruction, Gauss—Newton
method, local analysis, nonlinear tomography, subsurface
imaging, Tikhonov regularization.

I. INTRODUCTION

HE NEED for nonlinear reconstruction approaches oc-
curs in many branches of electromagnetic tomographic
imaging. Some examples are wave-equation-based diffraction
tomography, electrical impedance tomography, and diffusion
optical tomography, to name just a few. The area of tomo-
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graphic subsurface imaging is of interest in important applica-
tions such as geophysical prospecting and landmine detection,
to name only a couple. Typically, the reconstruction of the
desired parameters is achieved in the following possible ways:
1) by a minimization of an objective functional comprising
the residual of the measured and modeled data when either
the full scattering operator [1]-[3] or an approximate operator
such as a first- or a second-order Born approximation [4], [5] is
considered and 2) via analytical methods, which are based on
approximations of the forward operator [6].

The minimization class of problems, being ill posed in na-
ture, needs additional a priori information (such as support of
the object) to aid the convergence of the solution scheme to
the desired correct solution. The motivations of using boundary
information in a tomographic reconstruction are typically to
lend stability to the iterative reconstruction scheme (by better
demarcation of object support constraints and also by the pos-
sible reduction of the number of parameters characterizing the
object) or to solve an “approximate” inverse scattering problem
wherein the object shape, location, and an approximate (as
against a more exact) estimate of the object’s interior physi-
cal parameter values are reconstructed. The iterative “shape-
based” approximate reconstruction schemes broadly fall into
two categories. The objective functional minimized in the first
class has as unknowns the coefficients in an explicit parametric
representation for the boundary curve(s), whereas, in the latter
class, the unknowns are the values of a set function representing
the image, with the zero level set of that function representing
the boundary. While the first (explicit representation) class of
schemes has the advantage of fewer unknowns, which is useful
in potential 3-D reconstructions, the second (implicit represen-
tation) class is better suited to handle topological changes in
the evolving shape of the boundary. In this paper, we have
formulated a scheme for the solution and convergence analysis
of the nonlinear 2-D approximate reconstruction problem in the
first class of schemes, in a framework for arbitrary parameter-
izations, that is conceptually generalizable to three dimensions
as well. We use a level-set representation for the shapes in
order to calculate the first- and second-order shape and elec-
tromagnetic parameter derivatives of the objective functional in
a parameterized representation and not in the more customary
implicit level-set representation of the boundaries.

Miller et al. [7] solved the approximate inverse scattering
problem using a partially nonlinear Born iterative scheme with
a spline representation of the image boundary and a global basis
representation for the object and background inhomogeneities.
They use a greedy-search-type technique to find the best change
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of control points at a given iteration. The work of Bonnard ef al.
[8] uses a rigorous integral-equation-based formulation for
homogeneous dielectrics to solve the corresponding reconstruc-
tion problem, with the shape parameters and the inhomogeneity
value being the unknowns. More recently, Kilmer et al. [9]
have derived a Gauss—Newton-type algorithm to solve the ap-
proximate inverse scattering problem for the shape parameters
as well as inhomogeneity coefficients in a suitable typically
“slowly varying” basis for 3-D ellipsoidal objects in optical to-
mography. The nomenclature of “Gauss—Newton type,” rather
than “Gauss—Newton,” is used by them, because some of the
Frechet derivatives w.r.t the shape parameters are evaluated
through the use of finite-difference approximations, and the
columns of the Jacobian are only approximately solved by an
iterative method. The work of Ye er al. [10] gives confidence
intervals for reconstructed shapes but does not reconstruct the
inhomogeneity values since it deals with conducting objects. In
addition, this approach uses the domain derivative approach to
evaluate the Frechet derivatives, which is a far-field relation.

In the second (implicit) class of methods, Dorn et al. [11]
used a level-set-based formulation to solve the shape recon-
struction problem, assuming knowledge of the object’s electro-
magnetic parameters. The boundary is implicitly represented as
the zero level set of a function, and that function is iteratively
solved to get the boundaries. Feng et al. [12] presented a
curve evolution approach to solving the linear approximate
reconstruction for arbitrary shapes and inhomogeneities. The
recent work of Chung et al. [13] solves the nonlinear electrical
impedance tomography problem for both the shape and conduc-
tivity in a level-set framework.

We mention a number of recent contemporary works on
the problem that have appeared during the course of review
of this paper. Zacharopoulos et al. [15] simultaneously recon-
structed shape and optical parameters for noiseless data in a
frequency-domain 3-D elliptic inverse problem in diffuse opti-
cal tomography for piecewise constant objects using a spherical
harmonics parametrization of the boundary in a boundary
element method discretization scheme. For an alternating min-
imization scheme for shape and optical parameters, they derive
the shape of Frechet derivatives with a fully adjoint-based
calculation [17],! which, in turn, uses the boundary-integral
expression of the seminal work of [18], relating variations of in-
ternal parameters to infinitismal boundary variations. In a more
recent work, Firoozabadi et al. [16] solved a 2-D shape and
electrical parameter reconstruction problem for a subsurface
tomography problem using a fully nonlinear scheme, where
the Frechet derivative calculations for the shape parameters use
analytical differentiation w.r.t boundary point coordinates using
recurrence relations for Bessel function derivatives, which arise
due to the specific nature of fields obtained in the semianalytic
mode matching scattering model employed in this paper for the
subsurface imaging problem.

In the present nonlinear scheme, to solve the approximate
reconstruction problem, the object is represented in a suitable
global basis, whereas the boundary is expressed as the zero

! Also released on the web during the review process of this paper.
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level set of a signed-distance function. Analytical Jacobian
calculations are made to express the change in scattered field
values w.r.t. changes in the inhomogeneity parameters and the
control points in a spline representation of the object boundary,
via the use of a level-set representation of the object. Even
though, in this paper, a homogeneous dielectric is considered
and a spline representation has been used to represent the
boundary, the formulation can be used for a general global
basis representation of the inhomogeneity as well as arbitrary
parameterizations of the boundary, and is generalizable to three
dimensions.

A damped Tikhonov-regularized Gauss—Newton (DTRGN)
approach is then applied to the residual-norm objective func-
tional to arrive at the desired reconstruction of the bound-
ary and object parameters. Furthermore, using a perturbation
theory framework as in [2] and [14], a Hessian-based local
convergence analysis is applied to the DTRGN scheme for the
reconstruction, yielding estimates of convergence rates in the
residual and parameter spaces.

Thus, the contribution of this paper lies in 1) the analytical
calculation of the needed Jacobian and Hessian matrices w.r.t
both the electromagnetic and shape parameters in the explicit-
curve-representation setting of this paper, in a framework for
arbitrary parameterizations and for (in general) smoothly vary-
ing inhomogeneities valid for near- and far-field measurements,
that is conceptually generalizable to three dimensions and 2) the
application of the aforementioned second-order convergence
analysis to make inferences on the obtained iterates.

Our algorithm differs from that in [15] in that, with the
objective of doing a second-order Hessian-based analysis of the
reconstructions, we use an explicitly defined “tubular neighbor-
hood” of the boundary coupled with an approximate Heaviside-
function-based representation of the object interior, in the
Frechet derivative calculations, that yields analytical relations
for the shape as well as the electromagnetic parameter deriva-
tives. The conceptual relation between the Frechet derivatives
calculated via our tubular neighborhood approach and those
calculated directly using the boundary-integral relation of [18]
can be seen from our derivation of the continuous-domain
Frechet derivative (in Section III-A), where the limiting relation
between the expressions is shown. In addition to our present
work being applicable to fully numerical solvers of the forward
problem, the formulation of the Frechet derivative calculations
are different from that in [16]. Thus, the formulations to calcu-
late the Jacobian are different in our work w.r.t to these works
[15], [16]; furthermore, we evaluate analytical expressions for
the Hessian matrix and perform a Hessian-based convergence
analysis on the reconstructions obtained for noisy data.

This paper is organized as follows. Section II presents
the problem formulation. Section III derives the continuous-
domain Frechet derivatives and the discrete-domain Jacobian.
Section IV presents the DTRGN reconstruction scheme and
a local convergence analysis applied to the DTRGN recon-
struction scheme, yielding estimates of convergence rates in
the residual and parameter spaces. Results of reconstruction
and analysis of some example minelike phantoms in a ground-
penetrating radar (GPR) tomography setting are presented in
Section V, whereas the conclusions are given in Section VI
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Fig. 1. GPR tomographic data collection setup for plane-wave incident radia-
tion, with the object of interest being buried.

Appendix A derives a limiting result for the approximate
Heaviside function used in Section III, whereas the explicit
calculation of the Jacobian and Hessian matrices is given in
Appendix B. Appendix C gives some salient features of the
forward problem based on the method of moments, which is
needed for the Jacobian and Hessian calculations.

II. PROBLEM DEFINITION
A. GPR Tomography Problem

The inverse scattering problem currently being considered is
to recover the object’s permittivity (denoted by €(r), r € IR?)
and conductivity (denoted by o(r,w), r € IR?) distributions
from the measurements at various angular frequencies w of
the scattered field obtained from the interaction of an incident
radiation with the object in question on a receiver surface
outside the object. A schematic of a GPR tomography setup
is shown in Fig. 1.

In the scalar approximation, the scattering process in GPR to-
mography is assumed to be modeled by the Helmholtz equation.
The Helmholtz equation for the complex amplitude u(r, r;,, w),
at a point r = (x,y, z) of a monochromatic wave of angular
frequency w, due to a source at r,, propagating through a
medium of complex wavenumber k(r, w) is given by

Au(r,r,,w) + k2 (r,w)u(r, r,,w) = jn(t,,w) 2.1

where A is the Laplacian operator, and j,,(r,,, w) is the assumed
current distribution corresponding to the nth transmitter. The
fields u(r,ry,w) are assumed to be outgoing and satisfying
the Sommerfeld radiation conditions at infinity. The complex
wavenumber k(r,w) is given by

k2 (r,w) = w2poe(r) (1 + ZU;;:?) 2.2)
where (i is the magnetic permeability of free space.
Define
k2 _ k2
f(I‘) _ (I‘, w) amb (r,w) (23)
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with k(r,w) being the wavenumber in the actual physical
setting of the object(s) of interest embedded in an ambient
medium corresponding to a wavenumber K,y (r,w). In the
present problem, the ambient medium comprises two half-
spaces corresponding to air and ground, which are separated
by an air—ground interface.

The independence of f(r) on w stems from the assumption
that the quantity tan § = (o (r, w)/we) does not vary with w in
the frequency range of interest [19].

The reconstruction problem is thus the recovery of f(r)
from the measurements at various angular frequencies w of the
scattered field on the receiver surface. The total field is written
as the sum of an incident ambient component 1, (r, w) and a
scattered component ug.(r, w; f), i.e.,

u(r,w; f) = Uamp (T, w) + usc(r,w; f) 2.4)
where
Uamb (T, w) = /g(r,r'7w)jn(r’)dr' (2.5)
Vs
and
el £) = [ 900,0) (o () 0) e’ o)’
. (2.6)

where V; is the volume enclosing the source distribution, and §2
is the object-domain volume. The Green function g(r,r’,w) is
the outgoing-wave solution of the equation

Ag(r,r',w) + k2

amb

(r,w)g(r,r,w) = —=6(r —1'). (2.7)

The half-space Green function has been chosen for this paper
(201, [21].

B. Approximate Tomographic Reconstruction Problem

Observing that function f(r) contains information about the
parameter values as well as the shape, we now express the
parameter at a point in the image space as

f(x) = f(r)H, [(r)]

where field quantity f9(.) can be considered as a “ghost”
parameter value since it manifests itself through the indicator
function H,[¢(.)] (the nomenclature is adopted in the spirit
of the “ghost” field of the local shape function method of
Chew et al. [22]). H,[.] is a Heaviside function taken in a
suitable limiting sense defined as follows (as in [23]):

2.8)

0, ift<—p
H(t) = %{1+%+%Sin<’%)}, ifte[—p,p (29
1, ift > p.

Furthermore, ¢(.) is a level-set-based representation of the
image ([18] and references therein), with {r : ¢(r) = 0} repre-
senting the boundary 052 of the object(s) under consideration,
which is supported in region €). In this paper, without loss
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of generality, we have considered the unknown object to be a
single region; using level-set-based representations for multiple
regions such as those mentioned in [13], the straightforward
conceptual extension to those cases follows.

The level-set function can be defined as follows:

[ d(r,0Q), ifreQ
o(r) = { —d(r,d9), ifre Qe 2.10)
where d(.) is a suitable distance measure.
Assume function f9(.) to be decomposed as [7], [9]
Ny
£o(r) =) aigi(r) (2.11)
i=1

where «; are the coefficients in a global basis {s;}, and N,
are the number of basis vectors considered. For example, {c;}
can be considered to be a polynomial basis. Without loss of
generality, in this paper, we consider only the zeroth-order term
in this basis, i.e.,

f(r) = aH, [¢(r)]

where « is the value of the unknown object electromagnetic pa-
rameter value. The choice of a single electromagnetic parameter
value corresponds to the test case of a constant inhomogeneity
in a constant background, which has been chosen without loss
of generality to derive and numerically validate the algorithm.
The important real-world aspect of nonhomogeneous back-
ground and/or object is implicit in this paper’s formulation in
that one needs to compute the incident fields for that back-
ground and express the unknown in basis containing more terms
than just the constant term in the general representation (2.11).

Furthermore, define the closed boundary curve {r : ¢(r) =
0} as a parameterized (uniform B spline) curve [24] Y(s) =
(x(s),2(s)), where for s € [Smin, Smax)

2.12)

Mo+1

T(s)= Y Nyw(s)Ys (2.13)
qg=1

where T = (z§, z7) are the control points. There are M + 1
control points, and the N, basis functions are of order k
(degree k —1); k must be at least 2 (linear) and at most
M + 1, which is the number of control points. Since scaling
or translating the knot vector has no effect on the shapes of the
Ny 1, the knot vector determining the values of s at which the
pieces of the curve join is written as [1,2, ..., k + My + 1]. For
a closed curve, suppose that we have M), points T1,..., Ty,
defining the closed B spline. For a given order k, one will need
M, + k — 1 control points (repeating the first k — 1 points),
ie, Ti,..., Ty, T1,..., L1, with the knot vector thus
having M, + 2k — 1 uniformly spaced knots.

Hence, the closed boundary curve Y(s) = (z(s), z(s)), for
S € [Smin, Smax], Can be written as

MP
Y(s) = Nyr(s)YS (2.14)
q=1
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where N, 1.(s) = Nyi(s) + Ny, x(s), with ¢, denoting the

index corresponding to Y¢ in the second (repeated) part of the

control point sequence representing the closed boundary curve.
Define

Re(a)
h= IH;((CO‘)

c

where «, x°, and z¢ are the vectors with elements {«;},
{zglg=1... My}, and {zf|q = 1... M}, respectively.
Recalling that we had defined the “approximate” tomo-
graphic imaging problem as one wherein the object shape,
location, and an approximate (as against a more exact) es-
timate of the object’s interior physical parameter values are
reconstructed, this reconstruction problem can be defined as the
solution to the following nonlinear minimum norm problem:

1
min  ~|h—c|?
h 2

1 L
s.t. 3 ¢ (h) | is minimal (2.15)
where c is a known constant representing an a priori informa-
tion, which is typically taken to be the initial estimate of the
iterative process (it can be changed within the iterative process

to help stabilize the iterates), and

. Re (11 ata — 'A(h))
¢(h) = (Im (ujata — A(h)) )

ree — urec ) is the “effective” measured data

where Ugata(=u e

vector concatenated over the frequencies at which the measure-
ments are taken, u™®c is the measured field at the receiver, and
u;oc, is the ambient field that would have been measured at the
receiver in the absence of the inhomogeneity. The functional
A:RY — M/2 is the measurement operator corresponding
to the tomographic process, whose ith component (corre-
sponding to the ith measurement) at the given frequency is
Al (h;w, %) = ug(r?,w; f) [as defined in (2.6)], with f(r) =
aH[¢(r',h)], where N is the length of vector h and the number
of measurements is M /2 (for later notational convenience). The
measurement operator is obtained via a suitable discretization
scheme (in this paper, a method-of-moments scheme [21], [25]
is applied to the integral equation of scattering) to solve the
Helmbholtz equation for the scattered fields, given the object
parameters.

It must be noted that, as common practice, the problem
(2.15) is chosen to approximate the actual ill-posed problem
of solving for h, i.e., the equation A(h) = ugata. In this paper,
the preceding minimization problem (2.15) is solved by using
an iteratively regularized Gauss—Newton method (described
in Section IV) that requires the computation of the Frechet
derivatives of the received fields with respect to the parameter
vector. This aspect is dealt with in the next section.

Note that the number of control points can also be considered
as an implicit smoothing/regularization parameter. In realistic
situations, one would have to solve a series of “surrogate”
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inverse problems from a lesser number of control points to
larger numbers (with the rank-deficient nature of the inverse
problem becoming evident as the number of control points
increases toward the actual number); each problem however
has to be regularized separately due to its possible almost-rank-
deficient nature. In this paper, we analyze the reconstructions
in an almost-rank-deficient framework for an assumed fixed
number of control points.

III. FRECHET DERIVATIVES
A. Continuous-Domain Derivative

Define the residual ¥(f;w) in the continuous-domain rep-
resentation of the unknown parameter f(x, z) at frequency w
to be

ﬁ(fvw) = udata(w) - A(f,LU)

where the ith component of the measurement operator A (cor-
responding to the ¢th measurement) at the given frequency is
AL(f;w,1%) = uge(r?, w; ) [as defined in (2.6)].

The Frechet derivative of the residual can thus be written as

9(f)5f =v

where the ¢th component of v (corresponding to the ith re-
ceiver) is v; = v(r’,w), with v(r, w) being a solution of

3.1)

(3.2)

A’U(I‘, w) + k2 ”U(I‘, w) = 7k22xmb5f(r)u(rvw)

nom

(3.3)

where A is the Laplacian operator, and kyqp, is the nominal
wavenumber at the present iterate.

Thus, the solution for v; :=v(r,w) in integral form
would be

v(r',w) = /gB(ri,r’,w) (kgmbéf(r’)) u(r,w)dr' (3.4
Q

where gp(r,r’,w) is the Green function corresponding to the
current parameter estimate being the ambient.

Thus, considering the object representation (2.12), we
will have

0f(r) = oM}, [¢(r)] 06(r) + H, [6(r)] b (3.5)

where H[.] denotes the derivative of the Heaviside function.
Observing from (2.9) that the support of H[4(r)] is con-
tained in ¢~ [—p, p], we can thus write (3.4) as

9B (ria I‘/, w)kgmb(r/a w)

$=1[=p,p]

v(r',w) =

x u(r',w)aH, [¢(r')] do(r")dr’
+da gB(riv r/aw)kzmb(r/vw)
/

x u(r',w)H, [¢p(x')] dr'. (3.6)
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We now define ry,(r) as the unique boundary point corre-
sponding to a point r in the set ¢~[—p, p]. This uniqueness
can be justified on the basis of the tubular neighborhood the-
orem [26], which says that, given any compact manifold M
embedded in Euclidean space, there is a neighborhood (called
“tubular neighborhood”) around it such that, for any point r
in the tube, there is a unique point on M closest to r; in our
case, M is a differentiable closed curve, and the Euclidean
space is R?.

The tubular neighborhood theorem however is an existential
result. For a plane curve such as in the 2-D problems under
consideration, we can define the tube as consisting of all paral-
lel curves TA(s) = T(s) + Afisign(s) such that [Argign (s)] < 1
for all values of s, where Kgjgn(s) and figign(s) are the signed
curvature and the signed unit normal, respectively [27], [28].
This condition ensures that a parallel curve is regular and that
the normal vectors of the curve Y(s) coincide with those of
a parallel curve Y*(s) for all 5. The Heaviside approximation
parameter p can be taken as one such A. Taking account of the
spline curves under consideration in this paper, the Heaviside
approximation parameter p is chosen as the least |\;| such
that |\;Ksign(s)| = 1/¢' for some chosen ¢’ > 1 and for all
values of s in segment ¢ of the spline approximation. Note
that the representation by parallel curves is for the signed-
distance function, whereas the tubular neighborhood theorem is
valid for an arbitrary level-set function. Furthermore, we draw
attention to the fact [28] that a tube in three dimensions would
be defined as consisting of all parallel surfaces Y*(x,y, z) =
Y(x,y,2) + An(z,y, z) such that |\| < 1/C, where 7(x,y, 2)
is the standard unit normal and C' is a positive constant greater
than the absolute values of both the principal curvatures of the
surface, thus ensuring generalizability of the Frechet derivative
calculations here to 3-D, subject to the choice of a suitable basis
representation for 3-D shapes.

Thus, with such a definition of the tube, we would have

0¢(r) = 6(rp(r)) ifre ¢ [—p,pl.

Substituting (3.7) in (3.6), noting that lim, .o H;) [o(r)] =
(0[o(r)]/| 7 @|) (see Appendix A for the proof), we have

(3.7)

lir%vi(riaw) :a/gB(rivr/7w)kZmb(r/’w)
p—
o0

X u(r',w) (W) dr’

+ (504/95(1"47 v w)k2 (), w)
Q

x u(r',w)H [¢(r')] dr’ (3.8)
where H|[.] is the Heaviside function. To relate the present
relations to those in [18], supposing we assume that da = 0,
from the first term in the preceding expression and (3.5), we
can write d f as a measure on 0f? as follows:

O0f(r) =« <—V ¢.(5r) lrcoq-

3.9
v 4l 69
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Taking into account that the definitions of level-set function
@(.) in this paper are opposite in sign from those in [18], this
expression for the relation between 0 f (r) and Or is the same as
[18, eq. (4)].

B. Discrete-Domain Derivative

In this paper, we numerically solve the forward problem
by the method of moments via a pulse-basis point-matching
decomposition of the integral equation [21], [25] (the essen-
tial discretization steps have been mentioned in Appendix C).
Assume basis decompositions of the following forms for para-
meter function f(.) and field u(.):

r) = ijwj(r) u(r,w)

(3.10)

= > w @)

where n is the number of pixels in the image, and {1);(r)} is an
appropriate basis set; in our case, we choose it to be the pulse
basis, i.e., ;(r) = 1 for r € pizel j and zero otherwise.

Assuming that a pulse-basis discretization in a method-of-
moments framework is suitable for the coverage of the area
covered by d f(r) in (3.4), it would follow that (3.6) could also
be discretized via the same pulse basis.

Thus, in a pulse-basis discretization of d¢(r) and u(r',w),
we write the discrete approximation of (3.6) as

>

Ja(rj€d=1[—-p,p])

Uy =

Gp(i,j)u; {aH)[p;]} 6;

Hplp;] (3.11)

+0ay " Gpi,j)u;

J

where ¢; = ¢(r;), and

/gB vl W)k L (Y W)y, ()dyY (3.12)
Q

where the w dependence in G5(%, j) (on the left-hand side) has
been suppressed for ease of notation.

Using the equivalence of the distorted-Born and
Newton—Kantorovich formulations [1], denoting 61; := v;, we
can write

ovY;
J3(rj€9=-p,p])
+Z H,[¢;]6a (3.13)

where relations for (0v;/0f;) are shown in Appendix C.
Thus, substituting (3.7) in (3.13), we have

ZESY
o

o0; |, o
a7, (1851} (= v o.0m?)+ Ej: af,®
(3.14)
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where 1,7 =r,(r;), j, ={j > (r; € ¢ [—p,p])}, and we
have used the level-set propagation condition [18] (i.e., d¢ +
v ¢.0r = 0) that is satisfied on the boundary.

Recalling the B-spline representation of the boundary curve
(2.14), since 7 = Y(s;) for some $; € [Smin, Smax)s We
will have

=

Noyi(s;)87E.
1

orp’ =67 (s)) = (3.15)

=]
Il

Thus, we have the variation of the measured scattered fields
w.r.t variation in the control points (of the boundary curve) and
the inhomogeneity to be

519—2

pleil} | =7 @ Z
+Z

where we will have, for i = 1,...,M/2, 6¢; = Re(d¥;) and
0Ci+nr/2 = Im(679;). The explicit calculation of this expression
for the Frechet derivative is given in Appendix B.

ksj

H,[¢;]6a  (3.16)

IV. SCHEME OF RECONSTRUCTION AND ANALYSIS
A. Basic DTRGN Scheme

Recall from Section II that the approximate tomographic
problem to be solved is the minimum c-norm problem (2.15).
To solve this problem, a scheme based on an iteratively regu-
larized Gauss—Newton approximation is utilized. The multifre-
quency GPR tomography problem under consideration in this
paper is found to have an almost-rank-deficient Jacobian matrix
J(h) at the solution point of (h) ~ 0. It is well known that
the Gauss—Newton method [29] is a very efficient approach
for many parameter estimation problems. However, for ill-
conditioned objective functionals [such as the unregularized
functional (||¢(h)||?/2)] found in many inverse problems, first-
order methods such as the Gauss—Newton will not converge due
to the rank deficiency of the Jacobian matrix. Using iterated
Tikhonov regularization, a stable solution may be found, which
greatly improves the condition of the problem and also the
convergence rate over the Gauss—Newton method applied to the
unregularized functional.

The generic Tikhonov-regularized (with regularization pa-
rameter 1) nonlinear least squares problem corresponding to
(2.15) s

1
mlni HCaug(h7:u/)H2 (41)

h

where

asthin) = (6 ).

The basic idea with regularization is to find an acceptable
solution within a certain region since one can find acceptable
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solutions to the original problem (without regularization) in
many parts of the solution space. Thus, “c” should be in-
terpreted as the center of such a region, and regularization
parameter u typically reflects the (2-norm) size of this region.

However, a main problem with the problem (4.1) is the
selection of regularization parameter u. Typically, in the lit-
erature, two approaches have been followed to regularize the
problem (2.15) via the use of Tikhonov functionals. The first
one is of selecting parameter . in (4.1) based on a posteriori
(discrepancy-principle-based) parameter rules. These have the
computational pitfall of requiring testing a sequence of reg-
ularization parameters to find a minimizer fulfilling the dis-
crepancy principle, for each of which the minimizer of the
nonlinear Tikhonov functional [(4.1)] has to be evaluated. To
avoid this pitfall, one can use iteratively regularized optimiza-
tion methods, which update the regularization parameter with
the iterations, in steepest-descent-based schemes [30], [31] or
Newton-type methods [2], [3], [14], [30], [32], [33]. In this
paper, we follow the latter class of methods in using a Gauss—
Newton-based iterative regularization approach to solve the
minimum norm problem (2.15).

Basically, we are solving approximately a sequence
of Tikhonov-regularized nonlinear least squares problems
(miny, C,yg(h;pe)) for a fixed center ¢ and a sequence of
decreasing regularization parameters j;. The approximate so-
lution h(u;) of one such subproblem is taken as the starting
point of the next subproblem with regularization parameter
te+1 < . The Gauss—Newton method is used to compute an
approximate solution for this kind of subproblem. In the rest of
this paper, for ease of notation, we use u, instead of ;.

In practical applications, numerical experience allows us
to take the approximate solution of a subproblem to be the
minimum of the linear-residual approximation to that objective
function.” Recalling that the Gauss—Newton method goes to the
minimum of such a quadratic objective function in one iteration,
we use a computationally inexpensive approach of checking at
each iteration whether to reduce the regularization parameter or
not, depending on whether, at that iterate, the first-order model
is a good-enough approximation of the actual residual. If the
step length is 1, i.e., a full step has been taken, it is assumed
that the first-order model is good enough. It is important to
note that, by decreasing p, what is actually done is changing
the optimization problem to one that is less smooth (i.e., to a
more rapidly varying objective functional).

Regularization parameter p is a smoothing factor (should
be larger than the noise), and a larger p gives an easier opti-
mization problem to solve. A large (small) p gives a solution
close to (away from) “c.” As will also be seen later via the
analysis, too small a  results in the Gauss—Newton method not
converging. Hence, it is important to start the algorithm with
a large p, so that the iterates do not get driven too far from
“c” initially. During iterations, p should be decreased (never
increased, however, for that c¢) in order to find lower minima.

[Tt

Observe that this will lead to a solution further away from “c.

Note that the objective function is proportional to the squared norm of the
residual.
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Note that the proposed method is, in its basic form, different
from the Levenberg—Marquardt method. It is a Gauss—Newton
method applied on a regularized problem. In addition, if the “c”
is adjusted in each iteration, then we have a method similar to
the Levenberg—Marquardt [30], whereas, in our case, the center
“c” is only changed if convergence problems occur close to the
solution.

To solve this problem, an iterative scheme based on the
Gauss—Newton approximation solves, at the current iterate h

2
4.2)

ming

(R

where the M x N matrix J(h) is the Jacobian matrix of the
functional ¢ (h) with respect to h, which is defined via a Taylor
series expansion of the form

¢h+p)=¢h)+IMh)p+O(lpl?). @3
The next iterate is given by
h**! = h* 4 g, p* (4.4)

where step length [y, is chosen via line search such that the ob-
jective functional is sufficiently reduced. The search direction
p* computed from (4.2) can be written as

p* = —B(h") (ék(h_k)c) (4.5)

where

Bi = B(h") = (37 3x+p20) " 3L | (373 + 2D )
(4.6)

where we do not explicitly form the product J7J in the
computation of matrix By for reasons of numerical stability;
it is computed via the singular value decomposition of Jy.

Thus, the method employed in our work is a DTRGN method
with line search; for ease of nomenclature, we only say the
DTRGN method. We call it differently from “iteratively reg-
ularized Gauss—Newton” since our approach in the choice of
parameters as well as the methodology of analysis is different
from the methods described in [30]. In addition, our scheme for
the changing of the regularization parameter is different from
those of [3] and [33] in that we link the line search with the
change of u, whereas, in their work, p is, in effect, varied pro-
portional to the norm of the residual ¢ (with a proportionality
constant that depends on the type of data used and needs to be
set via numerical implementation).

The termination criterion that we have used is a relative
one, i.e., we measure “how much” of the residual remains to
minimize. The relative criterion is defined as

P3|

—_— 4.7
3] @7

€rel =
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where Pj, . is the orthogonal projection onto the range space

of Jaug, and
J(h)
Jawe = .
¢ ( AN )

Termination of the nonlinear recursive scheme is set as the
satisfaction of the criterion ¢, < tol for some tolerance limit
tol or the iterates staying stable.

In practice, it is very difficult to know whether we have
stopped at a correct solution and a correspondingly “optimal” .
‘We mention that, in a regularization approach close to the spirit
of ours, the seminal work in [31] combines the minimization
of the Tikhonov functional with a steepest descent scheme and
derives global convergence under certain smoothness criteria
on the true solution. However, those criteria are very difficult
to be tested in typical test problems (they have solved a Single
Photon Emission Computed Tomography problem in medical
imaging); in test cases, they can only tentatively state that the
regularization parameter seems to be stopping at a good value.
This is only to point out the level of difficulty in obtaining
applicable convergence results in all such algorithms. Hence, in
our work, assuming that we are close to that “optimal” u, based
on a local convergence analysis using Hessian information, we
apply a methodology of numerically checking the iterates for
convergence.

B. Local Convergence of the DTRGN Scheme

The Tikhonov-regularized Gauss—Newton scheme is locally
analyzed (using second-order information) for convergence by
evaluating an iteration matrix at the current iterate and subprob-
lem (characterized by a particular value of p), which is then
subsequently decomposed to yield distinct contributions to the
rate of convergence from various sources. The objectives of this
analysis are to numerically attempt to: 1) confirm whether an
iterate sequence is part of a convergent subsequence and 2) (if
not convergent) yield the contribution to nonconvergence from
respective convergences in data and parameter spaces as well as
from choices of the regularization parameter.

Close to the solution h*, the convergence is generally linear,
and we can write [2], [14]

h**! —h* =K (h*)(h* —h*) + second-order terms  (4.8)

where

K(h*) = — (373, +21) " (H' 0 ¢) (4.9)
where HT = (HY,... H?Y), with H; = ¢/(h*) being the
Hessian matrix corresponding to the ¢th measurement, and
the “inner product” ® is defined as H” ©® q = > HY¢g;. The
Hessian matrices in this paper are explicitly calculated in
Appendix B. In the rest of this section, we drop the sub/
superscript k for ease of notation.

The spectral radius of the local iteration matrix K (h*) deter-
mines the rate of convergence. Denoting o(A) as the spectral
radius of matrix A (i.e., the maximum of the absolute values of
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the eigenvalues of A), the convergence condition can thus be
written as

GN converges = o(K) < 1 < Strong loc. min.

GN diverges = o(K) > 1 < Saddlepoint. (4.10)

Note, however, that knowledge of o(K) does not give us an
insight into sources of possible nonconvergence of the itera-
tions. To gain that insight, we further decompose the iteration
matrix into data and parameter space components. In order to do
this, we define the singular value decomposition of the Jacobian
matrix J in the form J = J; + J as follows:

J =USVT = (U, Uy)diag(S1,82)(V1, V)T @.11)

with Sy = diag(s1,...,s,) and S = diag(sr41,.-.,5n),
where r is a rank of interest at a particular iteration, which is
usually considered as the number of singular values above the
value of p.

Splitting (J7J + p2I)~! into terms corresponding to the
subspaces defined by the assumed value of r, we have

p2(ITT + 12D = 12ViSyi VT + Vo Sy, VE
= *E(p) + N(p)

Sy1 =diag{1/[s3 (1 (/51)2), .., 1/[52(1+ (1]
and Sy = diag{1/[1+ (sp41/1)%],...,1/[1 +

4.12)

where
s1)%)]},

(sn/1)?]}-
Thus, substituting (4.12) in (4.9), we further obtain [2], [14]

K(h) = K;(h) + Ky(h) + Kz(h) + K4(h)  (4.13)
where

Ki(h) = —E(u) (H © Psi¢) (4.14)

K, (h) = N() (HT ® (J{)T (h— c)) (4.15)

Ks(h) = i°E(n) <HT (1) ;- c)> (4.16)

Ky(h) = - %N(M) (H" © Psi() (4.17)

where S; = Null-space(J¥), Pg; is the orthogonal projector
onto Sq, and J ; is the Moore—Penrose pseudoinverse of J;.

In the preceding expression for K(h), we observe that the
first two terms mainly correspond to the errors due to the normal
curvatures in the objective function and parameter spaces, re-
spectively. The third (fourth) term is usually heavily dependent
on regularization parameter x4 and the residual in the parameter
space (objective function space); the third term is typically
small when close to convergence (since convergence usually
implies that p is small enough), and the fourth term limits
the decrease in the value of the regularization parameter. This
observation (by inspection of K,) that ;1 cannot be too small
at convergence is corroborated by the commonly observed fact
that too small a p leads to poor reconstruction quality as well
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as by the analysis for the steepest-descent-based regularization
method in [31]. This also points to a minimum value of x below
which the decreasing sequence of {1} should not fall (and thus
to a corresponding underlying limiting cost functional) in order
to ensure the stability of the iteration process.

Thus, the utility of the nature of the decomposition (4.13)
is evident, in that, rather than having only the total iteration
matrix (and its spectral radius), which would be typically
available (and would not give us any insight into the sources
of nonconvergence), we now have information regarding the
separate effects of the objective function and parameter space
errors, as well as those of the regularization parameter, on the
convergence of the iterates.

It can be seen that o(K;) reflects the convergence factor
for the Gauss—Newton method in the full rank case without
regularization [34]. Thus, it basically measures the size of the
residual ¢ and the normal curvature of functional space. o(Ks)
reflects the size of the residual “h — ¢” and the curvature in
the parameter space (and not in the functional space, as for
0(K1)). Thus, if o(K2) > 1, the residual “h — ¢” is too large
or the problem is probably too nonlinear. The solutions to this
issue would be to either change the center ¢ during the iteration
(but not too often since we could drift away from the region
of interest) or to change the mathematical model to a less
nonlinear formulation.

The analysis is used to check whether, at the point of stop-
ping, the iterate is part of a convergent subsequence or not by
checking if o(K) < 1 (as well as the individual o(K;), to have
a stricter bound). If so, then, that iterate is taken as the final
one. If not, then, the source of nonconvergence is sought to be
located by using o(K;) typically as follows: If convergence is
not reached for a certain i, then, o(Ks) or o(Ky) is often too
large. There is nothing to do about K, since we do not want
to increase p for that c. Instead, we can change the center c
and thereby greatly reduce o(K5), which improves the situation
unless o(K4) is still too large. Of course, if the estimate has
indeed reached a good termination point, we have seen, in the
course of several simulational runs, that the value of o(K;)
stays stable across the c change; if not, we found that choosing
the estimate with lesser o(K) yields a better reconstruction.
In addition, the criterion of the stability of o(K;) across a c
change has been found to help choose a stopping iterate from an
unstable sequence, as shown in the analysis of reconstructions
from some noisier data sets.

It must be noted that it is not the case that o(K)=
>, 0(K;). However, the decomposition (4.13) separates
(otherwise unified) error sources, as previously explained. In
addition, considering that o(K) < 1 implies the convergence
of the Gauss—Newton method, along with our observation in a
variety of problems that, typically, o(K) < 3", o(K;) and/or
the overall o(K) is of similar magnitude as the largest o(K;)
(as shown in Tables III and IV in the next section), the study
of K; gives important insights into the sources of nonconver-
gence of the regularization scheme. This insight gives hints
about which kinds of changes are needed to get convergence
for the Gauss—Newton method. In the examples presented in
our study, we have indeed either arrived at a point where
o(K) < 1 by simply using the termination criterion (4.7) or
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used the information gained from the analysis to arrive at such
an iterate (where o(K) < 1), as previously explained and also
numerically shown in the studies presented in Section V.

The overall algorithm including the reconstruction and analy-
sis phases has been provided here.

I Initialization
(a) Estimate h°, the “best-fit” circular object within the
Born approximation according to (5.1).
(b) ¢ := h°, with p set at a suitable “large” value (less
than one).
II Reconstruction phase
For k =1,2,..., until €, < tol or the residual is unchang-
ing for many past k,
(a) Estimate the Heaviside approximation parameter p
(as explained in the paragraph prior to (3.7)), such that
|pksign ()] < 1,5 € [Smin, Smax|, and evaluate the Jacobian
J(h*) using (B1)—(B3).
(b) Solve (4.2) for p*.
(¢) Do a line search to find (.
(d) If By ~ 1, then, u := u/q, for a suitable choice of
q > 1 (we chose g = 2).
(e) hk+1 — hk +ﬁkpk-
IIX Analysis phase
Check whether the terminal iterate is part of a convergent
subsequence by checking if o(K) < 1; if not, use evaluations
of p(K;),i=1,...,4, close to the termination point to locate
and rectify the source of nonconvergence (as explained in
Sections IV and V).

V. NUMERICAL STUDIES
A. Test Cases and Reconstruction Aspects

Numerical studies have been carried out on the reconstruc-
tion and analysis problem of small dielectric minelike objects of
different shapes for various noise conditions. Scattered data at
multiple frequencies (0.7, 0.9, 1.1, and 1.3 GHz) and multiple-
angle plane-wave incidence (15 angles in [—7/3,7/3]) are
used in our studies. Data sets have been simulated by adding
Gaussian random noise of different variances to the exact data.
In these studies, the data are collected on a line 10 cm above the
ground, and at each frequency, 120 data points are considered

from x = —24 cm to x = 24 cm. The subsurface reconstruction
domain considered is 16 x 16 cm (x = —8 cm,...,8 cm
and z = —0.4 cm, ..., —16.4 cm). In the method-of-moments

discretization of the reconstruction domain, we use a grid
measuring 40 x 40. In this paper, cubic splines have been used
(i.e., the order of the spline representation is k = 4), and the
number of distinct control points M), considered is eight.

The test cases are specified by 1) material composition,
i.e., P1 and P2, whose specifications are given in Table I;
2) shapes S1 and S2; and 3) noise levels denoted by N1 and N2,
which were formed by adding Gaussian noise of zero mean and
standard deviation of 0.1 and 0.2 times the maximum absolute
value of the exact data set, respectively. Hence, the various
phantoms are specified as SIPIN1, SIPIN2, ..., S2P2N2.

The initialization of the recursive scheme is done by esti-
mating a circular homogeneous object that best generates the
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TABLE 1
TEST CASE MATERIAL SETTINGS
Notation Ambient Object
(er, tan d) (er,tand, f)
P1 Dry sand, (2.55,0.0282) | (4.24, 0.0636, 0.6644 + 0.0588)
P2 Wet sand (4.5, 0.03) (10,0.01797,1.2221-10.02667)

measured data under the Born approximation. Since the lin-
earized scattering equation may not truly represent the scatter-
ing process, a constraint is applied on the maximum magnitude
of reconstructed values of object inhomogeneity parameters
to ensure that the object is within the validity of the Born
approximation; in this paper, we have set |a| < 0.6 for the
starting estimate. We define

Re(a)
Im(ex)

Tcenter

=
I

Zcenter

R

Wwith (Zcenter, Zcenter) = T'c and R being the center coordinates
and radius of the object, respectively.
Hence, an estimate of the “best-fit” circular object within the
Born approximation can be obtained as
Born 1|12
rpinHC Om(h)H 5.1)
heD
where D represents assumed box bounds for the various
unknowns

Re (udata — ABOH’(fl))

CBorn (B) _ -
Im (udata - ABom(h))
where ABO”‘(E) is the scattered field under the Born approx-
imation and is obtained from A(h) [as defined after (2.15)]
by replacing u(r’, w, h) with w,m,(r',w) in the integrand and
noting that the level-set function for an object with a circular
boundary can be evaluated as
o(r',h) =R — v’ —r||. (5.2)

The approximation to the Heaviside function used for the
evaluation of this first estimate is H[.| ~ H,[.], where p has
been set as the method-of-moments’ grid-discretization interval
for the initialization step to ensure a gradual slope. In this paper,
this nonlinear minimization problem for the starting estimate is
solved by using the Matlab routine “Isqnonlin” (since a rough
starting estimate is what we need; however, this function is not
used in the Gauss—Newton iterations). The initial control points
of the full nonlinear scheme are distributed along the perimeter
of this initial circular object. Typically, in our initial estimate,
we set the imaginary part of the inhomogeneity parameter o
to zero.

As mentioned in Section III, in the course of the solution of
the full nonlinear reconstruction problem (4.1), at each itera-
tion, the Heaviside approximation parameter p is chosen as the
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Fig. 2. Phantom S1PIN1 (data SNR = 34.53865 dB) (solid line: actual
shape, dotted line: reconstructed shape; dot-dashed line: first estimate). Recon-
structed f = 0.66378 + 7 0.05474, and actual f = 0.6644 + ¢ 0.0588.

least |\;| such that |A;Ksign(s)| = 1/¢’ for some chosen ¢’ > 1
and for all values of s in segment ¢ of the spline approximation,
where Kgign(s) and Mgign(s) are the signed curvature and the
signed unit normal, respectively.

The initial value of vector c is set at the initial estimate. Since
the chosen c value is in the nature of an a priori information,
during the iterations, it needs to be such that the regularization
region is well represented in order for the iterates to stabilize
and/or the termination criterion (4.7) to be achieved. A further
discussion about the choice of c¢ is found in the subsequent
section on the second-order analysis.

In the nonlinear regularization scheme [described by
(4.4)-(4.6)], the setting of regularization parameter p is done
by initializing it to a suitably “large” value and then reducing it
in steps corresponding to a reduction in the objective function
value in the line search step, when the step size is large
enough (i.e., the step size should be close to 1). Termination
of the nonlinear recursive scheme was set as the satisfaction of
the criterion €., < 0.01 and/or the iterates staying stable. To
verify the convergence of these estimates, the iterates close to
termination have been subjected to the second-order analysis,
as shown in the next section.

Reconstructions for the eight test cases are shown in
Figs. 2-9. The values of the reconstructed electrical parameters
are given in the figure captions. The reconstructed electri-
cal parameters are also given in Table II. As we observe,
in addition to the good correspondence of reconstructed and
actual shapes, there is a good agreement between the real and
imaginary parts of the reconstructed values of the electrical
parameter f(r)(= a), and the actual values, for the test cases
considered.

Aside from the obvious reduction in computational effort
over the full pixel-basis reconstructions in the inversion part of
the optimization scheme due to the constraining of the solution
space, we see, from (3.16), that, since the number of control
points and the number of pixels in the tube are typically very
much smaller than the number of pixels in the support of the
present object at that iterate, the main computational effort
in the forward problem is (as for a pixel-based reconstruction
scheme) in computing the pixel-basis Jacobian. However, since
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Depth z—axis in cm
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Transverse x—axis in cm

Fig. 3. Phantom SIPIN2 (data SNR = 20.66664 dB) (solid line: actual
shape, dotted line: reconstructed shape; dot-dashed line: first estimate). Recon-
structed f = 0.656123 + ¢ 0.058301, and f = 0.6644 + ¢ 0.0588.
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Fig. 4. Phantom SIP2N1 (data SNR = 28.23347 dB) (solid line: actual
shape, dotted line: reconstructed shape; dot-dashed line: 1st estimate). Recon-
structed f = 1.223985 — ¢ 0.029772, and actual f = 1.2221 — 7 0.02667.

Depth z axis in cm
&

5 -4 -3 -2 A 0 1 2 3 4 5
Transverse x—axis in cm

Fig. 5. Phantom SIP2N2 (data SNR = 13.99349 dB) (solid line: actual
shape, dotted line: reconstructed shape; dot-dashed line: first estimate). Recon-
structed f = 1.194527 — ¢ 0.027346, and actual f = 1.2221 — ¢ 0.02667.

we only need to compute the Jacobian inside the object support
and, as we observe from Figs. 2-9, the size of the initial
support of the object being larger than the actual object (need
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Depth z—axis in cm
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Transverse x—axis in cm

Fig. 6. Phantom S2PIN1 (data SNR = 34.96784 dB) (solid line: actual
shape, dotted line: reconstructed shape; dot-dashed line: first estimate). Recon-
structed f = 0.663515 + 4 0.059112, and actual f = 0.6644 + 7 0.0588.
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Transverse x—axis in cm

Fig. 7. Phantom S2PIN2 (data SNR = 20.87145 dB) (solid line: actual
shape, dotted line: reconstructed shape; dot-dashed line: first estimate). Recon-
structed f = 0.6520450 + ¢ 0.065861, and actual f = 0.6644 + 7 0.0588.

Depth z—axis in cm
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Fig. 8. Phantom S2P2N1 (data SNR = 26.57039 dB) (solid line: actual
shape, dotted line: reconstructed shape; dot-dashed line: first estimate). Recon-
structed f = 1.213768 — 4 0.028018, and actual f = 1.2221 — 4 0.02667.

not necessarily contain the actual object however), the amount
of computation effort for the forward problem reduces as the
iterates move toward the actual object.
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Fig. 9. Phantom S2P2N2 (data SNR = 12.91251 dB) (solid line: actual
shape, dotted line: reconstructed shape; dot-dashed line: first estimate). Recon-
structed f = 1.1819917 — 4 0.029987, and actual f = 1.2221 — 7 0.02667.

TABLE II
RECONSTRUCTED VALUES OF Re(f) AND Im(f)
Reconstructions Actual

Test case Re(f) Im(f) Re(f) Im(f)
P1SIN1 0.66378 0.056474 0.6644 0.0588
P1SIN2 0.656123 0.058301 ” ”
P1S2N1 0.663515 0.059112 ” ”
P1S2N2 0.6520450 0.065861 ” ”
P2S1IN1 1.223985 | —0.029772 | 1.2221 | —0.02667
P2S1N2 1.194527 | —0.027346 ” ”
P2S2N1 1.213768 | —0.028018 7 ”
P2S2N2 1.1819917 | —0.029987 ” ”

B. Local Analysis Results

Our objectives of applying the convergence analysis to the
preceding results are as an aid in ensuring that the estimate
obtained is indeed a part of a convergent sequence and also,
at times, to know which iterate to stop at. The spectral radii
of the individual components of the convergence matrix are
defined as 9; = 0(K;), i = 1,...,4, where K; are as defined
in (4.14)—(4.17). From those expressions, we observe that, other
than the nonlinearities of the problem, g1, 02, 03, and g4 heavily
depend on the residual in the data space, the parameter space
residual “(h — c),” 2 and the residual “(h — c),” and 1/p>
and the residual in the objective function space, respectively.

In Tables III and IV, we denote “at termination” as “AT,”
“at termination after changing c to the value around AT” as
“ATc+,” and “i iterations prior to AT” as “AT-i.”

We see that the values of the data space curvature p; are the
most important in deciding the choice of a particular estimate
as the final correct one. The methodology employed has been
to check if the final estimate satisfies the condition o(K) < 1
as well as p; < 1 for all 7. If so and also if the iterates have
stabilized and/or the relative termination criterion €., < 0.01
is achieved, then the estimates could be considered a part of a
convergent sequence. This is reflected in the test cases SIP1N2,
S2PIN2, S1P2N1, and S2P2N2.

In cases SIPINI1, S2P1INI1, and S2P2NI1, the iterates are
stable and p; < 1, but g2 > 1 and o(K) > 1. Then, we change
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TABLE III
CONVERGENCE ANALYSIS FOR SHAPE S1
| Test case | Iteration | 7 I o1 ‘ 02 | 03 | 04 | o(K) |
S1PIN1 AT 0.003125 | 0.0854 | 2.1732 | 0.0661 | 0.2653 | 2.0670
ATc+ 0.003125 | 0.0843 | 0.2424 | 0.0072 | 0.4040 | 0.4052
SIPIN2 AT 0.025 0.0577 | 0.0856 | 0.0792 | 0.04262 | 0.1119
S1P2NI AT 0.0125 | 0.0658 | 0.0017 | 0.0002 | 0.04%50 | 0.0878
S1P2N2 AT-2 0.05 0.0407 | 0.8420 | 0.7316 | 0.0140 | 0.86469
AT-1 0.025 0.0570 | 1.1140 | 0.2742 | 0.04580 | 1.1393
AT 0.025 0.0569 | 1.1145 | 0.27370 | 0.0455 | 1.1395
ATc+ 0.05 0.0495 | 0.0932 | 0.0688 | 0.0108 | 0.1007
ATctct+ 0.05 0.0509 | 0.0311 | 0.0203 | 0.0101 | 0.0429
TABLE IV
CONVERGENCE ANALYSIS FOR SHAPE S2
| Test case | Iteration | m | 01 | 02 | 03 | 04 ‘ o(K) |
S2PIN1 AT 0.0125 | 0.0237 | 1.9535 | 0.3806 | 0.0172 1.9659
ATc+ 0.0125 | 0.0239 | 0.8815 | 0.2017 | 0.0157 | 0.9026
S2PIN2 AT 0.025 0.0410 | 0.3443 | 0.1053 | 0.03276 | 0.3599
S2P2N1 AT 0.00625 | 0.0858 | 2.0136 | 0.6031 0.0934 | 0.0878
ATc+ 0.00625 | 0.0997 | 0.0533 | 0.0204 | 0.1048 | 0.1556
S2P2N2 AT 0.0125 | 0.2993 | 0.1687 | 0.0116 | 0.0014 | 0.3442

the value of c to a more recent iterate and perform another
sequence of iterations. Upon applying the analysis to this new
sequence, data space curvature g; stays comparable to the
previous sequence, as do the reconstructed parameters, whereas
parameter space curvature g comes down as expected, as does
p(K), thus justifying the reconstructions.

In case S1P2N?2, the analysis is applied to decide which itera-
tion to choose as our estimate since, in this high-noise case, the
iterates obtained are not very stable near the termination point.
Changing the value of c also does not yield a stable sequence;
hence, we choose the reconstruction “AT-2” that has the least
value of p; across the change of c. Using our knowledge of
the ground truth in the test case, it is also corroborated that the
reconstructed parameter values are closer in “AT-2” than in the
others.

If 1 is small enough, then it should be likely that o4 > ps3.
However, for some problems, as in this paper, it is difficult to
reduce u to a very low value, and residual “(h — ¢)” is also
not small enough. This leads to results where o3 > o4. If we
want to further reduce p, it is clear that the center “c” must be
changed. Of course, if ;v gets very small, then g4 will explode.
It is thus very possible that the stopping point can be at a point
that does not correspond to a “small enough” .

As we see in the convergence factors, the size of “(h — ¢)”
must not be too large for nonlinear problems, (as well as
residual vector “¢”). In general, if convergence is not achieved,
it is possible to investigate the convergence factors, and if the
factor with “(h — c)” is too large, one can set “c = hy” and
continue to iterate. In practice, it is too costly to compute the
factors during the iterates, so one can assume that this is the
case, which almost often holds (it is problem dependent so one
can compute the factors for different cases and learn from it).
Note however that, if “c” is changed too often, then the idea
of regularization regions is lost, and the method will become a
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trust-region method that changes the center in each iteration.
Thus, the trust region is about local stabilization (where hy
can drift away a lot), and regularization tries to define a region
where to find a solution.

VI. CONCLUSION

A nonlinear Helmholtz-equation-modeled electromagnetic
tomographic reconstruction problem is solved for the object
boundary and inhomogeneity parameters in a DTRGN
solution framework. For an explicit parameterized boundary-
representation-based  reconstruction scheme, analytical
Jacobian calculations are made to express the change in
scattered field values w.r.t. changes in the inhomogeneity
parameters and the control points in a spline representation of
the object boundary, via the use of a level-set representation
of the object. Furthermore, analytical expressions have been
derived for the Hessian matrix, and the reconstructed estimates
obtained by the DTRGN method have been analyzed for
convergence by the application of a local Hessian-based
convergence analysis to the scheme. Numerical results demon-
strating the present reconstruction scheme and its analysis are
presented for a subsurface imaging problem for small minelike
dielectric objects. We note that, in addition to the shape and the
real part of the electrical parameter «, good agreement has also
been observed in the reconstructions of Im(«). We also indicate
some real-world issues that are addressable in the framework
of this paper and are the focus of forthcoming work.

1) The problem of reconstructing 3-D objects in a nonhomo-
geneous (typically layered) background [36], [37] is an
important computationally demanding one. The ability to
find objects in a nonhomogeneous background is implicit
in this paper’s formulation, in that one needs to compute
the incident fields for that background and express the
unknown in basis containing more terms than just the
constant term in the general representation (2.11). As
mentioned in Section III, the extension of the preceding
method to three dimensions would involve the choice
of suitable basis representations for the shapes, as well
as defining a tube in 3-D as consisting of all parallel
surfaces Y*(x, v, z) = Y(z,y, z) + M(x,y, z) such that
|A| < 1/C, where 7(x,y, z) is the standard unit normal
and C is a positive constant greater than the absolute
values of both the principal curvatures of the surface.

2) In this paper, we have fixed the number of reconstructed
control points since we analyzed reconstructions for dif-
ferent shapes, noise levels, and material compositions,
with an emphasis on the almost-rank-deficient nature
of the inverse problem. As mentioned in Section II, a
realistic problem would have to solve a series of “surro-
gate” subinverse-problems, from lesser number of control
points to larger numbers; each problem however has to be
separately regularized due to its possible ill-posed rank-
deficient nature.

3) The amount of data needed to generate acceptable re-
constructions needs to be studied since one rationale of
reducing the number of unknowns is to use less data than
usual. Equally, in the light of the physical assumptions
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made, the amount of data that would at all be used by the
reconstruction algorithm needs to be understood.

4) If we have a priori information about the number of
objects, then, (using level-set-based representations for
multiple regions such as those mentioned in [13]), that
information could be incorporated into the present frame-
work (after suitable initialization of the nonlinear iter-
ations) by augmenting the unknown vectors for each
region. If we do not have such a priori information, then,
it seems that suitable thresholding (i.e., lower limits on
the size of the tubular neighborhood coupled with mutual
distances of control points) and reinitialization schemes
need to be investigated to address the merging or splitting
of regions.

APPENDIX A
Lemma: Defining H,(.) by (2.9) and denoting the level-set
function at a point (x,y) by ¢(x,y), we have the result

lim, 1, [0(2. )] = o)

— . Al
oz, y)| (AD

Proof: Parameterizing the curve ¢(z,y) =0 as z =
51(7), y = s2(7), we have on T'(= {¢(s1(7), s2(7)) = 0})
¢251(T) + ¢y s2(7) = 0.
Choosing (s1, s2), so that I is a unit speed curve, we set

P : by

S = ———  §9 = — .
B R
The unit normal vector is given by

(Pa: y)

N

Thus, fory € [—p, p], 7 € [0, L], where L is the total arc length,
a strip around I', which is denoted by I, and constructed as

T, ={(x(v,7),y(v 7))}

= {(s1(7) + 0 (7), 52(7) + yna(7)}

(na(7),n2(7)) =

is unique and smooth from [—p, p] x [0, L] into T" .
Now, from (2.9), we can write

H) [6(x)] = { 3 {1 cos (52) ) ifr o p.s

0, otherwise.
(A2)
Thus, Supp(H,[#(z,y)]) CT,. Defining C,(r) = {1+

cos((mg(r)/p))}, for v € C(2), we have

lim [ H, [6(x,y)] v(z,y)dzdy
p—0
FP
7 CP(,%T) 8(.’17,:(})
= lim, / 2, v(7,7) 90, 7) dydr  (A3)

[=p,p]x[0,L]
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where

) =n1($2 + yne) — na2($1 + 1)
1

N

Recalling the fact that, for a smooth-enough function P(~) and
small-enough p

+ ’Y(nlﬁg — Tlgfll). (A4)

L

3 [ PO

o p
P(0 (0
= 2(’?/0;)('777')(1’?4— 2(;)) /’YCpW’T)d'Y (A3)
-P

-p

and since close enough to the boundary, ¢(y, 7) ~ -, we have

P P

! .. P(0) Y

%8%/fWW%%”“>%8zp/K“*%(p>)“
P

_p K
P(0) [
+1;Pg 2 /VC’/}(% )dry
-pP
= P(0). (A6)

Using (A4), (A6), and the observation that the second term in
the right-hand side of (A4) has only + as the y-dependent term,
in (A3), we have

lim H, [¢(z,y)] v(z,y)dvdy
p i
[ (2(.7).y(3:7))
. VXY, T), Y\y, T
= /dTllm— Cy(y,7) dry
10 2 / r 2 2
poer s \/ 97+
:/U(SI(T)782(T))d (A7)
S e+ e
Hence, we have the proof. ]

APPENDIX B
Jacobian and Hessian Evaluations

Jacobian Calculations: For the B-spline representation of
the boundary curve, the Jacobian entries can be explicitly
written as follows:

9; 0V
= Z qu(s])af ol [o(r;)] ¢ (s;)
a J3(ried=1[~p,p]) /

(BI)
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where ¢, (.) denotes the partial derivative of ¢(.) with respect
to the x-coordinate. Furthermore

v, 0Vi
- 3 qu(sj)af aH, [¢(r;)] ¢(s;)
q Jja(rj€d=1[—p,p])
(B2)
Qi = 00
da ; WH .

Hessian Evaluation: In order to calculate the boundary vari-
ations dp, where ¢ = ¢, ¢, we use the following relation:

(o +00) [(T+07)(s)] = o [Y(s)] + Vo - 6T (s)  (B4)

where we recall from (3.15)

Mp
)6y
=1

Q

Defining, for a given s, P(T¢) = ¢[Y(s)], we have

P(T¢+07%) = (¢ +0¢) [(T +07)(s)] -

Hence, up to first order, we can write

P(Y 4+ 07°) = (¢ +6p) [(T 4+ 07)(s)]
where J p is the Jacobian of P(.) w.r.t. T¢. Hence, we can write
up to first order

(¢ +00) (T +671)(s)] — ¢ [Y(s)] = TpdT".

Hence, we have from (B4)

S [Y(s)] =TpdTe — (B5)

MP
> Nyw(s)dTs
g=1

where Jp can be numerically evaluated via finite differences.
However, note that, although finite differences are employed in
the preceding calculation, no new forward problem evaluations
are involved here.

To evaluate the Hessian, we observe the following relations:

2Lyl (e )

gf — —Nya(sy)aH, [6(r;)] 6. (s;)
ofi _ ,
aia —Hp [(b(rj)] .

Thus, the Hessian relations can be written as

029,

" 7'1) 7(2 T
O0x,0x, * *

(B6)
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829, Of,

{Zaflafjaxp} Hy, [6(r5)] ¢ (55)

: 929,
where the expression for 3 ar

framework is given in Appendix C.

in the method-of-moments

. 0v;
7;(5) - Z {—Nq,k(sj)¢m(sj)} of;
- J

X Q) 6(0,)] { =Ny (57)62 (55 }

5 8191 /
T = 30 Nuwls) g o, o)
J

(Sj)}

where Jp(x,) denotes the term of J p corresponding to control
point x,. Note that the summation indexes j and [ will be
such that r; € ¢ '[—p,p] and r; € ¢~ '[—p, p] whenever there
are H;[] or HJ[] in any product term component of the
summation. Furthermore

% {Tp(p) = bu Nyt

i _ 70 L 7@ |76 B7)
8Zpazq zZz zZz zZz
where
0%9; Of
(1) / . .
T EJ: sj){ l aflafj azp} H [¢(rj)]¢z(sj)
- 99,
(2) — _ . . C
T, = ;{ Nq,k(53)¢z(sj)} a5,
x aH [0(r;)] { = Npa(s;)-(5;) |
T = -3 Nyulsy) St} [o(x,)]
zz ; q, J af] P J
X {JP(ZP) - ¢zsz,k(‘9j)} .
In addition,
B 0%9; afl
8042 N Z {Z dfi0f; da } p [9(r3)]- (B8)
The mixed derivatives are
AR N R 0 (B9)

0zp0x,
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where

B . 0%9; 0f;
7 = m2 Nals) {213 050, 6}
x aHy [p(r;)] da(s;)
x aH/ [6(r;)] {—Np,k(sj)ebz(sy-)}

70 = -3 B ls7) 0 aH’ 6(r,)]

X {JP(Zp) - Quz p,k(sj)} .

In addition

(B10)

APPENDIX C
Method-of-Moments-Based Jacobian and Hessian

From Section III-B, we recall the basis decompositions
(3.11) of the following forms for parameter function f(.) and
field u(.):

r) = ijwj(f) u(r,w) = Zuj(w)% (r)

where n is the number of pixels in the image, and {1);(r)} is an

appropriate basis set; in our case, we choose it to be the pulse

basis, i.e., 9;(r) = 1 forr € pixel j and zero otherwise.
Substituting (3.11) in (2.6), we get

Uge (T, W) Zf]u] (f,w)o;(r,w) (C1H
Jj=1
where
Oj(r’w) = /g(r,r’,w)ksmb(r’,w)z/)j(r/)dr'. (C2)

Q

Considering a point-matching scheme [25], we obtain the
expression for the field at a point r = r;, from (C1) and (2.4), as

+Zf1“3

u(r;, w) = Uamb (Ti, W w)o;(r;,w).
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Define matrices Ggr and Gp corresponding to the sets
of receiver points (denoted by R) and object-domain points
(denoted by D), respectively, as follows:

GR(ia .7)
GD(Z.a .7)

oj(ri,w) forr; e R

0j(rj,w) forr;e D

where 0 (r,w) has been defined in (C2), and the w dependence
in the matrices on the left-hand side have been suppressed for
ease of notation.

The Jacobian matrix J(f) is obtained as

J= [Jq,S]

where [Jq ] is the stacked version of the matrices Jqn for
each source frequency w, and source position s, with J4 ¢ being
given by [35]

Jgs = —Gr(I— AGp) 'diag (u™).

q,s
Using the following relation [1]:
(I — AGD)71 =TI+ A(I - GDA)ilGD

we obtain a column of the Jacobian matrix as

09 ) _ )
o~ —(Gr(:,1) + GRAC'Gp(:,1)) ui(f)
where (:, ) in the argument of a matrix denotes the ith column

of the matrix (in Matlab notation). Hence, a second-derivative
column vector can be written as

(C3)

0%y _ _ W Ou;(f
M = —(GR(Z,Z) + GrAC 1GD(Z,Z)) gf(g )

- (GjRC’l + GrA (C’lGjDC’l)) Gp(,i)ui(f) (C4)

where GjR (GJ;D) is the matrix obtained by the zeroing out all
columns of Ggr (Gp), except the jth column.
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