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Abstract

In a reconstruction problem for subsurface tomography (modeled by the
Helmholtz equation), we formulate a novel reconstruction scheme for shape and
electromagnetic parameters from scattered field data, based upon an implicit
Hermite interpolation based radial basis function (RBF) representation of the
boundary curve. An object’s boundary is defined implicitly as the zero level set
of an RBF fitted to boundary parameters comprising the locations of few points
on the curve (the RBF centers) and the normal vectors at those points. The
electromagnetic parameter reconstructed is the normalized (w.r.t. the squared
ambient wave number) difference of the squared wave numbers between the
object and the ambient half-space. The objective functional w.r.t. boundary
and electromagnetic parameters is set up and required Frechet derivatives are
calculated. Reconstructions using a damped Tikhonov regularized Gauss–
Newton scheme for this almost rank-deficient problem are presented for 2D test
cases of subsurface landmine-like dielectric single and double-phantom objects
under noisy data conditions. The double phantom example demonstrates the
capability of our present scheme to separate out the two objects starting
from an initial single-object estimate. The present implicit-representation
scheme thus enjoys the advantages (and conceptually overcomes the respective
disadvantages) of current implicit and explicit representation approaches by
allowing for topological changes of the boundary curve, while having few
unknowns respectively. In addition, the Hermite interpolation based RBF
representation is a powerful method to represent shapes in three dimensions,
thus conceptually paving the way for the algorithm to be used in 3D.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Limited data reconstruction problems in electromagnetic tomography occur in a variety
of application areas such as humanitarian demining, geophysical prospecting and medical
imaging. In such problems, it is often meaningful to solve an ‘approximate’ reconstruction
problem wherein the object shape, location and an approximate (as against pointwise) estimate
of the object’s electromagnetic parameters are evaluated [1–8]. The reconstruction of
the desired parameters is typically achieved via a minimization of an objective functional
comprising the residual of the measured and modeled data. The iterative ‘shape based’
approximate reconstruction schemes broadly fall into two categories. The objective functional
minimized in the first class has as unknowns the coefficients in an explicit parametric
representation for the boundary curve(s), while in the latter class, the unknowns are the values
of a set function representing the image, with the zero level set of that function implicitly
representing the boundary. While the first (explicit representation) class of schemes (as in
[1, 4–8]) has the advantage of fewer unknowns, which is useful in potential three-dimensional
reconstructions, the second (implicit representation) class (as in [2, 3]) is better suited to handle
topological changes in the evolving shape of the boundary. A detailed literature survey of these
various classes of schemes is given in [4, 7, 8]. In [9], a pointwise interpolated radial basis
function (RBF) based level-set approach is proposed for shape and topology optimization,
which assumes that the RBF centers are fixed through the time evolution of the initial curve.

The contemporarily developed works in optical [4] and subsurface tomography [8] on
simultaneous electromagnetic and shape parameter reconstructions form a bridge between the
two classes of schemes by using a level-set representation for the shapes in order to calculate
shape and electromagnetic parameter Frechet derivatives of the objective functional in a
parameterized explicit representation (spherical harmonics in [4] and B-splines in [8]) and not
in the more customary implicit level-set representation of the boundaries. The shape Frechet
derivatives in these works calculate the variation in the measured data w.r.t. infinitesimal
variations in the level-set function representing the boundary, which in turn is calculated
in terms of corresponding variations in the coefficients of the parametric expansion for the
boundary. Their expressions are related to the boundary-integral expression of the seminal
work of [10] giving variations of internal parameters w.r.t. infinitesimal boundary variations.

Radial basis functions are very useful general purpose approximators [11, 12], particularly
when the data points are scattered rather than gridded. The radial basis function circle of ideas
is usually presented in the context of interpolation to point values. It is less well known that
the RBF ansatz extends to much more general observation functionals including Hermite data
[13–15]. Computational experience (unpublished) with Hermite interpolatory RBFs suggests
that they are superior to ordinary point value RBFs for implicit shape modeling, achieving
the same quality of fit with significantly fewer parameters. In this paper, we utilize RBF
Hermite interpolation to a mix of point values and directional derivatives to provide an implicit
boundary-representation scheme that has few parameters; thus combining the advantages of
previous implicit and explicit representation schemes. This yields a scheme that uses a shape
representation with few unknowns, and that also can change the topology of the reconstructed
curve away from that of the initial estimate. In particular, with the implicit RBF representation,
we are fitting a minimal energy interpolant rather than specifying any particular topology
a priori. The approximation is simply driven by the given data. We mention that our approach
fundamentally differs from that of [9] in that we consider the motion of the centers as the
iterations progress and use a Hermite RBF scheme as compared to their pointwise scheme.

In the present work, in the context of a subsurface reconstruction problem for GPR
tomography (modeled by the Helmholtz equation), we formulate a novel reconstruction
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scheme for shape and electromagnetic (e.m.) parameters from scattered field data, based
upon an implicit Hermite interpolation based RBF representation of the boundary curve. An
object’s boundary is defined implicitly as the zero level set of an RBF fitted to boundary
parameters comprising the locations of few points on the curve (namely the RBF centers)
and the normal vectors at those points. The e.m. parameter reconstructed is the normalized
(w.r.t. the squared ambient wave number) difference of the squared wave numbers between the
object and the ambient half-space, and is represented by coefficients in a suitable global basis.
The objective functional w.r.t. boundary and e.m. parameters is set up and required Frechet
derivatives are calculated. Reconstructions are obtained by using an iteratively regularized
Gauss–Newton scheme for this almost rank-deficient problem.

The present implicit-representation scheme thus extends the capability of the approaches
in [4, 8] by allowing for topological changes, while retaining their advantage over conventional
implicit representation schemes of having few unknowns. In addition, the Hermite
interpolation based RBF representation is a powerful method to represent shapes in three
dimensions, thus conceptually paving the way for the algorithm to be used in 3D.

The paper is organized as follows. Section 2 defines the basic shape-based tomography
problem considered in our work. Section 3 considers the Hermite interpolation based RBF
representation of the boundary curve, while the Frechet derivatives needed are evaluated in
section 4. Section 5 presents the reconstruction algorithm and section 6 the numerical results,
with the conclusions being the subject of section 7. Appendix A evaluates some Frechet-
derivative related matrices and appendix B briefly presents the basic relations for method
of moments based derivative calculations needed in the Frechet derivative calculations of
section 4.

2. The shape-based subsurface tomography problem

The two-dimensional inverse scattering problem considered here is to recover the object’s
permittivity (denoted by ε(r), r ∈ R

2 ) and conductivity ( denoted by σ(r, ω), r ∈ R
2 )

distributions from the measurements at various angular frequencies ω, of the scattered field
obtained from the interaction of incident radiation with the object in question, on a receiver
surface outside the object.

In the scalar approximation, the scattering process in GPR tomography is assumed to
be modeled by the Helmholtz equation. The Helmholtz equation for the complex amplitude
u(r, ω) of a monochromatic wave of angular frequency ω, due to a source of current distribution
j (r, ω) propagating through a medium of complex wave number k(r, ω), is given by

�u(r, ω) + k2(r, ω)u(r, ω) = j (r, ω), (1)

where � is the Laplacian operator. The fields u(r, ω) are assumed to be outgoing and satisfying
the Sommerfeld radiation conditions at infinity. The complex wave number, k(r, ω) is given
by

k2(r, ω) = ω2μ0ε(r)

(
1 + i

σ(r, ω)

ωε(r)

)
(2)

where μ0 is the magnetic permeability of free space.
Define

f (r) = k2(r, ω) − k2
amb(r, ω)

k2
amb(r, ω)

, (3)

with k(r, ω) being the wave number in the actual physical setting of the object(s) of interest
embedded in an ambient medium corresponding to a wave number kamb(r, ω). In the present
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problem, the ambient medium comprises two half-spaces corresponding to air and ground,
separated by an air–ground interface.

The independence of f (r) on ω stems from the assumption that the quantity tan δ ≡ σ(r,ω)

ωε

does not vary with ω in the frequency range of interest [16].
The reconstruction problem is thus the recovery of f (r) from the measurements at various

angular frequencies ω, of the scattered field on the receiver surface.
Observing that the function f (r) contains information about the parameter values as well

as the shape, considering without loss of generality homogeneous inclusions in the background,
we can express the parameter at a point in the image space, as

f (r) = f g(r)H [s(r)], (4)

where s(.) is a level-set based representation of the image ([10] and references therein) with
{x : s(r) = 0} representing the boundary ∂� of the object(s) under consideration supported
in region �,H [.] is a Heaviside function taken in a suitable limiting sense [17] and the field
quantity f g(.) can be considered as a ‘ghost’ parameter value manifesting itself through H(.).
Without loss of conceptual generality we set f g(r) = α in our work, with α being independent
of position.

There are many ways in which one can represent the boundary curve/surface s(r) = 0.
In an explicit parametrization, this boundary has been described in terms of a spline basis
([1, 6, 8]) in two dimensions or with spherical harmonics [4] in three dimensions. In
implicit formulations, typically the shape unknowns are the values of the function s(r) on
the reconstruction grid. On the other hand, in the present work, with the objective of retaining
an implicit representation coupled with significant search-space-dimensionality reduction (as
in explicit schemes), we represent s(r) as a radial basis function via a Hermite interpolation
scheme to fit a few on-curve points (called centers of the RBF, and denoted by rc

1, . . . , rc
m) and

the normal unit vectors at those points (denoted by n1, . . . , nm where ni ≡ (
cos θc

i , sin θc
i

)
for some θc

i ). As explained in the following section, we can write the level-set function as an
RBF of the form

s(r) = p(r) +
m∑

j=1

[
cj�

(
r − rc

j

) − dj

(
Dnj

�
)(

r − rc
j

)]
, (5)

where p(.) is a polynomial (typically of low order), �(.) ≡ φ(‖.‖), with φ being a (usually
unbounded and non-compactly supported) real-valued function on [0,∞] called the basic
function, and Dnj

ψ(t) ≡ nj .(∇ψ)(t) denotes the directional derivative functional w.r.t. a unit
normal nj .

Thus in the two-dimensional setting considered in our work, r ≡ (x, z), and, the shape
parameters are the RBF-center coordinates

{
xc

q

∣∣q = 1, . . . ,Mp

}
,
{
zc
q

∣∣q = 1, . . . ,Mp

}
along

with the unit normals represented by the respective angles
{
θc
q

∣∣q = 1, . . . , Mp

}
, corresponding

in vector notation to xc, zc and θ c respectively.
Setting

h =

⎛
⎜⎜⎜⎜⎝

Real(α)

Imag(α)

xc

zc

θ c

⎞
⎟⎟⎟⎟⎠ , (6)

the basic ill-posed reconstruction problem can be defined as solving for h, the equation
A(h) = udata. As is common practice, this problem is approximated by the following
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Tikhonov regularized nonlinear c-minimum norm problem

minh
1
2 (‖ζ(h)‖2 + η2‖h − c‖2), (7)

where η is a regularization parameter, c is a known constant representing a priori information,
which is typically taken to be the initial estimate of the iterative process (it can be changed
within the iterative process to help stabilize the iterates), and,

ζ(h) =
(

Real(udata − A(h))

Imag(udata − A(h))

)
, (8)

where udata

(=urec − urec
amb

)
is the ‘effective’ measured data vector, concatenated over the

frequencies at which the measurements are taken, urec is the measured field at the receiver and
urec

amb is the ambient field that would have been measured at the receiver in the absence of the
inhomogeneity. The functional A : R

N → C
M/2 is the measurement operator corresponding

to the tomographic process, whose ith component (corresponding to the ith measurement)
at the given frequency is Ai (h;ω, ri ) ≡ usc(r

i , ω; f ) (as defined in equation (B.3)), with
f (r′) = αH [s(r′, h)], where N is the length of vector h and the number of measurements is
M/2 (for later notational convenience). The measurement operator is obtained via a suitable
discretization scheme (in the present work, a method of moments [18, 19] scheme is applied
to the integral equation of scattering) to solve the Helmholtz equation for the scattered fields,
given the object parameters.

In the present work, the minimization problem given by (7) is solved by using an iteratively
regularized Gauss–Newton method that requires the computation of the Frechet derivatives of
the received fields with respect to the parameter vector. These aspects along with the RBF
representation scheme are dealt with in the following.

3. Hermite interpolation based RBF representation

Let γ : R
d → R be the level-set function, whose zero level set is the boundary curve to be

reconstructed. Let μ1, . . . , μm be point evaluation functionals

μi(γ ) = δrc
i
(γ ) = γ

(
rc
i

)
(9)

and μm+1, . . . , μ2m be directional derivative evaluation functionals

μm+i (γ ) = νi(γ ) = (Dni
γ )

(
rc
i

) = ni · ∇γ
(
rc
i

)
. (10)

These 2m functionals are linearly independent provided the points rc
i , 1 � i � m, are distinct.

Then our Hermite interpolation problem can be stated as

Problem 1. Given values b1, . . . , b2m find a continuously differentiable function s : R
d → R

such that

μi(s) = bi, for i = 1, . . . , 2m, (11)

or equivalently such that

s
(
rc
i

) = bi and ni · (∇s)
(
rc
i

) = bm+i , for 1 � i � m. (12)

Let πd
k−1 denote the space of polynomials of degree at most k − 1 in d variables. Having

chosen a twice continuously differentiable basic function �, conditionally positive definite of
order k in the appropriate sense, we seek solutions to the RBF Hermite interpolation problem.
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Problem 2. Find a function of the form

s(r) = p(r) +
m∑

j=1

[
cjμ

t
j�(r − t) + djν

t
j�(r − t)

]
, p ∈ πd

k−1, (13)

= p(r) +
m∑

j=1

[
cj�

(
r − rc

j

) − dj nj · (∇�)
(
r − rc

j

)]
, (14)

satisfying the interpolation conditions (12) subject to the constraints
m∑

j=1

cjq
(
rc
j

)
+ dj nj · (∇q)

(
rc
j

) = 0, for all q ∈ πd
k−1. (15)

The coefficients c and d are the RBF coefficients. An informative 1D analog is a C1

piecewise cubic Hermite interpolant to data {ti , fi, f
′
i } which can be written as

s(t) = p(t) +
m∑

i=1

ci |t − ti |3 −
m∑

i=1

3di(t − ti)|t − ti |. (16)

Constraint (15) takes away the extra degrees of freedom introduced by the polynomial p. It
also lowers the rate of growth of the pure RBF part (in the square parentheses of (14)) as
|r| → ∞. In the above the t superscript indicates that the functional is applied with respect to
the t variable. Thus μt

j�(r − t) = �
(
r − rc

j

)
and νt

j�(r − t) = −nj · (∇�)
(
r − rc

j

)
. This

is the so-called symmetric form of an RBF interpolation problem. Applying the interpolation
conditions we obtain the RBF Hermite interpolation problem in the matrix form[

A P

P T O

] [
λ

a

]
=

[
b

0

]
, (17)

with the entries Aij = μr
i μ

t
j�(r − t), Pij = μi(pj ), where p(r) = ∑L

l=1 alpl(r) for some
basis {p1, . . . , p�} for the space πd

k−1 and λ ≡ (
c

d

)
. The expressions for the entries in the

matrices A and P of equation (17) are now given below. Firstly

Pij = μi(pj ) =
{

pj

(
rc
i

)
, 1 � i � m,

ni · ∇pj

(
rc
i−m

)
, m + 1 � i � 2m.

(18)

Furthermore Aij = μr
i μ

t
j�(r − t) which implies

Aij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�
(
r − rc

j

)
, if 1 � i, j � m,

−nj−m · (∇�)
(
rc
i − rc

j−m

)
, if 1 � i � m, and m + 1 � j � 2m,

ni−m · (∇�)
(
rc
i−m − rc

j

)
, if m + 1 � i � 2m, and 1 � j � m,

−nT
i−mH(ri−m − rj−m)nj−m, if m + 1 � i, j � 2m,

(19)

where H(r) is the d × d Hessian matrix with hk� = ∂2

∂xk∂x�
�. Thus we can write the matrix A

in m × m block form as A = (A(11) A(12)

A(21) A(22)

)
.

RBF Hermite interpolation is a multidimensional generalization of the well-known 1D
Hermite piecewise cubic interpolation scheme. An early reference is [13], whose theory
covers polyharmonic splines and pseudo splines, including the case of the basic function
�(r) = |r|4log(|r|), supplemented with a quadratic polynomial considered here. Iske [14]
gives a very general theory covering many choices of basic function. One piece of the general
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theory useful to us is that if � is conditionally positive definite in the appropriate sense,
the functionals {μj } are linearly independent over C1(Rd), and also the functionals {μj } are
unisolvent for πd

k−1 then the system (17), and the Hermite RBF interpolation problem (Problem
2), have a unique solution for any choice of right-hand side b. Here unisolvent for πd

k−1 means
that the only polynomial q so that μj(q) = 0 for all 1 � j � 2m is the zero polynomial.

We are reconstructing a signed distance function, which is zero on the curve and has unit
directional derivative in the direction of the inward normal. Thus, the right-hand side values
we will use are bi = 0 for 1 � i � m, and bi = 1 for m + 1 � i � 2m. Hence, given the
RBF centers

{
rc
j

}
, and the unit normal vectors at those points

{
nj = (

cos
(
θc
j

)
, sin

(
θc
j

))}
, we

obtain the coefficient vectors a and λ for our RBF approximation (14) by forming and solving
the linear system (17).

4. Frechet derivatives

4.1. Basic relations

Define the residual ϑ(f ;ω), in the continuous domain representation of the unknown
parameter f (x, z), at a frequency ω, to be

ϑ(f ;ω) = udata(ω) − A(f ;ω), (20)

where the ith component of the measurement operator A (corresponding to the ith
measurement) at the given frequency is Ai (f ;ω, ri ) ≡ usc(r

i , ω; f ) (as defined in (B.3)).
Note that ζ = (Real(ϑ), Imag(ϑ))T .

The Frechet derivative of the residual can thus be written as

ϑ′(f )δf = v, (21)

where the ith component of v (corresponding to the ith receiver) is vi ≡ v(ri, ω), with v(r, ω)

being a solution of

�v(r, ω) + k2
nomv(r, ω) = −k2

ambδf (r)u(r, ω), (22)

where � is the Laplacian operator and knom is the nominal wave number at the present iterate.
Thus the solution for vi := v(ri , ω) in the integral form would be

v(ri , ω) =
∫

�

gB(ri , r′, ω)
(
k2

ambδf (r′)
)
u(r′, ω) dr′, (23)

where gB(ri , r′, ω) is the Green function corresponding to the current parameter estimate
being the ambient.

Thus, considering the object representation (4), we will have

δf (r) = αH ′
ρ[s(r)]δs(r) + Hρ[s(r)]δα (24)

where H ′
ρ[.] denotes the derivative of the limiting Heaviside function Hρ[.] defined below (as

in [17]),

Hρ(t) :=

⎧⎪⎪⎨
⎪⎪⎩

0 if t < −ρ

1

2

{
1 +

t

ρ
+

1

π
sin

(
πt

ρ

)}
if t ∈ [−ρ, ρ]

1 if t > ρ.

(25)

Observing from equation (25) that the support of H ′
ρ[s(r)] is contained in s−1[−ρ, ρ],

we can thus write equation (23) as

v(ri , ω) =
∫

s−1[−ρ,ρ]
gB(ri , r′, ω)k2

amb(r
′, ω)u(r′, ω)αH ′

ρ[s(r′)]δs(r′) dr′

+ δα

∫
�

gB(ri , r′, ω)k2
amb(r

′, ω)u(r′, ω)Hρ[s(r′)] dr′. (26)
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We mention that the choice of the Heaviside parameter ρ should be such that the interpolating
function s(r) should be a good approximation to a signed distance function in the ‘tubular’
region s−1[−ρ, ρ]. In our work, as in [8], for a plane curve γ (x, z) = 0 such as in the
two-dimensional problems under consideration, we can define the tube as consisting of all
parallel curves γ (x, z) = ε such that |εκ(x, z)| < 1 for all values of (x, z) ∈ ∂�, where
κ(x, z) is the curvature of the curve γ (x, z) = 0. This condition ensures both, that a parallel
curve is regular, as well as that the normal vectors of the curve γ (x, z) = 0 coincide with
those of a parallel curve γ (x, z) = ε for all (x, z) ∈ ∂� [20, 21].

In the present work we solve the forward problem numerically by the method of moments
with a pulse-basis point-matching decomposition of the scattering integral equation [18, 19]
(the essential discretization steps have been mentioned in appendix B). Assume basis
decompositions of the following forms for the parameter function f (.) and the field u(.)

:

f (r) =
n∑

j=1

fjψj (r), u(r, ω) =
n∑

j=1

uj (ω)ψj (r), (27)

where n is the number of pixels in the image, and, {ψj(r)} is an appropriate basis set; in our
case, we choose it to be the pulse-basis i.e., ψj(r) = 1 for r ∈ pixelj and zero otherwise.

Assuming that a pulse basis discretization in a method of moments framework is suitable
for the coverage of the area covered by δf (r) in (23), it would follow that (26) too could be
discretized via the same pulse basis.

Thus, in a pulse-basis discretization of δs(r) and u(r′, ω), we write the discrete
approximation of equation (26) as

vi =
∑

j :(rj ∈s−1[−ρ,ρ])

GB(i, j)uj {αH ′
ρ[sj ]}δsj + δα

∑
j

GB(i, j)ujHρ[sj ] (28)

where sj = s(rj ), and

GB(i, j) =
∫

�

gB(ri , r′, ω)k2
amb(r

′, ω)ψj (r
′) dr′, (29)

where the ω dependence in GB(i, j) (on the left-hand side) has been suppressed for ease of
notation.

Using the equivalence of the distorted-Born and Newton–Kantorovich formulations [22],
denoting δϑi := vi , we can write

δϑi =
∑

j :(rj ∈s−1[−ρ,ρ])

∂ϑi

∂fj

{αH ′
ρ[sj ]}δsj +

∑
j

∂ϑi

∂fj

Hρ[sj ]δα (30)

where relations for ∂ϑi

∂fj
are in appendix B.

Thus it is now left to evaluate the variations δsj of the level-set function s(.) with respect
to variations in the RBF centers and corresponding unit normals.

4.2. Shape derivatives

We now recall from (14) that

s(r) =
L∑

l=1

alpl(r) +
m∑

j=1

[
cj�

(
r − rc

j

) − dj�j

(
r − rc

j

)]
, (31)

where �j(.) ≡ (Dnj
�)(.), and

�j

(
r − rc

j

) ≡ (∇φ)
(
r − rc

j

) · nj = φx

(
r − rc

j

)
cos θc

j + φz

(
r − rc

j

)
sin θc

j . (32)
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Evaluating the first variation of s, we have

δs(r) =
L∑

l=1

δalpl(r) +
m∑

j=1

[
cj δ�

(
r − rc

j

)
+ δcj�

(
r − rc

j

)
− dj δ�j

(
r − rc

j

) − δdj�j

(
r − rc

j

)]
(33)

where, further,

δ�
(
r − rc

j

) = −�x

(
r − rc

j

)
δxc

j − �z

(
r − rc

j

)
δzc

j (34)

and similarly,

δ�j

(
r − rc

j

) = [−�xx

(
r − rc

j

)
cos θc

j − �zx

(
r − rc

j

)
sin θc

j

]
δxc

j (35)

+
[−�xz

(
r − rc

j

)
cos θc

j − �zz

(
r − rc

j

)
sin θc

j

]
δzc

j (36)

+
[−�x

(
r − rc

j

)
sin θc

j + �z

(
r − rc

j

)]
δθc

j . (37)

Hence, in (33), it only remains to evaluate δcj and δdj in terms of the variations of the RBF
centers and normals, i.e., to evaluate δλ and δa. To do this, we take the first variation of the
interpolation system of equations (17) to obtain(

δA δP

δP T 0

)(
λ

a

)
+

(
A P

P T 0

)(
δλ

δa

)
= 0. (38)

Hence we obtain,(
δλ

δa

)
= −

(
A P

P T 0

)−1 (
(δA)λ + (δP )a

(δP T )λ

)
. (39)

We now make the following definitions:

(δA)λ ≡ B

⎛
⎝xc

zc

θ c

⎞
⎠ , (δP )a ≡ Pa

⎛
⎝xc

zc

θ c

⎞
⎠ , (δP T )λ ≡ Pλ

⎛
⎝xc

zc

θ c

⎞
⎠ , (40)

where the functional forms (explicitly given in appendix A) for B,Pa and Pλ are obtained by
appropriate rearrangement of respective left-hand sides in the expressions above.

Thus, denoting Ã ≡ (
A P

P T 0

)
and B̃ ≡ (

B+Pa

Pλ

)
, we obtain

(
δλ

δa

)
= −Ã−1B̃

⎛
⎝xc

zc

θ c

⎞
⎠ . (41)

Thus, we can write the first variation expression (33) in compact notation, as

δs = Js

⎛
⎝xc

zc

θ c

⎞
⎠ , (42)

where

Js = F − (R[Ã−1]a + Φ[Ã−1]c − Ψ[Ã−1]d)B̃ (43)

where

(1) s is the vector of values of s(r) at the required (NT number of) points.

9
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(2) Φ (resp. Ψ) is the NT × m matrix with Φij = �(ri − rc
j ) (resp. Ψij = �j(ri − rc

j )),
where ri is the ith point at which the value of δs needs to be calculated. Similarly the
derivative matrices Φx,Φz,Φxx,Φxz and Φzz can be defined.

(3) R is an NT × L matrix with Rnl = pl(rn).
(4) [Ã−1]a (resp. [Ã−1]c and [Ã−1]d ) corresponds to the last L rows (resp. rows 1 to m and

m + 1 to 2m) of Ã−1.
(5) F = [FxF zF θ ], with

Fx = −Φx�(c) + [Φxx�(cos θc) + Φzx�(sin θc)]�(d) (44)

Fz = −Φz�(c) + [Φxz�(cos θc) + Φzz�(sin θc)]�(d) (45)

Fθ = [Φx�(sin θc) − Φz�(cos θc)]�(d), (46)

where �(v) ≡ diag(v1, . . . , vm) for some vector v.

4.3. Overall frechet derivative

In matrix notation, the Frechet derivative in (30) can now be written as

δϑ = Jf Js

⎛
⎝δxc

δzc

δθ c

⎞
⎠ + Jαδα, (47)

where δϑ is the first variation of the (complex) M-dimensional measurement vector ϑ, Jf is
the M × NT matrix with [Jf ]ij = ∂ϑi

∂fj
{αH ′

ρ[sj ]} and Jα is the M-dimensional column vector

with [Jα]i = ∑
j

∂ϑi

∂fj
Hρ[sj ]. Thus,

δϑ = JC

⎛
⎜⎜⎝

δα

δxc

δzc

δθ c

⎞
⎟⎟⎠ (48)

where

JC = (Jα Jf Js). (49)

5. Reconstruction scheme

5.1. Damped Tikhonov regularization based Gauss–Newton scheme

Recall from section 2 that the approximate tomographic problem to be solved is the minimum
c-norm problem equation (7). To solve this problem, a scheme based upon an iteratively
regularized Gauss–Newton approximation is utilized [8, 23, 24]. The multi-frequency GPR
tomography problem under consideration in this work has an almost rank-deficient Jacobian
matrix J(h) at the solution point of ζ(h) 	 0. Using iterated Tikhonov regularization, a
stable solution may be found which greatly improves the condition of the problem and also
the convergence rate over the Gauss–Newton method applied to the unregularized functional.

The generic Tikhonov regularized (with regularization parameter η) nonlinear least-
squares problem (7) can be written as

minh
1
2‖ζaug(h; η)‖2 (50)

10
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where

ζaug(h; η) ≡
(

ζ(h)

η(h − c)

)
. (51)

Basically, we are solving approximately a sequence of Tikhonov regularized nonlinear
least squares problems (minhζaug(h; ηt )) for a fixed center c and a sequence of decreasing
regularization parameters ηt . The approximate solution h(ηt ) of one such subproblem is
taken as the starting point of the next subproblem with regularization parameter ηt+1 < ηt .
The Gauss–Newton method is used to compute an approximate solution for this kind of
subproblem. In the remainder of the paper, for ease of notation, we use η instead of ηt .

In practical applications, numerical experience allows us to take the approximate solution
of a subproblem to be the minimum of the linear-residual approximation to that objective
function4. Recalling that the Gauss–Newton method goes to the minimum of such a quadratic
objective function in one iteration, we use a computationally inexpensive approach of checking
at each iteration whether to reduce the regularization parameter or not, depending on whether
or not, at that iterate, the first-order model is a good enough approximation of the actual
residual. If the step length is 1, that is, a full step has been taken, it is assumed that the
first-order model is good enough. It is important to note that by decreasing η, what is actually
done is to change the optimization problem to one that is less smooth (i.e., to a more rapidly
varying objective functional).

The regularization parameter η is a smoothing factor which should be larger than the
noise, and a larger η gives an easier optimization problem to solve. A large (resp. small) η

gives a solution close to (resp. away from) ‘c’. As is often observed in nonlinear regularization
problems, too small a η can result in the Gauss–Newton method not converging. Hence, it is
important to start the algorithm with a large η, so that the iterates do not get driven too far
from ‘c’ initially. During iterations η should be decreased (never increased though for that c)
in order to find lower minima. Observe that this will lead to a solution further away from ‘c’.

To solve this problem, an iterative scheme based upon the Gauss–Newton approximation
solves, at the current iterate h,

minp

∥∥∥∥
(

J(h)p + ζ(h)

η(h − c + p)

)∥∥∥∥
2

(52)

where the M × N matrix J(h) is the Jacobian matrix of the functional ζ(h) with respect to h,
defined via a Taylor series expansion of the form

ζ(h + p) = ζ(h) + J(h)p + O(‖p‖2), (53)

where the Jacobian J is easily calculated from the matrix JC (defined in (49)) by recalling that
ζ = (Real(ϑ), Imag(ϑ))T , and is given by

J =
(

Re(Jα) Im(−Jα) Re(Jf Js)

Im(Jα) Re(Jα) Im(Jf Js)

)
. (54)

The next iterate is given by

hk+1 = hk + βkpk, (55)

where the step length βk is chosen via line-search such that the objective functional is
sufficiently reduced. The search direction pk computed from (52) can be written as

pk = −B(hk)

(
ζ(hk)

hk − c

)
, (56)

4 Note that the objective function is proportional to the squared norm of the residual.

11
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where

Bk ≡ B(hk) = ((
JT

k Jk + η2I
)−1

JT
k η2

(
JT

k Jk + η2I
)−1)

. (57)

We do not explicitly form the product JT
k Jk in the computation of the matrix Bk for reasons

of numerical stability; it is computed via the singular value decomposition of Jk .
The termination criterion we have used is a relative one, i.e., we measure ‘how much’ of

the residual remains to minimize. The relative criterion is defined as

εrel = ‖PJ aug‖
‖ζaug‖

, (58)

where PJ aug is the orthogonal projection onto the range space of Jaug, and

Jaug =
(

J(h)

ηIN

)
. (59)

Termination of the nonlinear recursive scheme is set as satisfaction of the criterion εrel < tol
for some tolerance limit tol or the iterates staying stable.

5.2. Initialization

As in [8], the initialization of the recursive scheme is done by estimating a circular
homogeneous object that best generates the measured data under the Born-approximation.
Since the linearized scattering equation may not truly represent the scattering process,
a constraint is applied on the maximum magnitude of reconstructed values of object
inhomogeneity parameters, to ensure that the object is within the validity of the Born
approximation; in the present work, we have set |α| < 0.6 for the starting estimate. Define

h̃ =

⎛
⎜⎜⎜⎜⎝

Re(α)

Im(α)

xcenter

zcenter

Rcircle

⎞
⎟⎟⎟⎟⎠ (60)

with (xcenter, zcenter) ≡ rcenter and Rcircle being the center coordinates and radius of the circular
object, respectively.

Hence an estimate of the ‘best-fit’ circular object within the Born approximation can be
obtained as

min
h̃∈D

‖ζBorn(h̃)‖2, (61)

where D represents assumed box bounds for the various unknowns

ζBorn(h̃) =
(

Real(udata − ABorn(h̃))

Imag(udata − ABorn(h̃))

)
(62)

where, ABorn(h̃) is the scattered field under the Born approximation, and is obtained from
A(h̃) (as defined after equation (7)) by replacing u(r′, ω, h̃) by uamb(r

′, ω) in the integrand,
and noting that the level-set function for an object with a circular boundary can be evaluated
as

γ (r′, h̃) = Rcircle − ‖r′ − rcenter‖. (63)

The approximation to the Heaviside function used for the evaluation of this first estimate
is H [.] 	 Hρ[.], where ρ has been set as the method-of-moments’ (MoM’s) grid-discretization
interval dx for the initialization step to ensure a gradual slope. The initial RBF centers of

12
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the full nonlinear scheme are distributed along the perimeter of this initial circular object.
Typically, in our initial estimate, we set the imaginary part of the inhomogeneity parameter α

to zero.
The overall algorithm is provided below.

I Initialization
(a) Estimate h0, the ‘best-fit’ circular object within the Born approximation according
to (61).
(b) c := h0, η set at a suitable ‘large’ value.
II Reconstruction phase
For k = 1, 2, . . . , till εrel < tol or residual is unchanging for many past k
(a) Estimate the Heaviside approximation parameter, ρ, as min(dx, εmax), where εmax =
max{ε; |εκ(x, z)| < 1 for all values of (x, z) ∈ ∂�} and dx is the MoM grid-discretization
interval.
(b) Evaluate the Jacobian J(hk) using (54).
(c) Solve (52) for pk .
(d) Do a line search to find βk .
(e) If βk 	 1, then, η := η/q, for a suitable choice of q > 1(we chose q = 2).
(f) hk+1 = hk + βkpk.

6. Numerical studies

Numerical studies have been carried out on the simultaneous electrical parameter and shape
reconstruction problem of single and double object phantoms of small dielectric mine-like
objects of different shapes for various noise conditions. Scattered data at multiple-frequencies
(0.7, 0.9, 1.1, 1.3 GHz) and multiple-angle plane wave incidence (15 angles in [−π/3, π/3])
is used in our studies. Data sets have been simulated by adding Gaussian random noise of
different variance to the exact data. In these studies, the scattered-field data are collected on
a line 10 cm above the ground, and at each frequency, 120 data points are considered from
x = −24 cm to x = 24 cm. The subsurface reconstruction domain considered is 16 cm ×
16 cm (x = −8 cm,. . ., 8 cm and z = −0.4 cm, . . . ,− 16.4 cm). In the method of moments
discretization of the reconstruction domain, we use a grid of 40 × 40.

The test cases are specified by some combination of shapes, number of objects and material
compositions. Phantom P1 is a single object with a concavity and material parameters as in
composition B1 (as in table 1), P2 is a single near-circular object with composition B1 and P3
is a double-rectangle phantom with composition B2. Data are simulated with various noise
levels, denoted by N1 and N2, formed by adding Gaussian noise of zero mean and standard
deviation of 0.1 and 0.2 times the maximum absolute value of the exact data set. The signal-
to-noise ratio (SNR) values for the data sets P1N1, P1N2, P2N1, P2N2, P3N1 and P3N2 are
26.570 39 dB, 12.912 51 dB, 28.233 47 dB, 13.993 49 dB, 29.081 76 dB and 15.212 41 dB,
respectively. In the present work, without loss of conceptual generality, we have considered
phantoms where all the constituent objects (in a phantom) have the same electrical parameter;
using level-set based representations for multiple parameter values such as those mentioned
in [25], the conceptual extension to those cases follows.

In the present work, for phantoms P1 and P2, for generation of the shapes to simulate the
measurement data, B-splines of order 4 and 8 distinct control points have been used [8, 26].
The double rectangular phantom P3 on the other hand is generated as the intersecting region
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Figure 1. Phantom P1N1 (Data SNR = 26.57039 dB); actual shape: solid line, reconstructed
shape: dot-dashed line, first estimate: dotted line; ‘*’: RBF-center reconstructed f = 1.201496 −
i 0.031046 ; actual f = 1.2221 − i 0.02667.

Table 1. Test case material settings.

Ambient Object
Notation (εr , tan δ) (εr , tan δ, f )

B1 Wet sand (4.5, 0.03) (10, 0.01797, 1.2221 − i0.02667)

B2 Dry sand, (2.55, 0.0282) (4.24, 0.0636, 0.6644 + i0.0588)

of the component straight lines. This ensures that our reconstruction shape model is different
from that used to generate the actual shapes.

The reconstructions are demonstrated in figures 1–6. In the figures the stars indicate
the locations of the RBF centers. As is commonly observed, the number of centers can
be considered as an implicit regularization parameter in the solution of the reconstruction
problem; however, for the numerical studies in this work we fix this a priori and regularize
the resultant almost rank-deficient problem in the iterative regularization scheme described in
the previous section. We picked the least number of centers that yielded closed boundary and
parallel curves for objects of similar size as the actual test objects. In our work we used 8
centers for the single phantoms and 9 centers for the double phantom.

The single object reconstructions show good reconstructions of the shape and Re(α) and
most of the time also for Im(α). For these objects, the results are seen to be comparable to
those in [8]; even though that in our present work, the reconstruction shape (RBF) basis is
different from the shape generation (B-spline) basis. In addition, in the computations, the fact
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Figure 2. Phantom P1N2 (Data SNR = 12.91251 dB); actual shape: solid line, reconstructed
shape: dot-dashed line, first estimate: dotted line; ‘*’: RBF-center reconstructed f = 1.18987 −
i 0.026320 ; actual f = 1.2221 − i 0.02667.

Figure 3. Phantom P2N1 (Data SNR = 28.23347 dB); actual shape: solid line, reconstructed
shape: dot-dashed line, first estimate: dotted line; ‘*’: RBF-center reconstructed f = 1.22015 −
i 0.027308; actual f = 1.2221 − i 0.02667.
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Figure 4. Phantom P2N2 (Data SNR = 13.99349 dB); actual shape: solid line, reconstructed
shape: dot-dashed line, first estimate: dotted line; ‘*’: RBF-center reconstructed f = 1.23887 −
i 0.012299; actual f = 1.2221 − i 0.02667.

Figure 5. Phantom P3N1 (Data SNR = 29.08176 dB); actual shape: solid line, reconstructed
shape: dot-dashed line, first estimate: dotted line; ‘*’: RBF-center reconstructed f = 0.55816 +
i 0.032 33; actual f = 0.6644 + i 0.0588.

16



Inverse Problems 25 (2009) 025004 N Naik et al

Figure 6. Phantom P3N2 (Data SNR = 15.21241 dB); actual shape: solid line, reconstructed
shape: dot-dashed line, first estimate: dotted line; ‘*’: RBF-center reconstructed f = 0.536946 +
i 0.014 6560; actual f = 0.6644 + i 0.0588.

that the RBF models the signed-distance-function eliminates the intermediate steps needed for
an explicit reconstruction scheme to find the interior and exterior of the object of interest.

We are actually solving an interpolation problem in which the values of the level-set
function and its directional derivative (along the normal) are specified; hence by problem
statement itself the centers lie on the boundary curve. We point out though that the RBF
model is an approximation of the actual signed-distance-function which in general is more
accurate when we are closer to the boundary than farther away. At the points of interpolation
(the RBF centers), the RBF model is naturally exact in value and in directional derivative.

The topology-changing capability and robustness of the present scheme is demonstrated
in the reconstructions of phantom P3 starting from a first estimate that is a single object. In
order to better visualize the topological changing process in our test cases, we have shown
reconstruction sequences for the double phantoms in figures 7 and 8. We note that in addition
to being a good test of the method for non-smooth boundaries, the rectangular double phantom
lends itself to very exact scattered field calculations for data generation since the area coverage
of these objects by the pulse basis elements is complete5.

Termination of the reconstructions was set as either at the satisfaction of εrel < 0.01 or
when the residual error consistently increases. We obtained termination of the reconstruction
algorithm in 16, 15, 19, 15, 45 and 54 iterations for P1N1, P1N2, P2N1, P2N2, P3N1 and
P3N2, respectively. We observe that the reconstructions of the double phantom object are
more difficult than the single phantom in that they take more iterations to converge and

5 The MoM integrations are area integrations and the better the area coverage, the more accurate are the scattering
solutions.
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Figure 7. Reconstruction sequence for phantom P3N1 (Data SNR = 29.08176 dB) for iterates
10,11,12,45 (final); reconstructed shapes: dotted/dashed/dot-dashed lines, first estimate: circular
dotted curve; actual shape: double rectangle in solid lines; ‘*’: RBF-center.

Figure 8. Reconstruction sequence for phantom P3N2 (Data SNR = 15.21241 dB) for iterates 25,
30, 31, 54 (final); reconstructed shapes: dotted/dashed/dot-dashed lines, first estimate: circular
dotted curve; actual shape: double rectangle in solid lines; ‘*’: RBF-center.
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do not reconstruct the internal parameters as well as that for the single object; the case
however demonstrates the robustness of the reconstruction scheme which separates out and
well localizes the two objects.

7. Conclusions and further work

The present paper derives and provides a numerical validation of a novel simultaneous shape
and electrical-parameter tomographic reconstruction scheme from scattered field data. The
method uses a novel Hermite interpolation based implicit RBF representation of the boundary
curve to implicitly describe the boundary in terms of a few on-curve points (the RBF centers)
and the unit normals at the centers. The Frechet derivatives of the resulting objective functional
w.r.t. the shape and electrical parameters are derived. The scheme is numerically validated
with reconstructions of simulated mine-like objects. Some key observations and further
constructions are

(1) As explained in the paper, the present implicit-representation scheme thus enjoys
the advantages (and conceptually overcomes the respective disadvantages) of current
implicit and explicit representation approaches by allowing for topological changes of the
boundary curve, while having few unknowns respectively. This has been demonstrated
by the reconstructions obtained for a double-object phantom starting from a single-object
first estimate. In addition, the quality of reconstructions of the single-object phantoms
is seen to be comparable to those obtained in [8], even though in our present work, the
reconstruction shape (RBF) basis is different from the shape generation (B-spline) basis.

(2) In addition, the Hermite interpolation based RBF representation is a powerful and simple
enough method to represent shapes in three dimensions, thus conceptually paving the way
for the algorithm to be used in 3D. Of course, that would need a further investigation of
methods to adaptively choose the appropriate number of centers, as well as sensitivity of
the reconstructions to that number.

(3) In this work, we have used the triharmonic RBF basic function in our calculations.
Different choices of RBFs need to be investigated especially to study their effect on
conditioning of the interpolation matrix and thus on possible convergence aspects of the
inversion iterations.

Appendix A

In this section we present the expressions for the matrices B,Pa and Pλ which have been
defined as in (40) in section 4.

A.1. Evaluation of B

B

⎛
⎝xc

zc

θ c

⎞
⎠ ≡ (δA)λ =

(
δA(11)c + δA(12)d

δA(21)c + δA(22)d

)
. (A.1)

For pq = 11, 12, 21, 22, we denote Bpq ≡ [
B

pq
x B

pq
z B

pq

θ

]
, and

δA(pq)v ≡ Bpq

⎛
⎝δxc

δzc

δθ c

⎞
⎠ = Bpq

x δxc + Bpq
z δzc + B

pq

θ δθc (A.2)

where v ≡ c for pq = 11, 21, and v ≡ d for pq = 12, 22.
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We now briefly sketch the calculation of the various components of the matrix B. For the
case pq = 11, v ≡ c, and

[δA11c]k =
∑

l

δA11
kl cl =

∑
l

cl

[
�x

(
rc
k − rc

l

)(
δxc

k − δxc
l

)
+ �z

(
rc
k − rc

l

)(
δzc

k − δzc
l

)]
. (A.3)

Define
[
T

pq
x

]
kl

≡ Coefficient of vl

(
δxc

k − δxc
l

)
,
[
T

pq
z

]
kl

≡ coefficient of vl

(
δzc

k − δzc
l

)
.

Further for ς ∈ {x, z, xx, xz, zz, xxx, xxz, xzz, zzz}, define the derivative matrices Φc
ς as[

Φc
ς

]
kl

≡ �ς

(
rc
k − rc

l

)
.

Thus, since vl = cl for pq = 11, T 11
x = Φc

x, T
11
z = Φc

z. Hence, we obtain for
η ∈ {x, z}, B11

η = diag
(
T 11

η v
) − T 11

η �(v), and, B11
θ = 0. Thus

δA11c = B11
x δxc + B11

z δzc. (A.4)

Proceeding similarly for the other cases of pq = 12, 21, 22, we obtain B
pq
η =

diag
(
T

pq
η v

) − T
pq
η �(v). Further,

T 12
x = −Φc

xx�(cos(θc)) − Φc
zx�(sin(θc)) (A.5)

T 12
z = −Φc

xz�(cos(θc)) − Φc
zz�(sin(θc)) (A.6)

T 12
θ = Φc

x�(sin(θc)) − Φc
z�(cos(θc)) (A.7)

with B12
θ = T 12

θ �(d).
In the pq = 21 case

T 21
x = �(cos(θc))Φc

xx + �(sin(θc))Φc
zx (A.8)

T 21
z = �(cos(θc))Φc

xz + �(sin(θc))Φc
zz (A.9)

T 21
θ = −�(sin(θc))Φc

x + �(cos(θc))Φc
z (A.10)

with B21
θ = �

(
T 21

θ c
)
. In the pq = 22 case, we have

T 22
x = −[�(cos(θc))Φc

xxx�(cos(θc)) + sin(�) · ∗Φc
xxz + �(sin(θc))Φc

xzz�(sin(θc))],

(A.11)

where � ≡ θc ⊗1T + 1⊗θcT , where 1 = (1 . . . 1)T is a length m column vector, ⊗ represents
the Kronecker product and the ‘.∗’ is after the Matlab notation for elementwise multiplication.
Also,

T 22
z = −[

�(cos(θc))Φc
xxz�(cos(θc)) + sin(�) · ∗Φc

xzz + �(sin(θc))Φc
zzz�(sin(θc))

]
(A.12)

T 22
θl

= �(cos θc)Φc
xx�(sin θc) − cos � · ∗Φc

xz − �(sin θc)Φc
zz�(cos θc)] (A.13)

T 22
θk

= �(sin θc)Φc
xx�(cos θc) − cos � · ∗Φc

xz − �(cos θc)Φc
zz�(sin θc)] (A.14)

with

B22
θ = T 22

θl
�

(
d) + �(T 22

θk
d
)
. (A.15)
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A.2. Evaluation of Pa

From (18) we can write the matrix P in the following block form:

P =
(

P (1)

P (2)

)
(A.16)

where P (1) and P (2) are m × L matrices with elements

P
(1)
lj = p(j)(rl ) (A.17)

P
(2)
lj = ∇p(j)(rl ) · nl = p(j)

x (rl ) cos θc
l + p(j)

z (rl ) sin θc
l . (A.18)

Hence, we can write

(δP )a ≡
(

δP (1)a

δP (2)a

)
=

( ∑m
j=1 aj

(
q

(1x)
lj δxc

l + q
(1z)
lj δzc

l

)
∑m

j=1 aj

(
q

(2x)
lj δxc

l + q
(2z)
lj δzc

l + q
(2θ)
lj δθc

l

)
)

(A.19)

where for p ∈ {1, 2}, and w ∈ {x, z, θ}, qpw

lj ≡ coefficient of δwc
l in δP

(p)

lj , i.e.,

q1x
lj = p(j)

x

(
rc
l

)
, q1z

lj = p(j)
z

(
rc
l

)
(A.20)

q2x
lj = p(j)

xx

(
rc
l

)
cos θc

l + p(j)
zx

(
rc
l

)
sin θc

l (A.21)

q2z
lj = p(j)

xz

(
rc
l

)
cos θc

l + p(j)
zz

(
rc
l

)
sin θc

l (A.22)

q2θ
lj = p(j)

z

(
rc
l

)
cos θc

l − p(j)
x

(
rc
l

)
sin θc

l . (A.23)

Thus, in compact notation, we can write

(δP )a =
(

�(Q(1x)a) �(Q(1z)a) 0

�(Q(2x)a) �(Q(2z)a) �(Q(2θ)a)

) ⎛
⎝xc

zc

θ c

⎞
⎠ (A.24)

thus yielding Pa (recalling from (40) that (δP )a ≡ Pa

(xc

zc

θ c

)
).

A.3. Evaluation of Pλ

From (A.16) we have

(δP T )λ = (δ(P (1))T δ(P (2))T )

(
c

d

)
= δ(P (1))T c + δ(P (2))T d. (A.25)

Hence

[(δP T )λ]j =
L∑

l=1

[
δ(P (1))Tjlcl + δ(P (2))Tjldl

]
(A.26)

=
L∑

l=1

[
δxc

l

(
clq

(1x)
lj +dlq

(2x)
lj

)
+δyc

l

(
clq

(1z)
lj +dlq

(2z)
lj

)
+δθc

l dlq
(2θ)
lj

]
. (A.27)

Hence, in compact notation,

(δP T )λ = Pλ

⎛
⎝xc

zc

θ c

⎞
⎠ (A.28)
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where

Pλ = {(Q(1x))T �(c)+(Q(2x))T �(d)}{(Q(1z))T �(c)+(Q(2z))T �(d)}(Q(2θ))T �(d). (A.29)

Appendix B

B.1. Method of moments based Jacobian and Hessian

The total field is written as the sum of an incident ambient component, uamb(r, ω), and a
scattered component usc(r, ω; f ), as follows:

u(r, ω; f ) = uamb(r, ω) + usc(r, ω; f ) (B.1)

where

uamb(r, ω) =
∫

Vs

g(r, r′, ω)jn(r
′) dr′ (B.2)

and

usc(r, ω; f ) =
∫

�

g(r, r′, ω)
(
k2

amb(r
′, ω)f (r′)

)
u(r′, ω) dr′, (B.3)

where Vs is the volume enclosing the source distribution and � is the object-domain volume.
The Green function g(r, r′, ω) is the outgoing-wave solution of the equation

�g(r, r′, ω) + k2
amb(r, ω)g(r, r′, ω) = −δ(r − r′). (B.4)

The half-space Green function has been chosen for this work [19, 27].
From section 4.1, we recall the basis decompositions (27) of the following forms for the

parameter function f (.) and the field u(.) :

f (r) =
n∑

j=1

fjψj (r), u(r, ω) =
n∑

j=1

uj (ω)ψj (r), (B.5)

where n is the number of pixels in the image, and, {ψj(r)} is an appropriate basis set; in our
case, we choose it to be the pulse basis i.e., ψj(r) = 1 for r ∈ pixelj and zero otherwise.

Substituting (27) into (B.3), we get

usc(r, ω) =
n∑

j=1

fjuj (f, ω)oj (r, ω) (B.6)

where

oj (r, ω) =
∫

�

g(r, r′, ω)k2
amb(r

′, ω)ψj (r
′) dr′. (B.7)

Considering a point-matching scheme [18], we obtain the expression for the field at a
point x = xi , from (B.6) and (B.1), as

u(ri , ω) = uamb(ri , ω) +
n∑

j=1

fjuj (f, ω)oj (ri , ω). (B.8)

Define the matrices GR and GD corresponding to the sets of receiver points (denoted by
R) and object domain points (denoted by D) respectively, as follows:

GR(i, j) = oj (ri , ω) for xi ∈ R
GD(i, j) = oj (ri , ω) for xi ∈ D,
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where oj (r, ω) has been defined in (B.7), and the ω dependence in the matrices on the left-hand
side have been suppressed for ease of notation.

The Jacobian matrix J(f) is obtained as

J = [Jq,s] (B.9)

where [Jq,s] is the stacked version of the matrices Jq,n for each source frequency ωq , and
source position s, Jq,s being given by [28]

Jq,s = −GR(I − �GD)−1diag
(
uint

q,s

)
(B.10)

Using the following relation [22],

(I − �GD)−1 = I + �(I − GD�)−1GD (B.11)

we obtain a column of the Jacobian matrix as
∂ϑ

∂fi

= −(GR(:, i) + GR�C−1GD(:, i))ui(f) (B.12)

where (:, i) in the argument of a matrix denotes the ith column of the matrix (in Matlab
notation). Hence a second-derivative column-vector can be written as

∂2ϑ

∂fi∂fj

= −(GR(:, i) + GR�C−1GD(:, i))
∂ui(f)

∂fj

− (
G

j

RC−1 + GR�
(
C−1G

j

DC−1))GD(:, i)ui(f), (B.13)

where G
j

R (resp. G
j

D) is the matrix obtained by the zeroing out all columns of GR (resp. GD)
except the j th column.
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