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The problem of reconstruction of a refractive-index distribution in optical

refraction tomography (ORT) with optical path-length di®erence (OPD) data

is solved using two adaptive estimation based extended Kalman ¯lter (EKF)

approaches. First, a basic single resolution EKF (SR-EKF) is applied to a

state variable model describing the tomographic process, to estimate the re-

fractive index distribution of an optically transparent refracting object from

noisy OPD data. The initialization of the biases and covariances corresponding

to the state and measurement noise is discussed. The state and measurement

noise biases and covariances are adaptively estimated. An EKF is then ap-

plied to the wavelet transformed state variable model to yield a wavelet based

multiresolution EKF (MR-EKF) solution approach.

To numerically validate the adaptive EKF approaches, we evaluate them

with benchmark studies of standard stationary cases, where comparative re-

sults with commonly used e±cient deterministic approaches can can be ob-

tained. Detailed reconstruction studies for the SR-EKF and two versions of

the MR-EKF (with respectively Haar and Daubechies-4 wavelets) compare

well with those obtained from a typically used variant of the (determinis-

tic) algebraic reconstruction technique, the average correction per projection

method, thus establishing the capability of the EKF for ORT. To the best of

our knowledge, the present work contains unique reconstruction studies encom-

passing the use of EKF for ORT in single and multi-resolution formulations,

and also in the use of adaptive estimation of the EKF's noise covariances.

c° 2009 Optical Society of America
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1. Introduction

1.A. Optical refraction tomography

The optical refraction tomography (ORT) problem arises in various applications such

as the optical tomography of the atmosphere, non-invasive evaluation of °uid °ows,

°ames, optical ¯bers and other such optically transparent systems. The nonlinear

reconstruction problem in ORT [1] is the deducing of the refractive index distribu-

tion (RID) of an optically transparent medium, from projection data generated by

the propagation of optical waves through the medium under the assumption that

di®raction e®ects are negligible in the propagation process, and only refraction ef-

fects exist. Typically, the data used in this class of tomography includes beam-

de°ections [2], [3], [4], or optical path-length di®erences; interferometric [5], [6], [7], [?]

as well as intensity measurement [9], [10], [11] and wavefront slope measurement based

schemes [12], [13]. In our study, the projection data used is the optical path-length

di®erence (OPD) between the rays propagating through the inhomogeneity to be

imaged and the ambient medium.

1.B. Typical solution approaches

Current approaches to the nonlinear reconstruction problem of ORT can be broadly

classi¯ed into (a) deterministic, and (b) stochastic approaches.

3



The presently used deterministic reconstruction approaches in refraction tomogra-

phy are mostly iterative techniques to solve the nonlinear system of equations relating

the RID to the measured OPD data for all the views under consideration. In vari-

ous application areas, these iterative techniques are mainly variants of the algebraic

reconstruction technique (ART) commonly used in computed tomography, such as

the simultaneous algebraic reconstruction technique (SART) [14], or the average cor-

rection per projection (ACP) [15] method. In addition, regularized weighted least

squares [16], [17] and neural network [18] approaches have been formulated to solve

the refraction tomographic problem. Another less used class of methods [19], [20], [21]

expresses the actual OPD as the sum of a strictly mathematical quantity, the \OPD

without refraction" (the data that would be obtained in a hypothetical experiment

involving the same object, but where refraction has not occurred) and a correction

term. The \OPD without refraction" is then straight path inverted to reconstruct the

unknown RID. Time-varying RIDs have been imaged [22], by making OPD measure-

ments for all views simultaneously, and repeating the process at various time instants.

The RID at each time instant can then be reconstructed using any of the algorithms

mentioned above.

On the other hand, stochastic techniques such as the extended Kalman ¯lter (EKF)

have been investigated because of their Bayesian nature as well as their capability

to be extended to process time series data. In applications of geophysical travel-time

tomography and di®use optical tomography, Eppstein et.al. [23], [24] have formulated
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the stationary reconstruction problem in terms of an approximate EKF approach,

that uses a suboptimal Kalman update to group zones of similar object-parameter

value. On the other hand, for smoothly varying RIDs such as in ORT, Naik et. al. [25],

[26], [8] use respectively single and (wavelet based) multiresolution EKF formulations

to solve the reconstruction problem of ORT. Kolehmainen et. al. [27] have solved

a nonstationary problem in optical di®usion tomography in an EKF setting with

a stationary random walk state evolution model. EKFs have also been applied in

other tomography settings such as EIT [28] and process tomography [29]. Recently

Mukherjee et.al [30] have proposed an EKF to solve a static elastography problem in

a dual-grid reconstruction framework.

1.C. Motivation for the present work

In the case of a Kalman ¯lter based reconstruction approach to the linear or nonlin-

ear inverse problems, a major issue is the computational storage and the operations

associated with the estimation error covariance matrix that depends upon the size of

the state vector being estimated [26]. One way of addressing this issue of compression

is to replace the usual state variables (the RID values on the reconstruction grid) by

some of their wavelet coe±cients via the use of the discrete wavelet transform [31]. In

doing so, one reduces the size of the state vector that otherwise had to be estimated

in the single resolution case, by using the observation that most of the energy of a

smooth signal is contained in its approximate component. We are not aware of any
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wavelet based EKF approach in tomography other than by Naik and Vasu [26].

A wavelet-transformed Kalman ¯ltering approach (that is inapplicable to comput-

erised tomography though), that attempts to reduce the computational requirements

of the ¯lter updates, is suggested by Chin and Mariano [32], [33] for data assimilation

tasks in oceanography and meteorology. They derive a Kalman ¯lter approximation,

by utilizing an assumption that the correlation between a pair of variables decays

exponentially with the distance between the variable locations. A two-dimensional

orthonormal discrete wavelet transformation is used to compress the Kalman ¯lter's

estimation error covariance matrix (EECM), by transforming it into the so called

standard form [34], so as to compute and store only certain elements along certain

bands of a given width. The EECM remains in its compressed form in the wavelet

transform domain throughout the recursive algorithm. This algorithm is not used for

computerised tomography because it uses the spatial locality of the measurements to

impose the exponentially decaying correlation structure on the EECM.

Another aspect of Kalman ¯lters is that they are quite sensitive to the measurement

and state noise related biases and covariances. Many a time it is not very feasible to

have good enough estimates of these covariances. For example, in our work, in order

to reduce the computational burden of solving the two-point boundary value problem

of ray-linking, we use the centre-out strategy for ray-linking [35], which, due to the

data-rebinning strategy it employs to convert the 2-point boundary value problem to

an initial value problem, does not lend itself to yielding an apriori estimate of the
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measurement noise covariance. Further, as is well known, the state noise covariance is a

regularizing/stabilizing in°uence on the reconstructions(by not allowing the EECM to

become too small and thereby not neglecting new measurements), and is incorporated

into the state variable model even in the absence of any actual state noise [40], [27],

[37]. These factors necessitate proper initialization of these parameters, as well as

their subsequent adaptive estimation.

Basically, the problem of Kalman ¯lter tuning is to determine the state and

measurement noise biases and covariances and the initial EECM, such that the result-

ing innovations and sample sequences are consistent in their properties with respect

to their ensemble (i.e., ¯lter estimated quantities) properties ( [36], [37] and refer-

ences therein). In our work, we have chosen not to augment the state vector with the

covariances due to the computational burden, but have estimated it adaptively as the

¯lter processes the measurements as in the seminal work of Myers and Tapley [42].

1.D. Overview of present work

In the present paper, the problem of ORT is solved for the unknown RID in an

EKF setting, using adaptive estimation of the necessary process and noise covari-

ances (rather than assumed apriori values). We present a detailed study of single and

multiresolution EKF reconstruction approaches in ORT. The initialization of the var-

ious biases and covariances in the EKF is discussed. To the best of our knowledge, the

present work contains the only reconstruction studies using EKF for ORT in single
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and multi-resolution formulations with the use of adaptive estimation of the EKF's

noise covariances.

In the present work, reconstruction studies have been demonstrated for the single

resolution EKF (SR-EKF) and two versions of the multi-resolution EKF (MR-EKF)

with respectively Haar and Daubechies-4 wavelets. Results of reconstructions using

both the EKF based approaches, of two synthetic refractive index distributions from

OPD data sets of various noise levels are seen to be comparable with those obtained

from a typically used deterministic approach, the average correction per projection

method, thus establishing the capability of the EKF for ORT.

The layout of the paper is as follows. The SR-EKF and MR-EKF solutions are

described in section 2, with the discrete wavelet transform pre-requisites being the

subject of Appendix A. The initialization of the EECM and the state and measure-

ment noise covariances is explained in section 3. Section 4 contains the numerical

studies, and section 5 the conclusions of this work. For clarity a list of acronyms is

added in Appendix B.

2. Problem de¯nition and EKF reconstruction schemes

2.A. Problem de¯nition

The reconstruction problem in ORT is to estimate the two-dimensional spatial vari-

ation of refractive index, f(x; y) which is embedded in an ambient refractive index,

famb, given the noisy optical path-length di®erence (OPD) data, g(µ; i), for view an-

8



gles µ = µ1; : : : ; µp, and rays i = 1; : : : ;m (as indexed for each view). The noisy OPD

data, g(µ; i), is expressed as,

g(µ; i) = g1(µ; i) + v(µ; i) (1)

with the noiseless OPD g1(µ; i) being given by

g1(µ; i) ´
Z

Ray(µ;i)
f(x; y)ds¡ fambL (2)

where L is the distance between the transmitter and receiver, and, v(µ; i) is a noise

process (frequently assumed Gaussian) representing measurement uncertainties as

well as a possible lack of complete satisfaction of the geometrical optics model of

light propagation through the RID [15], [6].

The ray paths are obtained by ray-tracing, via integrating the eikonal equation,

which is given by

d

ds
(f

dr

ds
) = 5f (3)

where r is the position vector representing the ray path, and ds is a ray path

element. The ray-trace procedure is called a discrete ray-trace or a continuous ray-

trace accordingly as the values of the function f(x; y) are known at every point or

only at a discrete set of points in space respectively [39].

De¯ning f as the row ordered n-vector version of the discrete two-dimensional grid

of refractive index values, the reconstruction problem of ORT is to estimate f , given

g(µi)=A[f ; µi] f + vµi , for i = 1; : : : ; p, where g(µ) is the OPD vector for view angle µ,

9



A[f ; µ] is the projection (ray-path) matrix obtained by numerical ray tracing through

the discretized RID. Thus, the reconstruction problem of ORT is nonlinear since the

ray-path matrix is dependent on the unknown RID (unlike for conventional X-ray

CT).

2.B. The EKF approach

A solution scheme to the above de¯ned ORT problem can be a deterministic or a

stochastic one. The Kalman ¯lter evaluates the minimum mean square error estimate

of a state-vector from noisy observations available for the case of a linear state variable

(SV) model governing the dynamical system being studied. The extended Kalman

¯lter [40], [41] is an extension of the linear Kalman ¯lter to the case of a nonlinear

SV model governing a physical process, where a Kalman ¯lter is applied to a linear

perturbation SV model constructed by linearizing the actual SV model about the

most recent estimate of the ¯lter. The aim of setting up an EKF formulation to

solve the ORT problem is to develop alternative algorithms to existing approaches,

that can ultimately image time-varying RIDs. The present work is limited to time

invariant RIDs, the objective being to demonstrate the viability of an EKF algorithm

to perform the necessary reconstructions.

2.C. Development of the EKF recursions

The nonlinear continuous-discrete state variable (SV) model for the curved ray to-

mographic process is given by the following state and measurement equations. The
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state equation for the view evolution of the RID vector f can be written as

_f(µ) = b[f(µ);u(µ); µ] + w(µ) (4)

where u(µ) is a state bias vector that is adaptively evaluated in practice and for the

static RIDs we are considering in this work, we assume

b[f(µ);u(µ); µ] = 0 (5)

where, w(µ) is assumed to be a zero-mean continuous white Gaussian noise with

covariance E[w(µ)w(¿)] = Q(µ)±(µ ¡ ¿). Since f is modelled as a Gaussian random

vector, it is completely speci¯ed by its mean f̂ and covariance P (also called the

estimation error covariance matrix (EECM)). The process noise w(µ) and the random

initial state f0, both represent the uncertainty in the actual value of the RID.

The measurement equation describing the relation between the RID and the pro-

jection data, for a discrete set of view angles, is

g(µ) = h[f(µ); r(µ); µ] + v(µ); µ = µi; i = 1; 2; : : : (6)

where g(µ) is the measurement vector corresponding to view angle µ, r(µ) is a measure-

ment bias term representing the model error due to the uncertainty in the present

estimate of the RID, and the measurement function h[:; :; :] is given by

h[f ; r; µ] = A[f ; µ]f + r (7)

The measurement noise (vi) (where vi = v(µi)) is assumed to be a zero-mean
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Gaussian white noise process with covariance Cov[vi1 ;vi2 ] = Ri1±i1i2 . In addition

Cov[vi;wi]=0.

An EKF [40], [41] is now applied to the this state variable model (eqs 4, 6) which

re-linearizes the nonlinear system about each new estimate as it becomes available.

The EKF recursions for the ORT problem in the predictor-corrector format are given

in the box below.

In the notation, (f̂k, P̂k) and (¹fk, ¹Pk)) denote the ¯ltered and predicted estimates

respectively obtained after processing measurement gk. The a priori unknown biases

and covariances in the EKF recursions, Qk; rk;Rk are adaptively evaluated in our

present work as the ¯lter processes the measurements by the covariance-estimating

technique proposed by Myers and Tapley [42], which computes the desired covariances

by comparing a calculated estimate with that obtained from the relevant samples of

the biases, using a sliding window of considered measurements. We note that while in

general we can consider a non-zero state bias u that needs to be adaptively estimated,

the ¯xing of the state bias all through the EKF recursions has been justi¯ed by the

observation that both the state and measurement biases cannot be simultaneously

estimated by the Myers and Tapley estimator because of the proportioning of any

one of the biases into the two estimators for the state and measurement covariances

[43]. The speci¯c choice of zero state bias in our work has been justi¯ed by several

simulation runs as well.
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I Initialization: Set f̂0, P̂0, Q̂0, r̂0, R̂0 as explained in Section 3.

For k = 1; 2; : : :, till convergence

II Prediction equations

¹fk+1 = f̂k

¹Pk+1 = P̂k + Q̂k

III Measurement bias and covariance estimation (k ¸ Lr)

(a). Bias sample, rk ´ gk¡Akf̂k where Ak ´ A[̂fk;k] ; Covariance sample ¡k ´ AkP̂kA
0
k.

(b). De¯ning ¨(p; q) ´ (rp ¡ r̂q)(rp ¡ r̂q)
T , ¨1(p; q) ´ (rp ¡ rq)(rp ¡ rq)

T ,

r̂k = r̂k¡1 + 1
Lr

(rk ¡ rk¡Lr)

R̂k = R̂k¡1 + 1
Lr¡1

h
¨(k; k)¡¨(k ¡ Lr; k) + 1

Lr
¨1(k; k ¡ Lr) + Lr¡1

Lr
(¡k¡Lr ¡ ¡k)

i

(c). Shift noise samples : rj = rj+1, ¡j = ¡j+1, j = k ¡ Lr; : : : ; k ¡ 1

IV Kalman Gain

Kk+1 = ¹PkA
T
k [¡k + R̂k]

¡1

V Correction equations (State estimation)

f̂k = ¹fk + Kk(rk ¡ r̂k)

P̂k = (I¡KkAk)¹Pk

VI State noise estimation

(a). ¢k = P̂k¡1 ¡ P̂k

(b). Q̂k = Q̂k¡1 + 1
Lq

³
¢k¡Lq ¡¢k

´

(c). Shift noise samples: ¢j = ¢j+1, j = k ¡ Lq; : : : ; k ¡ 1
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2.D. The \waveletized" EKF

In the case of a Kalman ¯lter based reconstruction approaches to the linear or non-

linear inverse problems, a major issue, is the computational e®ort with respect to

storage and the number of °oating point operations associated with the estimation

error covariance matrix (EECM), P, which in turn depends upon the size of the state

vector being estimated.

Wavelet based solution approaches, in essence, solve the wavelet transformed ver-

sions of the reconstruction problem, and are fundamentally motivated by the generic

property of the wavelet transform that yields a multiresolution decomposition of a

signal into its \coarse" and \¯ne" components in space. The wavelet transform of

the measurement operator \sparsi¯es" it by \focussing" the useful information on a

small number of entries, other coe±cients being small enough to be neglected by an

appropriate choice of a threshold [44], [45]. Further one can motivate \waveletizing"

the respective inverse problems by noting that the expansion of f̂ in a wavelet basis

provides a natural mechanism for adapting the level of detail in the reconstruction to

the information content in the data, thereby stabilizing the solution procedure, i.e.

one can decide the regions of the reconstructions where only the coarse scale estimates

are needed and those where one needs the added detail [38], [46]. Also, orthonormal

wavelets are bases for function spaces containing edgy objects and can be used as

edge preserving regularisers [38], [47].
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In our work, an EKF is applied to the wavelet transformed state variable model

describing the tomographic process, in order to solve the reconstruction problem of

ORT. Denoting the 2D DWT matrix for wavelet transforming f by W2 (see appendix

for details), the wavelet transformed state equation is obtained as

_~f(µ) = ~w(µ) (8)

where ~z = W2z for any two-dimensional concatenated vector z, f~wk(µ)g is the wavelet

transformed continuous noise process with zero mean and covariance E[~w(µ)~w(¿)] =

~Q(µ)±(µ ¡ ¿), where ~Q = W2
~QW0

2.

Denoting the one-dimensional DWT matrix for wavelet transforming a data vector

by W1, the wavelet transformed measurement equation is obtained from eqn(6) as

~g(µ) = ~h[~f(µ);~r(µ); µ] + ~v(µ); µ = µi; i = 1; 2; : : : (9)

where ~h[:; :; :] is given by

~h[~f ;~r; µ] = ~A[~f ; µ]~f + ~r (10)

where ~A = W1AW0
2, and the measurement noise (~vi) (where ~vi = ~v(µi)) is a zero-

mean Gaussian white noise process with covariance Cov[~vi1 ; ~vi2 ] = ~Ri1±i1i2 , where

~R = W1
~RW0

1.

The assumption of uncorrelated noise processes fvkg, and fw(µ)g, each being un-

correlated between views in the original state variable model results in respective,

view-uncorrelated noise processes in the wavelet domain too because of the orthonor-

mality of the DWT matrices.
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In our present work, however we use W1 = I, so that the measurements are not ac-

tually wavelet transformed despite the state vector being so. This has been done since

the results of several simulational runs showed that better results were consistently

obtained by the above choice of W1, rather than setting it to be a DWT matrix.

An EKF is now applied to the above wavelet transformed state variable model

to estimate only the approximate component of the state vector. This is justi¯ed

because of the property that most of the energy in the original RID(assumed to be

a smooth function in ORT applications) is contained in the approximate sub-image

of its wavelet transform. In addition, the above restriction reduces the dimension of

the state vector that has to be estimated, over that in the single resolution case, thus

reducing the computational requirements of the estimation process.

The EKF recursion equations are thus of the same form as in the SR-EKF (in box at

end of previous subsection), with all quantities being replaced by their appropriately

wavelet transformed quantities. We neglect the contribution from the detail part

of the DWT of P, considering that the possibility of spurious detail related error

covariances adversely a®ecting the estimate of ~f , is greater than the possibility of the

detail component of the DWT of f being signi¯cantly di®erent from its ¯rst estimate,

for the smooth RIDs being reconstructed in ORT. Thus, ~Ak[
¹~fk; k] is the approximate

component of the wavelet transform of the ray-path matrix.
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3. Initialization

The initial estimate of the RID, f̂0 is obtained by inverting the noisy OPD data as-

suming no refraction has occurred, by using the convolution backprojection algorithm

commonly used in straight path X-ray tomography, and by subsequent smoothing of

the straight path estimate.

Initialization of the above mentioned biases and covariances is done by semi-

heuristic means outlined below. The initialization of the covariances requires the

stipulation of the a priori EECM, P̂0. In our study, P̂0 has been formed on the basis

of the starting estimate of the RID, f̂0. An initial RID estimate is also needed for the

evaluation of the initial ray-path matrices at the ¯rst iteration, which in turn, along

with the knowledge of P0, are instrumental in yielding the desired initialization of the

model error, r̂0, and noise covariance, R̂0. We now brie°y describe the initialization

of the various parameters.

3.A. Stipulation of P̂0

In practice, in both linear and nonlinear estimation problems, the choice of P̂0 has

a strong bearing on the behaviour of the Kalman ¯lter, especially considering that

in general we do not have good knowledge of the state and measurement biases and

covariances. In our study, we have used a heuristic procedure to estimate P̂0, the

choice of procedure being veri¯ed by several trial simulational runs. The two-step

procedure is as follows:
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Step 1. For every view of the ¯ctitious centre-out ray tracing strategy, obtain the

OPD and the corresponding ray-path matrix by discrete ray-tracing through the

starting estimate of the RID, f̂0, and thus form the concatenated measurement vector

as g and the corresponding ray-path matrix as A[̂f0]. Then evaluate the di®erence

vector (g ¡A[̂f0 ]̂f0).

Step 2. Assuming g ' A[̂f0]f , where f is the actual unknown RID, we evaluate a

rough estimate of 4f0 = (f¡ f̂0) by straight-path inversion of the vector (g¡A[̂f0 ]̂f0).

Now stipulate P0 to be a diagonal matrix, with entries P0(i; i) = (4f(i))2.

We have observed through numerical sensitivity studies around this choice of P0

(with Q and R being adaptively estimated) that the reconstructions have been found

to not change much for modest variation, but for large variation the results do dete-

riorate enormously similar to the feature noticed by Sarkar [37].

3.B. Stipulation of Q0, r̂0 and R̂0

We set the initial state noise covariance, Q̂0 as being the zero matrix. Recall from

the previous section that the state bias is retained at the zero vector all through the

recursions.

The evaluation of the initial measurement noise covariance, R̂0, is presented below.

A covariance estimating approach similar in spirit to the Myers and Tapley procedure

has been used, with the initial measurement bias, r̂0 being evaluated enroute.

An intuitive sample of the sum of the model error bias and the zero mean measure-
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ment noise is

rs
j = gj ¡Ajf̂0 (11)

where here Aj = A[̂f0; j].

Thus, the covariance as predicted by the ¯lter statistics is

Cov(rs
j ) = AjP̂0A

0
j + Rj (12)

where we have assumed gj ' Ajf , f being the actual unknown RID.

Considering the calculated covariance in turn as a random variable, the predicted

(by ¯lter statistics) estimate of Cov(rs
j) over the calculation window is given by the

sample mean of the individual calculated covariances, and is obtained as

Ĉpred
r =

Pj=Lr
j=1 ¡j

Lr

+ R̂0 (13)

where Lr is the length of a calculation window, and,

¡j = AjP̂0A
0
j; R̂0 =

Pj=Lr
j=1 Rj

Lr

(14)

Assuming ergodicity, the unbiased estimate of the covariance as obtained from the

sample over the calculation window can also be found from the relation,

Ĉderived
r =

Pj=Lr
j=1 (rs

j ¡ r̂0)(r
s
j ¡ r̂0)

0

Lr ¡ 1
(15)

where r̂0 is an estimate of the mean of the random process represented by the noise

samples, and is usually computed as the sample mean given by

r̂0 =

Pj=Lr
j=1 rj

Lr

(16)
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The quantity r̂0 is a measure of the initial measurement bias because of the zero mean

assumption on the measurement noise process.

Hence the initial noise covariance R̂k is obtained by comparison of the expressions

for Ĉpred
r and Ĉderived

r as

R̂0 = Ĉmeas
r ¡

Pj=Lr
j=1 ¡j

Lr

(17)

In practice, if any of the entries of the covariance matrix are negative, then we replace

it with its absolute value as suggested in [42].

4. Numerical studies

In order to numerically validate the above presented EKF based algorithms, they are

applied to the reconstruction of mildly refracting RID phantoms.

4.A. Test cases

In the present work, we have considered two mildly refracting phantoms, a double

Gaussian phantom [5], as shown in Fig.1a, and, an axisymmetric Gaussian RID as

shown in Fig.1b. The double Gaussian RID denoted as phantom P1, which might be

representative of the RID in a cross-section of the plume above an unevenly heated

object submerged in water, is given by

f(x; y) = famb ¡ 0:01famb[exp(¡x2 + (y ¡ 0:1)2

0:09
) + exp(¡x2 + (y + 0:5)2

0:04
)] (18)

The axisymmetric single Gaussian phantom, denoted by P2, has the functional
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Fig. 1. (a) Surface mesh pro¯le of phantom P1 (b) Surface mesh pro¯le of phantom

P2

form

f(x; y) = famb ¡ 0:01fambexp(¡x2 + y2

0:18
) (19)

where, following [5], famb = 1:3321.

Noiseless, OPD data is simulated for 16 views and 40 rays per view by continuous

ray-tracing through each of the above RIDs. Subsequently zero mean independent

Gaussian random noise of variances ¾2 = 0:16 and ¾2 = 0:25 are added to the

noiseless OPD data of the ¯rst double Gaussian phantom in turns, to generate two

slightly overdetermined data sets denoted as P1D1 and P1D2, with signal to noise

ratios 21:300dB and 19:4063dB respectively. Zero mean independent Gaussian ran-

dom noise of variances ¾2 = 0:25 and ¾2 = 0:36 are added to the noiseless OPD
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data of the second axisymmetric Gaussian phantom in turns,to generate two data

sets corresponding to the second phantom, denoted as P2D1 and P2D2, with signal

to noise ratios 21:05066dB and 19:17865dB respectively.

4.B. Simulational details and results

The error measure used in our simulations is the average error de¯ned by

errorav =
nX

i=1

(ĵf(i)¡ f(i)j)
Nfmin

(20)

where N is the dimension of the state vector, and fmin is the absolute value of the

minimum value of the actual RID.

The starting estimate of the RID is obtained by straight path inversion of the

projection data using the ¯ltered backprojection algorithm [48], followed by smooth-

ing. The size of the two-dimensional RID reconstruction grid considered is 32 £ 32.

In addition, the discrete ray tracing scheme(to generate the projection matrix for a

nominal value of the RID obtained after processing the OPD data corresponding to

a view) in this work follows the centre-out strategy for ray-linking [35].

The EKF algorithm used in our present study, makes use of, without any loss of

generality, a simpli¯cation [40] in the update procedure for the case of a diagonal noise

covariance matrix, R, with the update recursion equations being modi¯ed as men-

tioned in the introduction of the thesis. The EKF prediction and update recursions

are carried out using the U-D factorisation technique [49], to reduce the susceptibility
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of the EKF to roundo® errors and numeric instability.

In the study presented in this paper, we have implemented the MR-EKF for single-

level wavelet transformations only, using the Haar and the Daubechies-4 (Db-4)

wavelets to perform the DWT operations. The ¯lter coe±cients of two wavelets used

in this work are as below :

The Haar wavelet has the coe±cients :

fh0 = h1 =
1p
2
g; fgk = (¡1)kh1¡k; k = 0; 1g (21)

The Daubechies-4 wavelet has the coe±cients :

fh0 =
1 +

p
3p

2
; h1 =

3 +
p

3p
2

; h2 =
3¡p3p

2
; h3 =

1¡p3p
2

g; fgk = (¡1)kh1¡k; k = 0; 1; 2; 3g

(22)

In the evaluation of the appropriate wavelet transform of the ray-path matrix we

have utilized the scheme suggested by Zhu etal [46]. First, each row is reordered into an

Nx£Ny matrix (where the image we are reconstructing is assumed to be Nx£Ny), to

which the separable transform, W2 is applied. After this separable transformation, we

reorder the transformed matrix back into a row, as before, to obtain an intermediate

matrix that we denote by ~Arow. Then each column of this matrix, we operate W1,

to obtain the transformed projection matrix, ~A.

The a priori constraints used are those relating to the value bounds and support

of the RID. For the axisymmetric phantom, P2, we do not utilize its axisymmetry

as an a priori constraint. In the present studies, it has been observed after many
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simulational runs that reasonable convergence to the actual estimate is invariably

obtained in a couple of iterations itself. The convergence criteria used in our study

is a combination of the average error estimated and visual perception of features of

interest. Owing to the dependence of the ray path matrix on the computed estimate,

the algorithms, after achieving a \best" estimate, tend to diverge away from that value

due to e®ects of ¯nite precision and roundo® errors. This phenomenon of divergence

has been observed in this class of problems in past studies too [5], [15], and recourse

to stopping the reconstruction process after a ¯xed number of iterations has also been

suggested in other works [50]. In our work, after the application of the object support

constraint, we have N = 553 for the SR-EKF, n = 152 for the Haar wavelet based

EKF, and n = 181 for the Db-4 wavelet based EKF.

Figures 2-9 give the surface mesh plots and cross-sectional reconstructions for the

two phantoms, obtained after two iterations (an iteration being one complete pass

through the projection data) from the SR-EKF, MR-EKF and ACP algorithms, for

various noise levels of the projection data. The quantity plotted in all the ¯gures is

1000(f(x; y) ¡ famb). The cross-sectional ¯gures plot the RID estimate through the

plane x = 0, i.e, 1000(f(x = 0; y) ¡ famb). We observe that across the test cases

considered, the EKF based algorithms achieve comparable performance to the ACP,

both with respect to the error estimates and visual perception. As expected in the

MR-EKF, we observe that the (smoother) Db-4 wavelet based MR-EKF does better

than the Haar EKF. The observation that the cross sectional images of the SR-EKF
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in general track the features of interest better than the MR-EKF indicates that the

use of the detail components in certain regions of the reconstruction needs to be

considered for more accurate reconstruction. The average errors obtained after two

iterations for the multiresolution and single resolution EKF, and ACP algorithms are

tabulated below.

Data set Haar MR-EKF Db-4 MR-EKF SR-EKF ACP

P1D1 2:3525% 1:8052% 1:7982% 1:8354%

P1D2 2:3991% 2:1118% 2:1536% 2:2157%

P2D1 3:1236% 3:0939% 2:6084% 2:4784%

P2D2 3:4932% 3:2353% 3:2012% 2:9946%

The comparability of EKF and ACP results are signi¯cant since the ACP approach

(and its SART or SIRT type cousins) are among the most e±cient algorithms for

static RIDs. These benchmarking studies thus give the necessary pre-requisite insight

necessary for the use of the EKF in ORT for cases where the RIDs may be varying

in time.

5. Conclusions and further directions

The problem of refractive-index reconstruction in ORT with optical path-length dif-

ference (OPD) data is solved using two adaptive estimation based EKF approaches.

A single resolution EKF (SR-EKF) is applied to a state variable model describing

the tomographic process, to estimate the RID of an optically transparent refracting

object from noisy OPD data. The state and measurement noise biases and covariances
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Fig. 2. Reconstructed surface mesh pro¯les of the phantom P1 obtained for the data

set P1D1 after the second iteration by (a) the Haar MR-EKF, (b) the Db-4 MR-EKF,

(c) the SR-EKF, and, (d) the ACP algorithm.
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Fig. 3. Reconstructed pro¯les of the x = 0 plane of phantom P1 obtained from the

EKFs(dashed curves), as compared to ACP (dot-dash curve) algorithm and the actual

pro¯le (solid line) for the data set P1D1 after the second iteration by (a) the Haar

MR-EKF, (b) the Db-4 MR-EKF, and, (c) the SR-EKF algorithm.
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Fig. 4. Reconstructed surface mesh pro¯les of the phantom P1 obtained for the data

set P1D2 after the second iteration by (a) the Haar MR-EKF, (b) the Db-4 MR-EKF,

(c) the SR-EKF, and, (d) the ACP algorithm.
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Fig. 5. Reconstructed pro¯les of the x = 0 plane of phantom P1 obtained from the

EKFs(dashed curves), as compared to ACP (dot-dash curve) algorithm and the actual

pro¯le (solid line) for the data set P1D2 after the second iteration by (a) the Haar

MR-EKF, (b) the Db-4 MR-EKF, and, (c) the SR-EKF algorithm.
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Fig. 6. Reconstructed surface mesh pro¯les of the phantom P2 obtained for the data

set P2D1 after the second iteration by (a) the Haar MR-EKF, (b) the Db-4 MR-EKF,

(c) the SR-EKF, and, (d) the ACP algorithm.
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Fig. 7. Reconstructed pro¯les of the x = 0 plane of phantom P2 obtained from the

EKFs(dashed curves), as compared to ACP (dot-dash curve) algorithm and the actual

pro¯le (solid line) for the data set P2D1 after the second iteration by (a) the Haar

MR-EKF, (b) the Db-4 MR-EKF, and, (c) the SR-EKF algorithm.
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Fig. 8. Reconstructed surface mesh pro¯les of the phantom P2 obtained for the data

set P2D2 after the second iteration by (a) the Haar MR-EKF, (b) the Db-4 MR-EKF,

(c) the SR-EKF, and, (d) the ACP algorithm.
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Fig. 9. Reconstructed pro¯les of the x = 0 plane of phantom P2 obtained from the

EKFs(dashed curves), as compared to ACP (dot-dash curve) algorithm and the actual

pro¯le (solid line) for the data set P2D2 after the second iteration by (a) the Haar

MR-EKF, (b) the Db-4 MR-EKF, and, (c) the SR-EKF algorithm.
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are adaptively estimated. The initialization of the biases and covariances correspond-

ing to the state and measurement noise is discussed. An EKF is then applied to the

wavelet transformed state variable model to yield a wavelet based multiresolution

EKF (MR-EKF) solution approach.

The SR-EKF and two versions of the MR-EKF (with respectively Haar and

Daubechies-4 wavelets) are validated by numerical studies of reconstructions of two

synthetic RIDs from OPD data sets of various noise levels. The EKF results com-

pare well with those obtained from an e±cient typically used variant of the algebraic

reconstruction technique, the ACP method, thus establishing the capability of the

adaptive estimation based EKF for ORT. To the best of our knowledge, this work con-

tains unique reconstruction studies in ORT encompassing the single/multi-resolution

EKF, and the use of adaptive estimation of the EKF's noise covariances in nonlinear

tomography.

The results obtained in this work thus provide a good understanding and validation

of the use of adaptive EKFs in the ORT problem and provide the essential pre-

requisite for interesting issues that need to be addressed in future works, including

(a) the development of schemes for time-varying RIDs, and, (b) the development

of \adaptive re¯nement" schemes that add/delete detail coe±cients in the wavelet

domain.
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Appendix A:Orthonormal discrete wavelet transform

Consider a vector f , of length N = 2¡p, for some positive integer p. Introduce the

function f(x), de¯ned as

f(x) =
N¡1X

k=0

fkÁ¡p;k(x) (23)

where Áj;k(x) = 2¡j=2Á(2¡jx¡ k),

where Á0;0(x) = Á(x), is the scaling function, which in our present work is taken to be

of compact support. We denote the corresponding mother wavelet of compact support

as Ã(x).

The discrete wavelet transform (DWT) [31], [51], [52], of the signal f , is constituted

by the coe±cients of the expansion of f(x) in (a) the \approximate" subspace spanned

by the basis set fÁ¡p+j;k(x)jk 2 Zg, and (b) the \detail" subspaces spanned by basis

set fÃ¡p+i;k(x)ji = 1; 2; : : : ; j; k 2 Zg, where, Ãj;k(x) = 2¡j=2Ã(2¡jx¡ k).

De¯ne,for ¯xed M, and given N , the ¯lters, HM
N ; GM

N : l2 ! l2 as

(HM
N f)l =

X

k2Z

hk¡2lfk (24)

(GM
N f)l =

X

k2Z

gk¡2lfk (25)

where Á(x) =
p

2
P2M¡1

k=0 hkÁ(2x¡ k)

where only h0; h1; : : : ; h2M¡1 2 R have nonzero values, and Ã(x) =

p
2

P2M¡1
k=0 gkÁ(2x ¡ k), with gk = (¡1)kh2M¡1¡k. Periodising the matrix forms of

the above operators, to avoid edge e®ects for M > 1, we get the N=2 £ N matrix

representation of the above operators, HN and GN (where the M in the superscript
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has been left out for ease of notation), as

HN =

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

h0 : : : h2M¡1

h0 h2M¡1

h2M¡2 h2M¡1 h0 : : : h2M¡3

h2 : : : h2M¡1 h0 h1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

(26)

GN is of the same form as HN , with the gk replacing the corresponding hk. Operating

these matrices on f has the same result as operating the originally de¯ned ¯lters

on a periodized version of f . The N=2 length vectors AN f and GN f are called the

approximate(low-pass ¯ltered version) and detail (high-pass ¯ltered version) compo-

nents respectively, of the DWT of the signal f . Hence the DWT, ~f , of the signal f at

level j is given by [52]

~f (j) = W
(j)
1 f =

0
BBBBBBBBBBBBBBBBBBBB@

HN=2j¡1

...

GN=22HN=2

GN=2HN

GN

1
CCCCCCCCCCCCCCCCCCCCA

(27)

where the suitably formed wavelet transform matrix, W
(j)
1 is an orthonormal matrix,

the subscript in W denoting the dimensionality of the transformed signal.
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The decomposition scheme of a two-dimensional N £ N image, F, based on 2D

separable multiresolution wavelet bases is a straightforward extension of the 1D case.

The 2D discrete wavelet transform(DWT) [31], [51], ~F(1) of the image F, at level

j = 1, is given by,

~F(1) = W
(1)
1 FW

(1)0
1 (28)

The image ~F(1) consists of one approximate sub-image, A(1), and three detail sub-

images, D(1)
¸ , ¸ = 1; 2; 3, which are given by, A(1) = HNFH0

N , D(1)
1 = HNFG 0N ,

D(1)
2 = GNFH0

N , and D(1)
3 = GNFG 0N .

De¯ning f as the vector obtained by lexicographically ordering the image F, we

obtain the wavelet transformed vector ~f as,

~f (j) = W
(1)
2 f (29)

where W
(1)
2 = W

(1)
1 W

(1)
1 ,  denoting the Kronecker product.

Appendix B: List of acronyms

ACP : Average correction per projection, ART : Algebraic reconstruction technique,

DWT : Discrete wavelet transform, EECM : Estimation error covariance matrix, EKF

: Extended Kalman ¯lter, MR-EKF : Multiresolution EKF, OPD : Optical path-length

di®erence, ORT : Optical refraction tomography, RID : Refractive index distribution,

SART: Simultaneous algebraic reconstruction technique, SR-EKF : Single resolution

EKF, SV : State variable.
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