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Abstract—Target tracking in wireless sensor networks is

an important area of research with applications in both the

military and civilian domains. One of the most fundamen-

tal and widely used approaches to target tracking is the

Kalman filter. In presence of unknown noise statistics there

are difficulties in the Kalman filter yielding good results. In

Kalman filter operation for state variable models with near

constant noise and system parameters, it is well known

that after the initial transient the gain tends to a steady

state value. Hence working directly with Kalman gains it

is possible to obtain good tracking results dispensing with

the use of the usual covariances. The present work applies

an innovations based cost function minimization approach

to the target tracking problem in wireless sensor networks,

in order to obtain the constant Kalman gain for both

the stand-alone and data-fusion modes. Our numerical

studies show that the constant gain Kalman filter gives

good comparative performance in both the stand-alone and

data-fusion modes for the target tracking problem. This

is a significant finding in that the constant gain Kalman

filter circumvents or in other words trades the gains with

the filter statistics which are more difficult to obtain. To

the best of our knowledge, these are the only studies of

a constant gain Kalman filter in wireless sensor network

scenarios, that also incorporate data fusion.

I. INTRODUCTION

A wireless sensor network (WSN) is a spatial dis-

tribution of autonomous devices capable of interacting

with each other by way of information exchange while

sensing environmental and habitat changes. They are

capable of cooperating to aggregate information and

transferring the same on a hop by hop basis [1]. Such

a set of devices by versatile deployment can be used

to monitor or track objects in their vicinity, measuring

position and or velocity of the object. One of the most

widely used target tracking algorithms is the Kalman

filter (KF) [2]. However the KF solution is a formal sol-

ution in the sense that it is optimal only when the noise

statistics in the form of the state and measurement noise

covariances (Q and R respectively) as well as the initial

state error covariance (P0) , is available a priori. Thus

tuning of these parameters is important to achieve good

performance of the filter algorithm.

Tuning is a still not a well researched field though

some studies have been made such as the innovations

adaptive estimation (IAE) based method by Mehra [3]

who showed its use in correlation and covariance match-

ing techniques. Myers and Tapley [4] formalized this

method in an effective manner to provide a mechanism

for online adaptive tuning for Q and

R. More recent studies provide a combination of the

innovation based IAE and adaptive faded Kalman filter

(AFKF) in a hybrid scheme proposed in [5]. This scheme

is applied for navigation sensor fusion and may not be

well suited to our requirements. Another alternative is

[6] which makes use of the IAE and proposes a cost

function approach. Gemson, Ananthasayanam proposed

a scheme for an adaptive extended Kalman filter in [7]

to obtain P0, Q and R using the minimization of the cost

function based on innovation.

Constant gain Kalman filters (CGKF) have been stud-

ied in [8-11]. However these involve working with the

above filter statistics P0, Q and R which may not be

optimal or near optimal and then deriving the constant

Kalman gains. Recently a simple cost function mini-

mization based CGKF approach has been suggested by

Anil Kumar et al [11] in a problem concerned with

prediction of re-entry of risk objects wherein they have

used a genetic algorithm (GA) based minimization of an

innovation cost function to compute an optimal constant

gain matrix. In our work in a WSN target tracking

problem using a similar cost function approach [6,11].

What is further known as a fundamental observation is

978-1-4673-2605-6/12/$31.00 © 2012 IEEE



that the KF gain stabilizes to a constant value after

some point of time during the filter (algorithm) operation

under conditions that the covariance matrices R,Q do not

change subsequently. So the conceptual change involved

is that one now works with the Kalman gain rather than

the error and noise covariances (P,Q,R). It is typically

observed that the filter estimates obtained are more

robust to variation in gain as against variation in the

error and noise covariances.

Data Fusion (DF) is another critical aspect in WSN.

The distributed and energy constrained architecture of

these net- works require development of an efficient

algorithm that fuses together the information from mul-

tiple sensors to track the target more accurately than

a single sensor. The two fundamental methods studied

and analyzed are the state and measurement fusion tech-

niques (SF,MF respectively) [12]. The paper extrapolates

the results of CGKF for the stand-alone (SA) case and

applies them to the DF scenario as well.

The main contribution of this paper is the following

1) The application of an innovations cost function based

CGKF to a target tracking problem in WSN. The re-

sults are compared to those obtained from a reference

KF (where noise covariances are assumed known) and

further 2) The CGKF is applied to the tracking problem

in a DF mode emulating the WSN environment. To the

best of our knowledge such studies have not been carried

out so far.

The paper is organized as follows. Section II describes

the state variable (SV) model which defines the problem

and the type of target being tracked. Section III gives the

theory of the CGKF. Section IV defines the same for the

DF mode. Section V contains the numerical studies and

results. Section VI provides a summary and discussion

of the results.

II.STATE VARIABLE MODEL

A) Problem Description and Scope

The objective is to track the target successfully based

on the prerequisite of sensor positions being known a

priori. The target trajectory considered is assumed to be

a straight line between measurement time instants with

minor perturbations of random nature in the slope. These

perturbations appear in the SV model described later as

part of the control input. The nodes are deployed in a

random manner. Node localization and subsequent local-

ization of target based on this knowledge, is altogether a

problem in itself which has been well handled by several

authors. Standard techniques based on triangulation and

trilateration [13,14] exist. The scope of present works is

based on the fact that node positions as well as target

positions are known or determined by the mentioned

methods and hence we limit ourselves to employing

a target tracking algorithm after having obtained this

necessary and vital information. In this paper we focus

on the crux of the tracking application which is the

algorithm itself and its modified version incorporating

DF which is a step in moving towards realization of a full

tracking application within the sensor network domain.

B) State Variable Model

A two dimensional model for the target tracking

problem is

State Equation:

Xt+1 = AXt + U + wt (1)

: where state vector is Xt =





x(t)
y(t)
m(t)



, state transi-

tion matrix A =





1 0 0
0 1 △t

0 0 1



, control input U =





△t

0
0



 and wt represents system noise. Here we

have considered the state vector to include X and Y

coordinates of the target as well as the slope and in effect

direction of the moving target.

Measurement Equation:

Yt = CXt + nt (2)

: where Yt is the measurement vector,C =
(

1 0 0
0 1 0

)

, ntis measurement noise

It is important to mention that sensor nodes depending

on their cost and configuration may not be capable of

providing coordinate measurements which are indepen-

dent of one another as is described above (refer to the

measurement matrix C). The prerequisite for the present

work is that this information or an algorithm to this effect

is either inbuilt into the node as in [15] or is calculated

as in [16] prior to employing the tracking algorithm.

III. CONSTANT GAIN KALMAN FILTER

A) Motivation

Under conditions when the system, measurement and

state error covariances Q, R and P0 makes the filter to

stabilize after sometime and stabilizes the gain matrix.



This motivates us to determine this value of the gain

matrix and use it to track the target effectively right

from the beginning. Typical CGKF settings have been

analyzed and described in works such as [8-11]. The

fact that the Gain stabilizes is observed from plot of the

Filter Gain K versus the predicted error covarianceP .

A typical example of this plot is shown in the Figure. 1.
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Fig. 1. Gain K vs error covariance matrix P

It is seen from the figure. 1 that 1) The gain K

stabilizes to a steady state value at a certain given point

of time. 2) As the gain reaches a steady state value the

predicted error covarianceP also reduces to a steady state

value indicative of the fact that the filter is tracking the

target quite well at this point of time. Thus the above

reasons show the advantage in the use of the CGKF

approach in tracking the target.

B) The Estimation Scheme

The generic KF updates are

X̂t = X̄t +Ktvt (3)

where the the innovations sequence is vt = Yt − CX̄t.

The standard KF computes the gain matrix Kt using the

noise and state error covariances while we proceed to

estimate this optimal value of Kt (denoted henceforth by

K∗ ,representative of the constant gain) for the CGKF,

by solving an optimization problem. It is well known

that the innovations sequence of a KF converges to

a zero mean white Gaussian process. Maximizing this

probability leads us to the following solution

(K∗,R∗) = argminK,RJ(K,R) (4)

where the cost function is

J(K,R) =
1

N

N
∑

t=1

(vTt Rvt + log(|R|)) (5)

and R represents the covariance of the innovations vt .

In order to solve the optimization problem we can either

use local gradient based methods (such as Newton type

schemes) or global schemes such as a GA [17]. As the

filter tracks the target the gain K is seen to stabilize

to a value given by the solution of the above problem.

Alternatively a residual instead of an innovations based

cost function approach may be adopted wherein vt in

equation 5 is replaced by vt = Yt − CX̂t. But in our

studies and analysis of results it was found that both

approaches give comparative performance. Hence we

proceed in our current work to show results based on

an innovations cost function approach. Once we have

computed the optimal K∗ the KF recursions without the

usual covariances become

Predict :

Xt+1 = AX̂t+1 + U (6)

:

Update:

X̂t+1 = Xt+1 +K∗(Yt+1 − CX̄t+1) (7)

: We observe that the typically expensive covariance

time update step is not needed in the constant gain

approach. The KF is considered to be running at one

of the nodes ideally as part of the cluster head node

(CHN) within the vicinity of the target location .

IV. DATA FUSION ASPECTS

The necessity of DF in WSN is integral to its dis-

tributed architecture.The WSN consists of distributed

group of nodes which collaborate to combine individual

information states of a target in a manner so that the

consolidated information state so obtained is better (less

uncertainty regarding the target) than the information

states of the ISN. In order to obtain the consolidated

information state or in other words to combine the

estimates or measurements of the individual nodes , DF

is employed.

Typically fusion is either state based [18], mea-

surement based [19] or a combination thereof [20].

State fusion techniques combine state estimates from

the ISN. Measurement fusion techniques combine the

raw measurements of the target obtained from the ISN

at the CHN Level. In hybrid (state & measurement)

fusion techniques [19] CHN uses measurements from

neighbouring sensors as well as their state estimates in



forming its own estimates , over time the sensors reach a

consensus on the state. A distributed KF is implemented

in the form of a combination of sensor nodes which

constitute the WSN. Two types of nodes exist based

on computational resources 1) Individual sensor nodes

(ISN) - These are capable of making measurement of

the target position and depending on the type of fusion

method may be considered (SF or MF technique) to run

a light weight form of the tracking algorithm (SF). 2)

CHN - These are capable of running a more complex

form of the tracking algorithm based on the fusion

method employed. Thus these nodes unlike the ordinary

nodes need to first fuse either states or measurements of

the target or a combination of both prior to employing

the target tracking algorithm. The two basic methods

of DF are described in [12]. In our work we have

currently obtained results in a measurement fusion based

framework given below for completeness [18]

Yt =

∑N
i=1

(wi
tY

i
t )

∑N
i=1

wi
t

(8)

Ct =

∑N
i=1

(wi
tC

i
t)

∑N
i=1

wi
t

(9)

Rt =

∑N
i=1

(wi
tR

i
t)

∑N
i=1

wi
t

(10)

where Yt, Ct and Rt are the composite measurement

vector, measurement matrix and measurement noise

covariance matrix respectively obtained by combining

respective components from the N sensors sensing the

target at that specific time instant. wi
t is the weight

allotted to the ith sensor. This represents the probability

of the correctness of the specific parameter with regard

to the ith sensor. The possible choices for the weights

are based on [19,21] and given by

wi
t =

1

Ri
t

(11)

wi
t =

1

(dit)
r

(12)

where Ri
t represents the measurement noise covariance

matrix of the ithsenor , dit the distance of the ithsensor

from the target and r represents the path loss exponent.

In our simulations we have used (11) for the simple

reason that distance dit varies for every sensor while

Ri
t is a fixed modeling parameter representative of the

measurement error covariance. In practical applications

this value would be calibrated and considered uniform

for all sensors, hence here we choose this as a choice

for the weight as opposed to the path loss exponent

option. All the other steps in the standard KF or CGKF

remain the same. We observe that in the SV model for

DF only measurement vector, measurement matrix and

the measurement noise covariance matrix are enhanced

accordingly while all other steps remain same. The

algorithm runs in the CHN based on measurements

obtained from ISN.

In Raol, [pg 72-73,12] a comparison between state and

measurement fusion techniques has been provided which

shows that measurement fusion techniques are found to

be more accurate than their state fusion counterparts. The

same findings have been corroborated by us for the state

and consensus fusion methods (hybrid method combin-

ing both state and measurement fusion ,[20]), wherein

during the course of simulations it was observed that

tracking was not successful for fusion cases involving

more than two senors. Thus in the present work we

focus on a presenting results for one of the measurement

fusion techniques namely weighted fusion which is less

computationally expensive while not compromising on

performance.

V) NUMERICAL STUDIES

Stand alone mode

The two dimensional numerical studies have been

carried out an a set of forty data points with the following

system and measurement covariances matrices being

used to generate the simulated track

Q = .01I , R = .1I

Error metric used is Percentage Fit Error (PFE)

defined as PFE = |Xt−X̄t|
|Xt|

× 100 which represents

the difference between the estimated and actual track.

The error metric shown in tables is the average value

computed over 1000 runs while the plots correspond

to one specific run wherein results are presented in

the form of plots of the simulated target trajectory,

simulated measurements and the estimated track against

time. Figure. 4 illustrates the plot of the actual track and

error against time. This proves that the algorithm is able

to track the target reasonably well since the magnitude

of error in estimation of the target trajectory is much

less in comparison to that of the actual track. Figures.

2-4 and Table. I show that the performance of the CGKF

is comparable to the reference KF which uses complete

knowledge of system parameters unlike the CGKF which

works with only the constant gain. This provides the

necessary justification in using the CGKF for the target

tracking problem in SA mode as well.
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Fig. 2. Reference Kalman filter:SA mode
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Fig. 3. Constant gain Kalman filter:SA mode
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Fig. 4. Error vs actual track:SA mode

Filter PFE

Reference KF 20.6703%

CGKF 15.6099%
TABLE I

ERROR METRIC: SA MODE

Filter PFE:2 Sensor fusion PFE:4 Sensor fusion

Reference KF 19.3873% 16.7898%

CGKF 17.6856% 16.2528%
TABLE II

ERROR METRIC:DATA FUSION MODE

Data fusion mode

The two dimensional numerical studies for fusion have

been carried out based on two and four sensors for

a set of forty data points. The following system and

measurement covariances matrices have been used to

generate the simulated track.

Q = .01I , R = .1I

The error metric shown in tables is the average value

computed over 1000 runs while the plots correspond

to one specific run wherein results are presented in

the form of plots of the simulated target trajectory,

simulated measurements and the estimated track against

time. Results are presented for the case of two and four

sensor DF case, in Figures. 5-10. From Figure. 7 and

Table. II. The measurement track displayed in the figures

is the composite weighted measurement, based on mea-

surements obtained from the sensors. Thus we present

results based on the weighted method here which is less

computationally intensive than the We observe that the

magnitude of error is much less in comparison with the

actual track indicating the satisfactory performance of

the tracking algorithm. Following are the deductions.

1) The CGKF performance in the case of two and four

sensor fusion is comparable with that of the reference

KF which justifies our use of the CGKF for the target

tracking problem in WSNs.

2) The PFE for four sensor fusion case is compar-

atively less than the corresponding values for the two

sensor fusion case thereby justifying the use of DF in

WSN in order to increase our tracking efficiency.

3) It has been noticed that even when the steady

state gains obtained based on the filter statistics is

substantially reduced the filter is tracking the target well

after the transient. This shows the robustness of working

with the Kalman gain instead of the statistics.
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Fig. 5. Reference Kalman filter: 2 sensors DF mode
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Fig. 6. Constant gain Kalman filter: 2 sensors DF mode
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Fig. 7. Error vs actual track:2 sensors DF mode

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

5

10

15
Actual and Measured Track

0 1 2 3 4 5 6
0

5

10

15

XAxis(s)

Y
A

x
is

(m
)

Path Tracking :Reference Kalman Filter

 

 

Actual

Measured

Estimated

Fig. 8. Reference Kalman filter: 4 sensors DF mode
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Fig. 9. Constant gain Kalman filter: 4 sensors DF mode
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Fig. 10. Error vs actual track:4 sensors DF mode



VI. CONCLUSION

The results obtained show the CGKF performing

comparably with a reference KF in both SA and DF

modes of operation. This is a significant finding since

the CGKF circumvents, or in other words trades the

gains with the filter statistics which are more difficult

to obtain. The present results prove that the CGKF is

successful in target tracking applications where uncer-

tainty regarding noise statistics generally exist. To the

best of our knowledge, these are the only studies of a

constant gain Kalman filter in wireless sensor network

scenarios, that also incorporate data fusion.
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