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The dynamic reconstruction problem in tomographic imaging is encountered in several applications, such
as species determination, the study of blood flow through arteries/veins, motion compensation in medical
imaging, and process tomography. The reconstruction method of choice is the Kalman filter and its var-
iants, which, however, are faced by issues of filter tuning. In addition, since the time-propagation models of
physical parameters are typically very complex, most of the time, a random walk model is considered. For
geometric deformations, affine models are typically used. In our work, with the objectives of minimizing
tuning issues and reconstructing time-varying geometrically deforming features of interest with affine in
addition to pointwise-normal scaling motions, a novel level-set-based reconstruction scheme for ray tomog-
raphy is proposed for shape and electromagnetic parameters using a regularized Gauss-Newton-filter-
based scheme. We use an implicit Hermite-interpolation-based radial basis function representation of
the zero level set corresponding to the boundary curve. Another important contribution of the paper is
an evaluation of the shape-related Frechet derivatives that does not need to evaluate the pointwise
Jacobian (the ray-path matrix in our ray-tomography problem). Numerical results validating the formu-
lation are presented for a straight ray-based tomographic reconstruction. To the best of our knowledge, this
paper presents the first tomographic reconstruction results in these settings. © 2014 Optical Society of
America

OCIS codes: (110.3010) Image reconstruction techniques; (110.6955) Tomographic imaging;
(110.6960) Tomography.
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several situations, such as process tomography [1],

The problem of reconstruction of time-varying para-
meters from tomographic measurements appears in
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biomedical tomography [2-4], and species analysis
[5,6]. Typical solution schemes in the literature
for such problems have been via the use of Kalman
filters and their variants, such as the nonlinear
extended Kalman filter in applications such as elec-
trical impedance tomography [1], diffuse optical


http://dx.doi.org/10.1364/AO.53.006872

tomography [(2,3], infrared species tomography of
transient flow fields [5], and reconstruction of a
time-varying state vector containing physical and/
or shape parameters, or via the use of variational
schemes such as in [7,8].

The main issues in such reconstructions are typi-
cally about having an awareness of the nature of dy-
namics of the state, tuning the Kalman filter for the
various filter covariances, and knowing the amount
of information that can be realistically reconstructed
from the typically limited data available in situa-
tions in which the object undergoes a transition
between two measurements.

Ifthe state is a pointwise physical parameter (such
as refractive index, absorption coefficient, or electri-
cal impedance as the case may be), its dynamics are
typically not easily known and it is mostly modeled
as a random walk. Considering the limited data
available in situations in subsurface imaging or
high-speed imaging, the object is typically repre-
sented in terms of its shape and any physical/
electromagnetic parameter characterizing it. In such
representations, the dynamics have been typically
assumed to be of the class of affine transformations
[7] with possibly unknown components [8]. Also, con-
sidering that the actual pointwise state dynamics
can be very complex, estimating the dynamics in a
geometrical deformation setting gives extremely
valuable insight into the actual behavior of such time
variations.

“Shape-based” approximate reconstruction
schemes broadly fall into two categories. The first
class has as unknowns the coefficients in an explicit
parametric representation for the boundary curve(s),
while in the latter class, the unknowns are the values
of a set function representing the image, with the zero
level set of that function implicitly representing the
boundary. While the first (explicit-representation)
class of schemes (as in [9-14]) has the advantage of
fewer unknowns, which is useful in potential three-
dimensional reconstructions, the second (implicit-
representation) class [6,15,16] is better suited to
handle topological changes in the evolving shape of
the boundary. Radial basis function (RBF)-based
implicit-representation reconstruction schemes were
first suggested in [17] followed by recent works such
as [18,19], extending the capability of the approaches
in [10,14] by allowing for topological changes, while
retaining their advantage over conventional implicit-
representation schemes of having few unknowns.
A detailed literature survey of these various classes

In recent works [18,19], a compactly supported
RBF-based parameterized level-set representation
with centers in the interior of the domain (the centers
in [17] are placed on the boundary) is used to solve
single and multi-objective reconstruction problems
in static nonlinear tomographic settings.

The contribution of our present work is to set
up the framework for the time-varying shape-
reconstruction problem with unknown boundary

dynamics in an RBF-based level-set parametrization
with respect to a regularized Gauss—Newton-filter
scheme. In addition, we assume the class of shape
transitions to be of a nonlinear kind, consisting of
the affine class [20] in addition to a pointwise-normal
scaling. Another contribution of the paper is an
evaluation of the shape-related Frechet derivatives
that does not need to evaluate the pointwise
Jacobian (the ray-path matrix in our ray-tomography
problem).

The Gauss—Newton filter [21] is a batch estimator
of time-varying states and overcomes to quite an ex-
tent the tuning issues of nonlinear Kalman filtering.
Also, scaling along the normal at a boundary point is
a deformation that is natural with respect to level-set
schemes since only boundary perturbations along the
normal are considered in these. This “naturalness” of
normal deformations is emphasized in the case of
Hermite-RBF-interpolation-based representations
with centers on the boundary, since the normals at
the RBF centers are reconstructed along with the
center coordinates. To the best of our knowledge, this
paper presents the first tomographic reconstruction
results in these settings.

An object’s boundary is defined implicitly as the
zero level set of an RBF fitted to boundary parame-
ters comprising the locations of a few points on the
curve (namely the RBF centers) and the normal vec-
tors at those points. The e.m. parameter recon-
structed is the difference of the refractive indices
of the object and the ambient space, and is repre-
sented by coefficients in a suitable global basis.
An objective functional w.r.t. time-varying boundary
and e.m. parameters is set up, and required
Frechet derivatives are calculated. Reconstructions
are obtained by using an iteratively regularized
Gauss-Newton-filtering scheme for this almost rank-
deficient problem.

The layout of this paper is as follows. Section 2
gives the problem formulation, and Section 3 evalu-
ates the shape derivatives for the regularized Gauss—
Newton solution scheme. Validating numerical
studies in straight-path tomography test cases are
carried out in Section 4. Section 5 presents the con-
clusions of our study. Appendix A gives the RBF in-
terpolation matrix and level-set derivative, and
Appendix B gives the Jacobian matrix corresponding
to the state-transition model considered in our work.

2. Problem Statement

The fundamental reconstruction problem is the re-
covery of a time-varying spatially finitely supported
electromagnetic parameter such as the refractive
index or attenuation coefficient a(r,#) from line-
integral measurements at different views corre-
sponding to different time instants.

The line-integral measurements obtained at each
time instant can be written as

pL(®) = /L a(r. £)ds. D
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where L corresponds to the line in object space along
which the ray integral is taken, a(r, t) being the spa-
tially and time-varying refractive-index/attenuation
distribution under interrogation.

Observing that a(r,¢) contains information about
the parameter values as well as the shape, consider-
ing, without loss of generality, homogeneous inclu-
sions in the background, we can express the
parameter at a point in the image space as

a(r,t) = o8 (r)H [s(r; 1)), 2)

where s(.; ) is a level-set-based representation of the
image (see [22] and references therein) at a time in-
stant ¢, with {r:s(r;¢) = 0} representing the boundary
0Q at time instant ¢ of the object(s) under consider-
ation supported inregion Q; H [.]is a Heaviside func-
tion taken in a suitable hmltlng sense [23]; and the
field quantity «f(.) can be considered as a “ghost”
parameter value manifesting itself through H(.).
Without loss of conceptual generality we consider
a8 (r) = ay, with oy being a constant independent of
position.

The approximation to the Heaviside mentioned
above is

0 if t <—p
H,(t) = %{1+§+,-1,sin(ﬂ;f)} iftel-p.p. (3
1 ift>p

There are many ways in which one can represent
the boundary curve/surface s(r) = 0 (suppressing the
time dependence for ease of notation). In an explicit
parametrization, this boundary has been described
in terms of a spline basis [9,12,14] in two dimensions
or with spherical harmonics [10] in three dimensions.
In implicit formulations [6,17-19], typically the
shape unknowns are the values of the function s(r)
on the reconstruction grid. In [17] with the objective
of retaining an implicit representation coupled with
significant search-space-dimensionality reduction
(as in explicit schemes), we represent s(r) as a
RBF via a Hermite interpolation scheme to fit a
few on-curve points (called centers of the RBF, and
denoted by r§...r§,) and the normal unit vectors at
those pomts (denoted by n;...n,, where n;=
(cos ¢, sin ¢) for some 6).

Our Hermite interpolation problem can be stated
as follows [17]:

Given values b4, ..., by ,,, find a continuously differ-
entiable function s:IR? — IR such that

Hi(s) =s(xf) =b; and p;p(s) =n; - (VS)(X]) = by
for 1 <i<m. (4)

These 2m functionals are linearly independent pro-
vided the points r{, 1<i<m, are distinct. Let

nz_l denote the space of polynomials of degree at
most £—1 in d variables. Having chosen a twice
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continuously differentiable basic function ®, condi-
tionally positive definite of order % in the appropriate
sense, we can write the level-set solutions to the RBF
Hermite interpolation problem as an RBF of the form

s(r) =p(r) + ) _l¢®(r - 1) - (D, ®)(r - 15)], (5)

Jj=1

where p(.) is a polynomial (typically of low order),
@) =¢(.I), with ¢ being a (usually unbounded
and noncompactly supported) real-valued function
on [0, co] called the basic function, and D,w@)=n;-
(Vy)(¢) denoting the directional derivative functional
w.r.t a unit normal n;. The coefficients c and d are the
RBF coefficients.

Applying the interpolation conditions we obtain
the RBF Hermite interpolation problem in matrix

ORIl e

with the entries A;; = y! uj‘CI)(r t), P; = u;(p;), where
pr) = lel a;p;(r) for some basis {p;,...,p,} for the
space ”21—1’ and, A = (§). The expressions for the en-
tries in the matrices A and P of Eq. (Al) are given
in [17] and summarized in Appendix A for
completeness.

We are reconstructing a signed distance function,
which is zero on the curve and has a unit directional
derivative in the direction of the inward normal.
Thus, the right-hand side values we will use are b; =
Oforl1<i<m,and b; =1form + 1 <i < 2m. Hence,
given the RBF centers {r{}, and the unit normal
vectors at those points {n; = (cos(6),sin(6))}, we ob-
tain the coefficient vectors a and A for our RBF
approximation (5) by forming and solving the linear
system (Al).

In this work, we use the Hermite-interpolation-
based representation of [17]. In the two-dimensional
setting considered in our work, r = (x,y), and we have
as shape parameters the RBF-center coordinates
{xGlg = 1..M,}, {yglqg = 1...M,} along with the unit
normals represented by the respective angles
{65lqg = 1...M,}, corresponding in vector notation to
x¢, y%, and 6°, respectively. Further, for each time
instant, we augment these variables with the
geometric-transformation variables needed, such
as those related to translation, rotation, and scaling
along the normal direction at each point on the
boundary.

Translation of the object can be represented via x
and y translations 7 and ¥, respectively, as

Xnew ) ( Xo1d ) ( 1 )
= + , (7)
( Yiew Yoia 71
where 1 is a column vector of ones of length N ;, the
number of RBF centers.



Object rotation is characterized by the rotation
angle y as

Xxc1ew cos ]/I Sin }/I O Xgld 0
Yiew | = —sinyl cosyI O || vysa )+ O |
[ Y 0 I/ \bu s

®)

where I and O are the N ;-dimensional identity and
zero matrices, respectively, and 0 is the N, long
column vector of zeros.

Scaling along the normal at the boundary points
can be represented as

Xflew _ X(c)ld ﬂdiag Cos 001(1
(Yﬁew) - (Yf)ld + ﬂdiag sinfq /’ ©
where pdi2g := diag(p°(1).../*(Neent)) is the diagonal
matrix of scaling factors corresponding to the boun-
dary centers.

Thus we define the unknown to be reconstructed
as

h= (o, (x)7,(2)".(0)".(6°)" .72 . BT, ()", () "),
(10)

where superscript “T” denotes matrix/vector trans-
position, and f¢ is the vector (of the same size as ei-
ther center-coordinate vector x¢ or y®) representing
the basic scaling factor along the normal direction
at the boundary points corresponding to the RBF
centers. 7 (resp. 7¥) is the basic translation along
the x (resp. y) direction, and y is the angle of rotation
of the object. The vectors {b.t,.t,. c} represent the co-
efficients of assumed autoregressive processes gov-
erning the time variation of {#°, 7,.7,.7} as follows:
Denoting the vector of normal-scaling factors at a
time k& by g, = (85 1(1)...f;, ; Ncent), its propagation
equation can be written for £ = 0...N;ews — 1 as

B, 1 = b = by...b1f = by, (11)

Similarly, for £ = 0...News — 1, the translation of
the object along the x or y direction is expressed as

D=8k =B 12)
where superscript p denotes either x or y.
The rotation angle propagates as
Yh+1 = €Yk = €k..-€170- (13)

We then denote m:=[my..my 4|7, for m =
b,t*, ¥, e in turn.

Thus, combining the actions of translation, rota-
tion, and normal scaling, the RBF-center coordinates
propagate as

(Xk+1) _ ( Xy C€OS ¥ + Yk Sin yy, ) n (72)
Yk+1 —Xj SIn y;, + Yk €OS 73, (A
(ﬂ,;“ag cos(y, + yk))

diag _ . (14)
B, " sin(0, +vp)

where ﬂglag :=diag((1)...0,(NVeent)), and the earlier
superscript “c” representing the RBF-center-related
parameters is suppressed for ease of notation. On
the RHS, the first term represents RBF-center-
coordinate rotation, the second yields the translation
of the rotated coordinates, and the third scales the
rotated and translated center coordinates along
the unit normal after taking the coordinate rotation
through angle y into account.

The angle corresponding to the boundary-normal
direction at each RBF center propagates as

Ori1 =0 + 72, (15)

where y;, denotes the angle of rotation of the object.

Thus from the above formulation, using the defini-
tion of the state vector to be estimated as in Egs. (10)
and (11)—(15), we can now symbolically write a state
propagation equation as

W = £, (0%) = £, (o1 (5 Y) = (fp o fr-q... o fo) (h?),
(16)

where the transition maps [ (.) are appropriately de-
fined, and h® is the state corresponding to the first
time instant. Note also that the first time instant
(i.e., £ = 0 instant) can without loss of generality
be assumed to correspond to a first view.

Hence we can now write Eq. (1) for i = 0...Nyjews —
1 as

z = gih'], )

where z; := (p11(¢;)...pr-(%))T is the vector of ray inte-
grals corresponding to the rays L;...L, in a view, and
g;(.) represents the ray-integral operator at the ith
time instant/view.

Define by &(h’) the vector of residuals denoting the
difference between the measured and predicted ray-
integral data as

zy — g(h")

A 71— 81 (hl)
¢ =

Zyi-g — g1 (WM)
Zy — go[ho]
7 — gl[fo(ho)]
= ) ,  (18)
o £9) (h?)]

where we have set M := N . for brevity of notation.

Zy1 — v [(fmz o -
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Thus the reconstruction problem of interest to us is
about minimizing this residual vector with respect to
h®. As is common practice, this problem is approxi-
mated by the following Tikhonov regularized nonlin-
ear y-minimum norm problem:

o1
miny, 5 (G M) IZ + 2 |Ih = pl|?), (19)

where 5 is a regularization parameter, and u is a
known constant representing a priori information,
which is typically taken to be the initial estimate
of the iterative process (it can be changed within
the iterative process to help stabilize the iterates).

In this work, the minimization problem given by
Eq. (19) is solved by using an iteratively regularized
Gauss-Newton method [14] that solves, at the
current iterate h,

2
: (20)

(J(h)p+€(h))
n(h—p +p)

mlnp

where the M x N matrix J(h) is the Jacobian matrix
of the functional ¢(h) with respect to h, defined via a
Taylor series expansion of the form

&(h +p) = &(h) 4+ J(h)p + O(lIpll?). (21)

The termination criterion we have used is a
relative one; i.e., we measure “how much” of the
residual remains to minimize. The relative criterion
is defined as

_ ”PJauggaug ”

€rel = , (22)
T i g

where P, is the orthogonal projection onto the
range space of J,,,, and

e
aug ;/IIN .
Termination of the nonlinear recursive scheme is set
as satisfaction of the criterion ¢, < tol for some tol-
erance limit “tol” or the iterates staying stable.
The GN scheme thus requires the computation of
the Frechet derivatives of the measured ray integrals

with respect to the parameter vector. This aspect is
dealt with in the following section.

3. Dynamic Shape Derivatives

Define the residual vector at each time instant i €
{0,....M -1} as

r:i=1z; — gi(h') = z; — g[(fi_y o ... = fo)(W")]. (23)
Thus the GN iteration would require the evaluation

of a Jacobian matrix J evaluated as
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Jo
: (24)

Jyr-1

where the ith submatrix of J corresponding to the ith
residual is given by

or; i i- i—i
Ji= o = —G;[h']F;_{[h*1].. F;;[h]
= —Gi[hi]Fi_l[hi_l]...Fo[ho], (25)

where, as defined earlier in Eq. (16),

hi =f, 1 (W) = (fiof i-1...0f o) (h").

G;[.] and F;[.] are the Frechet derivatives of the
measurement and state-transition operators at the
ith view/time instant, respectively.

The Frechet derivative F;[hi] corresponding to the
state-transition operator f;(hi) is straightforwardly
evaluated from Eq. (16) and is given in Appendix B
for completeness.

Evaluation of the measurement-related deriva-
tives as in G;[h'] is typically accomplished by using
the chain rule to combine a Frechet-derivative calcu-
lation with respect to the (discretized) pointwise un-
knowns together with the variation of the pointwise
unknown with needed shape parameters as in [14]
(and references therein). In our work, we propose a
novel ray-tomographic scheme for evaluating the
shape derivatives via continuous ray tracing, with-
out needing to evaluate the pointwise derivatives
via a discrete ray trace in a discretized object repre-
sentation. Thus, we are using a single object repre-
sentation in the ray-trace and Frechet-derivative
parts of the forward problem.

Recall that the ray integral corresponding to a ray
indexed as [ at a time instant i is modeled as

N;
2= / a(x.y)ds =) wyay, (26)
Ray 1 i

J=1

where w;; are appropriate quadrature weights, {a;}
represent the values of the unknown inhomogeneity
on the ray!/ at the quadrature points indexed by j, and
N, is the number of quadrature points on the /th ray,
and the explicit presence of the time instant i in the
equation above is omitted for ease of notation.
Deﬁning w; = (wll...wlNl)T, and, ap = (all...alNi),
we can write
z; = wlTal. 27
Further, since we have assumed the form
a(r.t) = agH ,[s(r,?)], we have for a given time instant

alj = aOH/l[slj]’ (28)



where s;; = s(rjl-), with rjl- = (le., yjl-) being the jth quad-
rature point of the /th ray.
Hence, we can write

z; = whaoH [s)], (29)

where s := (s;1...55,)7.
Thus, the first variation of the measurements with
respect to the level-set values can be expressed as

8z; = wrH [s))6a0 + agw?! diag(H[s;])3s; (30)

OX
= wl'H [s))6a + agw! diag(H),[s;])J; <5y) (31)
60

= Vg?'sh, (32)
where,
Vg, = (WFH [s/]6ag + agw] diag(H[s;)J)T  (33)

and sh = (Sagox7syTs07)T, in which &s; is the first
variation of the level-set values on the line ! with
respect to the variation in center parameters
{6x, 8y, 50} at the time instant considered, and the
matrix J; is the corresponding Jacobian matrix that
is calculated in [17] and given in Appendix A for
completeness.

Note that the vector H[s;] has very few nonzero
values since the derivative H'(.) of the approximate
Heaviside has a small support. This results in the
Jacobian matrix corresponding to the /th ray having
to be computed for very few points on the ray that are
in a tube close to the boundary.

Combining all the ray integrals that are available
at the time instant i, we have

Gi = (Vgq...Vgr)T, (34)

where Vg;; denotes the gradient corresponding to the
lth ray-integral at the ith time instant.

The above evaluation of the Frechet derivatives
does not need to evaluate the pointwise Jacobian
(which is nothing but the ray-path matrix in this case
[24]), thus removing any inconsistency that would
otherwise be there between the shape-based repre-
sentation and a grid-based interpolation for comput-
ing the pointwise derivatives.

A note on the Heaviside approximation: we ob-
serve from Eq. (3) that the support of H[s(r)] is con-
tained in s7'[-p,p]. The choice of the Heaviside
parameter p should be such that the interpolating
function s(r) should be a good approximation to a
signed distance function in the “tubular” region
s7Y[-p, pl. In our work, as in [14], for a plane curve
7(x,y) = 0 such as in the two-dimensional problems
under consideration, we can define the tube as con-
sisting of all parallel curves s(x,y) = ¢ such that

lex(x,y)| <1 for all values of (x,y) €0Q, where
k(x,y) is the curvature of the curve s(x,y) = 0. This
condition ensures that a parallel curve is regular,
as well as that the normal vectors of the curve
S(x,y) = 0 coincide with those of a parallel curve
S(x,y) = ¢ for all (x,y) € 0Q [25,26].

4. Numerical Studies

A. Case Studies and Methodology

We validate our formulations by reconstructions of a
time-varying phantom with two different assumed
state-variable models. The data are obtained for
one view at each time instant, with the object under-
going geometric transformations in between. The
transformations we consider are (x and y) transla-
tion, rotation, and pointwise-normal scaling. The
corresponding parameters [as in Eq. (10)] character-
izing these transformations are * and # for x and y
translations, respectively, y for rotation, and g for
pointwise-normal scaling. In our reconstructions,
we have used the triharmonic basic function, i.e.,
®(r) = r* In r, with a quadratic polynomial basis.

In our first state model (denoted as SM-1), we con-
sider the translation, rotation, and scaling parame-
ters fixed across views; i.e., they propagate with
autoregressive coefficients [Eqgs. (11)-(13)] of unity.
In addition, the pointwise-normal scaling parameter
p is considered fixed for all boundary points. The sec-
ond state model (denoted as SM-2) considers the
same three transformations with the corresponding
parameters governing them taking different values
at each view; in addition the pointwise-normal scal-
ing parameter f§ takes a different value at each
boundary point.

We have considered reconstruction of an object
with unknown refractive-index difference to be
-0.02, from 20 views and 40 rays per view. At each
time instant ray-integral data are obtained for a view
and the object is assumed to be geometrically trans-
forming in the duration between the measurement
time instants. In principle, the number of centers
can be considered as an implicit regularization
parameter in the solution of the reconstruction prob-
lem; however, for the numerical studies in this work
we fix this a priori and regularize the resultant al-
most rank-deficient problem in the iterative regulari-
zation scheme. In our present studies, we typically
picked the minimum number of RBF centers that
yielded closed curves for the reconstructions consid-
ered across all models considered; we chose eight
centers for our reconstructions.

The ray-integral data are generated via continu-
ous ray tracing [27] followed by the addition of
zero-mean Gaussian noise.

The Gauss-Newton scheme used in the reconstruc-
tions is summarized in the chart below:

1. Initialization
(a) Set the initial estimate h°.
(b)p = h, 5 set at a suitable “large” value.
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II. Reconstruction phase

For £ =1,2,..., until ¢, <tol or residual is
unchanging for many past k:

(a) Estimate the Heaviside approximation
parameter, p, as min(dl, en.x), Where e =

max{e; [ex(x,y)| < 1 for all values of (x,y) € 0Q} and
dl is the ray-integral-discretization interval.

(b) Evaluate the Jacobian J(h*) using Eq. (24).

(c) Solve Eq. (20) for p*.

(d) Do a line search to find step-length o;.

(e) If p, ~ 1, then n:=1n/q, for a suitable choice of
q > 1 (we chose g = 2).

(f) hk+1 — hk 4 kak'

In order to incorporate bound constraints, in the
optimization steps we use a projected gradient
update [28].

B. Discussion and Quantification of Results

In this subsection, we analyze the reconstructions
obtained with the aid of a quantification of the qual-
ity of reconstructions via three error measures with
respect to the optical parameter, the area-parameter
product, and the centroid of the object.
Reconstructions are shown for a concave phantom
with different noise levels for each of these state
models. Results are also shown for a convex elliptical
phantom with the SM-2 model. In addition, results
are presented using SM-2 based reconstructions on
data obtained from SM-1 transitions; this set of

results corresponds to an “overfit” of parameters in
the reconstructions, in that only a few of the recon-
structed parameters are involved in the actual data
creation.

The reconstructions obtained for the cases men-
tioned above are plotted in Figs. 1-4, and are seen
to show good agreement between the reconstructed
and actual shapes. Also, the refractive-index differ-
ence is well reconstructed.

While we observe in Fig. 1 (SM-1 reconstructions)
that the concave part of the phantom is sometimes
not estimated accurately, the issue might be hypoth-
esized to be a data-noise-related local minimum of
the objective function that is overestimating the
present concavity. We performed the reconstructions
with seven and eight centers for the SM-1 zero-noise
data, and these are found to be almost exact, thus
giving a justification for the above hypothesis. These
“noiseless” reconstructions are given in Fig. 5 for
eight centers. Of course, the local minimum issue
need not be only noise-related as our experience with
other noiseless data sets point out, where even
though the reconstructions are as expected tracking
the shape better than with noisy data, there are mild
locational discrepancies.

We point out, however, that the reconstructions
with noisy data are quite close to the actual
phantoms—visually as well as quantitatively (as will
be defined below)—indicating that the present algo-
rithm performs well.
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In order to quantify the quality of reconstructions
we utilize three error measures, namely, a normal-
ized percentage of error of the area-parameter prod-
uct [parameter here referring to the optical
parameter of refractive-index difference (w.r.t the
background) a], a normalized percentage of error of
the refractive-index difference, and the distance of
the centroid of the reconstructed object from its
actual position.

We define an area-parameter-product error mea-
sure as

E = |arecArec B aacAac|
“ |aacAac|

where a,,. and «,, are the reconstructed and actual
values of the optical parameter, respectively, and A,
and A,. are the reconstructed and actual values of
the area of the object, respectively.

An error measure of the difference between the ac-
tual and reconstructed refractive-index differences is
defined as

x 100, (35)

E, = Mx 100.

(36)
||
The Euclidean distance
Ec = \/(g_crec _:’_Cac)2 + (yrec _yac)Q» (37)

between the centroids of the reconstructed and ac-
tual objects, is another error measure that quantifies
the reconstruction. Here, (X,ec,Vrec) (T€SP. XgesVac))
are the centroid coordinates for the reconstructed
(resp. actual) object.

The area and centroid coordinates are evaluated
by discretizing the reconstructed/actual images,
and are defined as

Aobject = E )Cobject(xivyj)v (38)
iJ
. Ax- . x.7 .
Fobject = Zl,} zigob_]ect( i y]) ’ (39)
object
_ : jYiX object (Xi»Y})
Yobject = ZU L oblect ) , (40)

Aobj ect

where the indices (i,j) range over the extent of the
discretized image, and y,piect(.) is the characteristic
function with respect to the object support.

We take these error measures as the average er-
rors across all views/time instants at which measure-
ments are collected; the results are tabulated in
Table 1, along with the reconstructed and actual val-
ues of the refractive-index parameter. The small er-
rors obtained show the basic efficacy of the proposed
scheme. The relatively larger shape errors obtained

Table 1. Error Measures for Reconstructions?

Phantom DM RM E % E % E.
Concave SM-1 SM-1 0.541 0.997 0.01
Ellipse SM-2 SM-2 2205 1531 0.024
Concave SM-2 SM-2 5483 1548 0.031
Concave SM-1 SM-2 0.507 1.653 0.044
Concave (noiseless) SM-1 SM-1 0.201 0.202 0.001

DM and RM denote the data model and reconstruction
model, respectively. E,, E,, and E, denote the parameter, area-
parameter-product, and centroid error measures, respectively.

in the “overfitting” case-4 (in Table 1) point out that
the choice of an appropriate model is important to
obtain good reconstructions. Similarly, as mentioned
above, the choice of the number of centers is also of
importance since that number acts as another
implicit regularization parameter. The development
of adaptive schemes to address these aspects of
model appropriateness is an important direction of
future work.

5. Conclusions

In this paper, with the objective of reconstructing
time-varying geometrically deforming features of in-
terest, a novel level-set-based reconstruction scheme
for ray tomography is proposed for shape and electro-
magnetic parameters using a regularized Gauss—
Newton-filter-based scheme. We use an implicit
Hermite-interpolation-based RBF representation of
the zero level set corresponding to the boundary
curve. Numerical results validating the formulation
are presented for a straight ray-based tomographic
reconstruction.

The contribution of our present work is to set up
the framework for the time-varying shape-
reconstruction problem with unknown dynamics in
an RBF-based level-set parametrization with respect
to a regularized Gauss-Newton-filter scheme. In ad-
dition, we assume the class of shape transitions to be
of a nonlinear kind, consisting of the affine class in
addition to a pointwise-normal scaling. Another
important contribution of the paper is an evaluation
of the shape-related Frechet derivatives that does
not need to evaluate the pointwise Jacobian (the ray-
path matrix in our ray-tomography problem).

The Gauss—Newton filter [21] is a batch estimator
of time-varying states and overcomes to quite an ex-
tent the tuning issues of nonlinear Kalman filtering.
Also, scaling along the normal at a boundary point is
a deformation that is natural with respect to level-set
schemes since only boundary perturbations along
the normal are considered in these. This “natural-
ness” of normal deformations is emphasized in the
case of the Hermite-RBF-interpolation-based repre-
sentations, since the normals at the RBF centers
are reconstructed along with the center coordinates.
To the best of our knowledge, this paper presents
the first tomographic reconstruction results in these
settings.
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Appendix A: RBF Interpolation Matrix and Level-Set
Derivative

1. RBF Interpolation Matrix

Applying the interpolation conditions Eq. (4) to the
assumed form of the interpolating function Eq. (5),
we obtain the RBF Hermite interpolation problem
in matrix form:

oroolla]=[e] e

with the entries A;; = y{u}Q(r -t), P;j = u;(p;), where
p(r) = f‘zlalpl(r) for some basis {pq,...,p,} for the
space 7¢_;,and A = (§)- The expressions for the entries
in the matrices A and P of Eq. (A1) are now given be-
low. First,

e = 1) 1<i<m,
P = nle) = {ni Vpi(re,)., m+1<i<2m.

(A2)

Furthermore A;; = ,uf,ujt-cb(r —t), which implies

Evaluating the first variation of s, we have

L m
os(r) = dap;(r) + Z[cjétb(r —1§) + 6¢,®(r - 17)
=1 j=1

where, further,

5P (r — rjc) =-0,(r- rj)ﬁx; -0, (r- rj‘?)éyj (AT)
and similarly,
8¥;(r —rf) = [~ @y (r — r{)Cost — @, (r - r7)Sind]ox;

(A8)

+[~®yy (r — 15)Cos6 - @, (r - r$)Sinéloys  (A9)

[P, (r — r{)Sind + @, (r — r7)]00;. (A10)

Hence, in Eq. (A6), it only remains to evaluate éc; and
dd; in terms of the variations of the RBF centers and
normals, i.e., to evaluate 64 and da. To do this, we

O(r 1),
(V) ),
0= 0, (V)X — ).

_nijimH(ri—m - I'j—m)nj—m’

if 1<i,j<m,

if1<i<m, and m+1<j<2m,
ifm+1<i<2m, and 1<j<m,
ifm+1<i,j<2m,

(A3)

where H(r) is the dxd Hessian matrix with

hpy = (0%/oxp0x,)®. Thus we can write the matrix

. (11) (12)
A in m x m block form as A = Gz 4e)-

2. Level-Set Derivative

In this part of the appendix, for the sake of complete-
ness, following [17], we write the first variation of the
level-set values with respect to those of the RBF-
center coordinates and normals that are used in
Eq. (30) for the shape derivatives.

We now recall from Eq. (5) that

L m
s(r) = Z a;p;(r) + Z[qu)(r - 1) ~d;¥;(r - )],
=1 J=1
(A4)

where ¥;(.) = (D,,®)(.), and

Wi(r-15) = (V) (r - 19) -y
= ¢ (r— rJC-)CosGJc- + ¢, (r - rj)SinH}? (A5)
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take the first variation of the interpolation system
of Eq. (Al) to obtain

A 6P\ [ A A P oA

Hence we obtain

5\ _ (A P\[(A)h+ 6P
(6a)__(PT 0) ( (6PT)A ) (A12)

We now make the following definitions:

ox¢ ox°
(6A)A =B]| 6&y* |, (6P)ya=P,| 5y |,
60¢ 56¢
ox¢
(6PTHA=P,| sy |, (A13)
60°¢



where the functional forms (explicitly given in
Appendix A of [17]) for B, P,, and P, are obtained
by appropriate rearrangement of the respective
left-hand sides in the expressions above.
Considering s to be the vector of values of s(r) at
the required (N7 number of) points in a tube of ra-
dius p about the boundary, we can thus write [17]

where A(v) =diag(v;...v,,) for some vector v.

Appendix B: Transition Jacobian

In this appendix, we write out the Jacobian matrix
corresponding to the state-transition model
Eq. (16) considered in our work. The Jacobian matrix
F;[h;] (denoted in short form as F;) evaluated at a

5xC nominal h; corresponding to the i th time instant
ss = J,| sy¢ |. (A14) is detailed below:
o0°
1 0% 0% 0% 0% 0 0 Ocp
0c cosylp sinylp —[f]sing] [cose] 1o O —p.*sine+ (—xsiny+y cosy) Ocp
0o -sinylp cosyly |[fllcose] [sing] 0o 1o (f.*cose—(xcosy+Yysiny)) Oc¢p
0c Occ Occ Ic Occ Oc Oc 1c Ocp
Fi=| 0c Occ Occ Occ  biale 0c Oc Oc pu]'|0csv) |.
0 Og Og 05 Og i (0\T1|T§C—1“iT |05V)
0z 0¢ 0z 0z 1 0 O3y |7_yui |07)
0f 0F 0F 0% €1 (0% lyi-1ul)
0p Opc Opc Opc Opc 0p Op 0p Ip
(B1)
where where C is the number of centers, V = News — 1,
P=4(Nyews—1), 0, and 1, are column vectors
J,=F- (R[A_l]a n d)[A"l]c _TL&—I]d) B. (A15) containing all zeros and ones of length n, respec-

where again,

1. A=(# b), and B= B}f0).

2. @ (resp. W) is the Ny 'x m matrix with ®; =
O(r; —rj) (resp. ¥; = ¥(r; —rf)), where r; is the i
th point at which the value of 65 needs to be calcu-
lated. Similarly, the derivative matrices ®,, ®,,
®,,, ®,,, and @, can be defined.

3. R is an Np x L matrix with R,; = p;(r,).

4. [A™), (resp. [A"], and [A7Y],) corresponds to
the last, L rows (resp. rows 1 to m and m + 1 to
2m) of A™".

5. F = [F*FYF’], with

F* = —®,A(c) + [@,, A(Cost®) + @, A(Siné)]A(d),
(A16)

FY = -®,A(c) + [@,,A(Cos 6°) + ®,,A(Sin 6°)]A(d),
(A17)

F? = [@,A(Sin 6°) — ®,A(Cost*)]A(d), (A18)

tively, O,,, is a zero matrix of size m xn, [q]=
diag(q) for an arbitrary vector q, ¢ = @ + y, and u/ =

(07,107_; ;) is a 1 x V vector.
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