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Fully non-linear SP3 approximation based fluorescence optical

tomography

Naren Naik*, Nishigandha Patil, Yamini Yadav, Jerry Eriksson and Asima Pradhan

In fluorescence optical tomography, many works in litera-
ture focus on the linear reconstruction problem to obtain the
fluorescent yield or the linearized reconstruction problem to
obtain the absorption coefficient. The nonlinear reconstruction
problem, to reconstruct the fluorophore absorption coefficient, is
of interest in imaging studies as it presents the possibility of better
reconstructions owing to a more appropriate model. Accurate and
computationally efficient forward models are also critical in the
reconstruction process. The SPN approximation to the radiative
transfer equation (RTE) is gaining importance for tomographic
reconstructions owing to its computational advantages over the
full RTE while being more accurate and applicable than the
commonly used diffusion approximation. This paper presents
Gauss-Newton based fully nonlinear reconstruction for the SP3

approximated fluorescence optical tomography problem with
respect to shape as well as conventional finite-element-method
(FEM) based representations. The contribution of this paper
is the Frechet derivative calculations for this problem and
demonstration of reconstructions in both representations. For the
shape reconstructions, radial-basis-function represented level-set
based shape representations are used. We present reconstructions
for tumor-mimicking test objects in scattering and absorption
dominant settings respectively for moderately noisy data-sets in
order to demonstrate the viability of the formulation. Com-
parisons are presented between the non-linear and linearized
reconstruction schemes in an elementwise setting illustrate the
benefits of using the former especially for absorption dominant
media.

Index Terms—Fluorescence tomography, Optical imag-
ing/OCT/DOT, Image reconstruction - iterative methods

I. INTRODUCTION

The need for functional information in addition to the struc-

tural aspect becomes critical in early detection of anomalies in

biomedical imaging. Fluorescence optical tomography(FOT) is
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one such modality that uses the phenomenon of fluorescence

to image functional/physiological as well as morphological

aspects of tissue. Fluorescence optical tomography makes use

of the fact that certain fluorescent dyes and proteins, upon

being excited by radiation of a given wavelength (excitation

wavelength) re-emit photons at another wavelength (emission

wavelength). In extrinsic FOT schemes, a fluorescent dye is

injected into the body, that targets specific tissue, while in

intrinsic fluorescence based schemes, the fluorescence from

intrinsic proteins such as NADH, associated with the onset and

progression of certain diseases, such as cancer, is monitored

[1], [2]. The aim of the inverse problem in FOT is to recon-

struct this fluorescent source in terms of either the fluorescent

yield or the fluorophore absorption coefficient. Towards this

end, computationally accurate and efficient forward models

are essential to improve the performance of reconstruction

algorithms being developed.

The Radiative Transfer Equation (RTE) is the preferred

choice for modelling propagation of optical radiation through

random media [3], [4]. Of the several competing approxima-

tions to the RTE, the simplified spherical harmonics (SPN )

approximation [5] is gaining importance since it is computa-

tionally less demanding than the full radiative transfer equation

[6] or its SN [7] or PN [8] approximations, while being more

accurate and applicable than the commonly used diffusion

approximation (DA) to the RTE [5], especially close to the

source and boundary [9]. The advantage of using the SPN

approximation over higher order approximations (SN and PN )

lies in the fact that one has to solve fewer coupled partial

differential equations [5]. The computational advantages of

using the SPN approximation over lower order (DA) and

higher order approximations (SN and PN ) have been clearly

and extensively discussed by Klose et al in their seminal paper

[5]. Detailed studies, demonstrating the validity of the SPN

approximation for non-fluorescence problems, have been per-

formed with respect to the SN method in [5] and with respect

to Monte Carlo simulations in [10]. The applicability of the

SPN approximation to model the generation and propagation

of fluorescent radiation has been demonstrated by Lu et al in

[11].

Several methods have been proposed in literature for ob-

taining fluorescence tomographic reconstructions which can be

broadly classified as those that make use of linear or linearised

models such as in [12]–[15] or those that use non-linear

reconstruction models [16] , [17]. The linear reconstruction

problem for obtaining the fluorescent yield in bioluminiscence

and fluorescence tomographic problems has been solved in

the SPN approximation in frequency-domain [18], multi-

spectral [12] as well as sparsely constrained [13] settings.
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In [14], Lu et al have obtained linearised reconstructions for

the fluorophore absorption coefficient for experimental data

obtained from a mouse phantom using the SP3 approximation.

Their results illustrate the advantages of using a higher order

approximation such as SP3 for fluorescence optical tomog-

raphy. As a compromise between the lower computational

time afforded by DA and the improved model accuracy due

to the SPN approximation, Chen et al [19] have proposed a

linear reconstruction framework in FOT using a hybrid forward

model that couples the SPN and DA. In a recent work [20],

Kim et al have demonstrated non-linear reconstructions in a

PDE constrained setting for frequency domain optical tomog-

raphy (elastic scattering case) using the SP3 approximation

for media with non-diffuse properties wherein they quantify

the advantages of using the SP3 approximation for the non-

diffuse case by comparing with the frequency domain RTE as

well as DA. Their work is based on their earlier paper [21]

wherein they solve the RTE based nonlinear reconstruction

problem of elastic optical tomography in a PDE-constrained

framework. Also, in [16], an RTE based FOT problem is

solved in a PDE constrained framework. Besides the PDE-

constrained framework, the non-linear reconstruction problem

is also commonly approached as a least squares optimisation

problem using Gauss-Newton based methods as in the present

paper. Such schemes need the evaluation of the Jacobian

(rather than a gradient as is the case in the PDE-constrained

approaches) and the adjoint method is a popular choice for

this evaluation. The adjoint method has been popularly used

in literature while solving the elastic scattering problem in

optical tomography [6], [22]. In a Born-approximation based

linearized FOT reconstruction, adjoint based calculations for

the Frechet derivatives needed for the fluorescent coupled

RTE have been mentioned in [15]. In [17], Fedele et al have

calculated the Frechet derivatives via an adjoint method and

presented non-linear reconstructions for the FOT problem with

the diffusion approximation.

In order to ameliorate the ill-posed effects of large search

spaces corresponding to the unknown optical parameters in the

domain of interest, typically, reconstruction schemes use the

fact that the resolution needed to express the optical parameter

is lower than that required for accurate representation of the

optical fields. To reduce the search-space dimension as well

as the effect of clutter, shape based representations capture

the object(s) of interest in terms of the object-boundaries

and slowly-varying/constant optical parameters. The shape

based schemes typically reduce the search-space dimension by

reconstructing the parameterized shape of an inhomogeneity

along with typical optical-parameter values in its interior and

exterior. The shape based schemes use either an explicit [23],

[24], [25], [26] or an implicit [27], [28] representation for

the boundary of the region(s) of interest. In the present work,

as in [27], we use an implicit Hermite interpolation based

radial basis function (RBF) representation of the zero level

set corresponding to the boundary curve.

A fully nonlinear reconstruction scheme enables us to

solve the inverse problem using the actual nonlinear forward

operator; hence, we are not restricted to its linear/linearized

approximations. Our present work’s main contribution is to

solve the fully-nonlinear SP3-approximation modeled FOT-

reconstruction problem with respect to the basic elementwise

as well as level-set based shape representations. We evaluate

the Frechet derivatives (Jacobians) corresponding to an SP3-

approximation modeled FOT scheme using an adjoint based

framework for Gauss-Newton based reconstructions. Recon-

structions are obtained in RBF-level-set represented shape-

based settings as well as in a conventional elementwise object-

representation. We compare the elementwise nonlinear-scheme

reconstructions with those from a linearized FOT model in the

spirit of [14]. Validation of the evaluated adjoint based Frechet

derivatives with a finite difference scheme and preliminary

results in an elementwise-reconstruction setting were reported

in [29].

The problem settings and basic solution scheme are intro-

duced in section II, and the adjoint based Frechet derivatives

are presented in section III. Section IV presents the finite-

element based forward problem and adjoint based Frechet

derivatives. Section V details the numerical studies, and sec-

tion VI has the conclusions. The appendix briefly gives the

form of the Frechet derivative corresponding to the linearized

problem solved.

II. PROBLEM DEFINITION

The reconstruction problem in general is to reconstruct

the region of interest’s optical parameters representing the

fluorescent sources such as the absorption and scattering

coefficients as well as the anisotropy factor from measured

partial current data. The forward problem is solved to obtain

measurements of either partial current or some moment of the

fluence on the detector. In a practical setting, multiple source-

detector configurations are used, to increase the available data,

in data poor conditions. The inverse problem takes into account

the experimental measurements and enables to generate an

optical property map. This problem is often cast as a least

squares optimisation problem. Newton type methods have been

a popular choice for solving these problems [30], [12], [31],

[15]. Therefore, the evaluation of Jacobian sensitivities is a

vital aspect in the reconstruction process.

A. The forward model

The SP3 approximation corresponding to a coupled system

of radiative transfer equations for fluorescence propagation

[12], [15] is obtained in terms of the composite Legendre

moments ϕ [5], over a domain V as:

−∇ · C▽x∇ϕx + Cxϕx = 0 (1a)

−∇ · C▽m∇ϕm + Cmϕm = Cβϕx (1b)

with partially reflecting boundary conditions,

C▽bx(n.∇ϕx) + Cbxϕx = S (1c)

C▽bm(n.∇ϕm) + Cbmϕm = 0 (1d)
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where

C
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
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(
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and β =
ηµx

af

1−iωτ . The absorption coefficient µa = µai + µaf ;

µai, µaf being the chromophore and fluorophore absorption

coefficient respectively with units cm−1. The ability of a fluo-

rophore to fluoresce is quantified in terms of the fluorescence

quantum efficiency η and the fluorescence lifetime τ(seconds).
S(r,Ω) is an external, boundary source emitting radiation at

the excitation wavelength, and n denotes the outward normal

at a boundary point.

The coefficients {An}, {Bn}, {Cn} and {Dn}, are calcu-

lated in [5] and the absorption moments {µ
x/m
an } are defined

as in [9], as µ
x/m
an (r) = µ

x/m
t (r) − µ

x/m
s (r)gn + jω

c , where

g is the anisotropy factor. The system of equations 1 can be

written more compactly as

−∇ · C▽∇ϕ+ Cϕϕ = 0 (2a)

C▽b(n · ∇ϕ) + Cbϕ = CS (2b)

where

C▽ =

(

C▽x 0
0 C▽m

)

Cϕ =

(

Cx 0
−Cβ Cm

)

C▽b =

(

C▽bx 0
0 C▽bm

)

Cb =

(

Cbx 0
0 Cbm

)

n · ∇ϕ =

(

n · ∇ϕx

n · ∇ϕm

)

∇ =

(

∇ 0
0 ∇

)

CS =

(

CSx

0

)

ϕ =

(

ϕx

ϕm

)

n =

(

n 0
0 n

)

The exiting partial current, J+ can be expressed in terms

of the composite moments in matrix form as

J+x/m(rj) = CJx/mϕx/m − C∇Jx/mn · ∇ϕx/m (3)

where

CJx/m =

(

( 1
4
+ J0) [(− 2

3
)( 1

4
+ J0) +

1
3
( 5
16

+ J2)]

)

δ(r − rj),

C∇Jx/m =

(

(0.5+J1)

3µ
x/m
a1

J3

7µ
x/m
a3

)

δ(r − rj) and the terms {Ji}

are evaluated as in [5].

We can now write the measurement equation as

J+(rj) = CJϕ− C∇Jn · ∇ϕ (4)

where J+ =

(
J+x

J+m

)

, CJ =

(
CJx 0
0 CJm

)

and

C∇J =

(
C∇Jx 0

0 C∇Jm

)

. We note that since the amplitude

and phase values of the partial current have very different

scales, these need to be re-scaled. A logarithmic transforma-

tion [30] is used in our work to re-scale the measurements

prior to further processing.

B. Shape representation

We can express a typical optical parameter p(r), at a point

r in the image space, as

p(r) = αg(r)Hρ[s(r)] (5)

where s(.) is a level-set based representation of the image

( [32] and references therein), with {r : s(r) = 0} repre-

senting the boundary ∂Ω of the object(s) under consideration

supported in region Ω; Hρ[.] is a Heaviside function taken

in a suitable limiting sense [33] and the field quantity αg(.)
can be considered as a “ghost” parameter value manifesting

itself through H(.). Without loss of conceptual generality we

consider αg(r) = α0, with α0 being a constant independent

of position. In the sequel, for ease of notation, we will drop

the subscript with α while denoting the constant interior value

of the optical parameter.

In the present work, we use the Hermite interpolation

based representation of [27]. With the objective of retaining

an implicit representation coupled with significant search-

space-dimensionality reduction (as in explicit schemes), we

represent s(r) as a radial basis function (RBF) via a Hermite

interpolation scheme, to fit a few on-curve points (called

centers of the RBF, and denoted by rc1 . . . r
c
m) and the normal

unit vectors at those points (denoted by n1 . . .nm where

ni ≡ (cosθci , sinθ
c
i ) for some θci ).

We can write the level-set function as an RBF of the form

s(r) = p(r)+

m
∑

j=1

[

cjΦ(r− rcj)− dj(DnjΦ)(r− rcj)
]

(6)

where p(.) is a polynomial (typically of low order), Φ(.) ≡
φ(||.||), with φ being a (usually unbounded and non-compactly

supported) real valued function on [0,∞] called the basic

function (chosen a twice continuously differentiable function

Φ, conditionally positive definite of order k in the appro-

priate sense [27]), and Dnjψ(t) ≡ nj .(∇ψ)(t) denotes the

directional derivative functional w.r.t a unit normal nj . The

coefficients c and d are the RBF coefficients.

C. The regularization problem

We can write the data equation in the discrete domain as

j+meas = A(h) (7)

where j+meas is the vector of measured partial current at

the detectors, and, the functional A(.) is the measurement

operator corresponding to the tomographic process. In our

work, the measurement operator is obtained via the finite

element method as detailed in section IV.



0278-0062 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2017.2718028, IEEE
Transactions on Medical Imaging

4

For the elementwise representation, considering the FEM

based discretization of the coupled fluorescence equations, the

parameter vector h is the set of all elemental values of the

optical parameter. For the shape parametrization, the parameter

vector contains the coordinates of the RBF centers, the unit

normals at those points, and the optical parameter inside the

object (assuming an inhomogeneity with a constant value of

µx
af inside). It is written as:

h =









α
xc

yc

θc









(8)

where in the two-dimensional setting considered in our work,

we have as shape parameters the RBF-center coordinates

{xcq|q = 1 . . .Mp}, {y
c
q|q = 1 . . .Mp} along with the unit nor-

mals represented by the respective angles {θcq|q = 1 . . .Mp},
corresponding in vector notation to xc, yc and θc respectively.

The basic ill-posed reconstruction problem can be defined

as solving (7) for h.

As is common practice, this problem can be solved by

regularization schemes such as Tikhonov regularization or

Levenberg-Marquardt schemes. A generic iteration would up-

date a nominal estimate h of the unknown vector as:

hnew = h+ z (9)

where vector z is evaluated as per the scheme used.

To obtain Tikhonov regularized solutions, the problem can

be approximated by the following regularized nonlinear c-

minimum-norm problem

minh

1

2

(

‖ζ(h)‖2 + η2||h− c||2
)

(10)

where,

ζ = j+meas −A(h) (11)

η is a regularization parameter, c is a known constant repre-

senting apriori information.

The above (regularized) c-minimum-norm problem is solved

by using an iteratively regularized Gauss Newton method [25]

that solves, at the current iterate h,

z = minq

∥

∥

∥

∥

(

J(h)q + ζ(h)
η(h− c+ q)

)∥

∥

∥

∥

2

(12)

where J(h) is the Jacobian matrix of the functional ζ(h) with

respect to h.

Alternatively, we can solve the ill-posed nonlinear least

squares problem, minh
1

2

(

‖ζ(h)‖2
)

, by the regularizing

Levenberg-Marquardt (LM) scheme detailed in [34] and [35].

At each iteration the regularizing LM scheme solves the linear

system of equations:

(JTJ+ ηLTL)z = −JT ζ (13)

where η here is the Levenberg-Marquardt parameter and the

matrix LTL denotes the Laplacian defined similar to [30].

III. BASIC FRECHET DERIVATIVE EVALUATION

While the evaluation of the Jacobian is an important aspect

of derivative-based reconstruction algorithms, it is also, often

the most time-consuming section. Hence efficient methods

for speeding this evaluation are essential. The evaluation of

the Frechet derivative using adjoints and further vectorization

of the algorithm offer tremendous improvements in speed as

demonstrated by Fedele et al [17] for a diffusion based FOT

problem.

To derive the Frechet derivative using the adjoint method we

first define the adjoint problem, and then obtain an expression

for the sensitivities from a perturbation analysis.

The adjoint problem

The adjoint solution is defined as Ψ ≡

(

Ψxx Ψxm

Ψmx Ψmm

)

,

with Ψab =

(

Ψab
1 ,

Ψab
2

)T

where a, b = x/m, such that it solves

the adjoint problem

−∇(C▽)T∇Ψ+ (Cϕ)TΨ = 0 (14a)

with adjoint boundary condition

(C∇)T (n · ∇Ψ) + (C∇(C∇b)−1Cb)TΨ = CR (14b)

where

CR =

(

∆d 0
0 ∆d

)

(15)

with ∆d representing the Dirac delta function at the detector

positions.

Evaluating the Adjoint sensitivity

Let p denote any optical property such as µa, µs, τ etc. If

we perturb p by a small amount p ← p + δp the composite

moments ϕ change correspondingly to ϕ ← ϕ + δϕ. The

perturbed system is:

−∇ · C▽(p+ δp)−∇(ϕ+ δϕ) + C
ϕ(p+ δp)(ϕ+ δϕ) = 0

(16a)

C
▽b(p+ δp)− n · ∇(ϕ+ δϕ) + C

b(p+ δp)(ϕ+ δϕ) = C
S

(16b)

We expand the perturbed terms using Taylor expansion.

Using (2a) and ignoring O(δ2) terms we get,

−∇ · C▽∇δϕ+ C
ϕ
δϕ = ∇ ·

∂C▽

∂p
δp∇ϕ−

∂Cϕ

∂p
δpϕ (17a)

C
▽b

n · ∇δϕ+ C
b
δϕ = −

∂C▽b

∂p
δp(n · ∇ϕ)−

∂Cb

∂p
δpϕ

(17b)

Now, multiplying (17a) by Ψ and integrating over the entire
domain V, we get

∫

V

ΨT (−∇ · C▽∇δϕ+ C
ϕ
δϕ)dV

=

∫

V

ΨT (∇ ·
∂C▽

∂p
δp∇ϕ−

∂Cϕ

∂p
δpϕ)dV (18)
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Evaluating the integral on the left via integration by parts, we
obtain:

∫

V

ΨT (−∇ · C▽∇δϕ+ C
ϕ
δϕ)dV

=

∫

V

[−∇ · (C▽)T∇Ψ+ (Cϕ)TΨ]T δϕ

︸ ︷︷ ︸

=0

dV

+

∫

∂V

[(C▽)T (n · ∇Ψ)]T δϕdσ −

∫

∂V

ΨT
C

▽(n · ∇δϕ)dσ

(19)

Using the perturbed and the adjoint boundary conditions,
(17b), (14b) in the above expression, we obtain,

∫

V

ΨT (−∇ · C▽∇δϕ+ C
ϕ
δϕ)dV

=

∫

∂V

C
R
δϕdσ +

∫

∂V

ΨT
C̃

∇b ∂C
∇b

∂p
δpn · ∇ϕdσ

+

∫

∂V

ΨT
C̃

∇b ∂C
b

∂p
δpϕdσ

Here C̃∇b = C∇(C∇b)−1. Using (18) to simplify the integral
on the left and (15) to simplify the first term under the integral
on the right, the terms can be rearranged to write the adjoint
sensitivity for the composite moments as

δϕ =

∫

V

ΨT∇ ·
∂C▽

∂p
δp∇ϕdV −

∫

V

ΨT ∂Cϕ

∂p
δpϕdV

−

∫

∂V

ΨT
C̃

∇b ∂C
b

∂p
δpϕdσ

+

∫

∂V

ΨT
C̃

∇b ∂C
∇b

∂p
δpC̃bϕdσ (20)

Here C̃b = (C∇b)−1Cb. Similarly, the perturbed measurement

equation is :

J+(p+δp) = [CJ(p+δp)](ϕ+δϕ)−C∇J (p+δp)n·∇(ϕ+δϕ)

(21)

Using a first order Taylor series expansion for the per-

turbed terms as before, ignoring O(δ2) terms, and noting that
∂CJ

∂p ,
∂Cb

∂p equals 0, the sensitivity for the partial current is:

δJ+(p) = (CJ + C∇J C̃b)δϕ (22)

where δJ+(p) = J+(p + δp) − J+(p) and δp is assumed to

be negligible at the detector locations. It is worthwhile noting

here, that the expression on the left in (20) can be used to

obtain the sensitivity for the partial current δJ+ directly, if

the matrix CR in (14b) is defined as CR = (CJ +C∇J C̃b)T

instead of using (15).

The Frechet derivatives for the frequency domain FOT

problem in a linearized setting are presented in the appendix.

IV. FINITE ELEMENT FORMULATION

We use the Galerkin Finite element method (GFEM) to

solve the forward and the adjoint problem. The domain V and

the boundary ∂V is discretized into a structured grid with ‘Nn’

nodes and ‘Ne’ elements. We use 2D linear shape functions

to approximate the composite flux ϕ as

ϕx/m ≈ ϕ̂x/m = ([N ][N ])

(

[

ϕ
x/m
1

]

[

ϕ
x/m
2

]

)

Here [N(r)] for a position coordinate r, is a nodal basis for

a corresponding approximation to the optical field-quantities

(ϕ), and [ϕ
x/m
1,2 ] is a column vector of all the nodal values of

ϕ
x/m
1,2 . The structured grid is composed of 2D linear triangular

elements. At the elemental level, the nodal basis is [N ] ≡
[N1, N2, N3], where Ni(r) for i = 1, 2, 3 are the usual 2D

linear shape functions for triangular elements [36]. We denote

[N] = ([N ], [N ]). Quantities in [.] denote the nodal values.

Forward Problem

The GFEM type weak form for the governing equations (1)
with [N] as the test function, is:

∫

V

[N]T(−∇C
∇x∇ϕ̂

x + C
x
ϕ̂

x)dV = 0 (23a)

∫

V

[N]T(−∇C
∇m∇ϕ̂

m + C
m
ϕ̂

m)dV =

∫

V

[N]TCβ
ϕ̂

x
dV

(23b)

Integrating the above weak form by parts, substituting the
boundary conditions (as in (2b)), and introducing the approx-
imations ϕ̂ defined earlier, we obtain:

∫

V

(∇[N])TC∇x∇[N][ϕx]dV +

∫

V

[N]TCx[N][ϕx]dV

+

∫

∂V

[N]T C̃bx[N][ϕx])dσ =

∫

∂V

[N]T (C∇bx)−1
C

Sx
dσ

(24a)
∫

V

(∇[N])TC∇m∇[N][ϕm]dV +

∫

V

[N]TCm[N][ϕm]dV

−

∫

∂V

[N]T C̃bm[N][ϕm])dσ =

∫

V

[N]TCβ [N][ϕx]dV

(24b)

The excitation source is a point source located on the bound-
ary. It is modeled as a delta source S(r) = Q · δ(r − rs)
where rs is the location of the point source and Q is the
source strength in Wcm−2. For the source term, only those
nodes corresponding to the source element will be non zero,
and therefore

∫

∂V

[N]T (C∇bx)−1
C

Sx
dσ

= [N(rs)]
T (C∇bx)−1 ·Q

( ∫

Ω·n<0
2|Ω · n|dΩ

∫

Ω·n<0
(5|Ω · n|3 − 3|Ω · n|)dΩ

)

The Galerkin approximation based system of equations, is

thus:

[C][ϕ] = [C̃S] (25)

where [ϕ] =

([

ϕx
]

[

ϕm
]

)

, [C] =

(

Cx 0

−M Cm

)

and [C̃S] =
(

[N ]
T
(C∇bx)−1 · CSx

0

)

with,

Cx/m =

∫

V

(∇[N])TC∇x/m∇[N]dV

+

∫

V

[N]TCx/m[N]dV +

∫

∂V

C̃bx/m[N]dσ

and M =

∫

V

[N]
T
Cβ [N]dV

The partial current is obtained as

[J+] = (CJ + C∇J C̃b)[N][ϕ] (26)
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Adjoint Problem

We approximate the adjoint Ψ as

Ψ ≈

(

Ψ̂xx Ψ̂xm

Ψ̂mx Ψ̂mm

)

=

([

N
] [

0
]

[

0
] [

N
]

)([

Ψxx

] [

Ψxm

]

[

Ψmx

] [

Ψmm

]

)

The GFEM based adjoint system of equations is

[C̃][Ψ] = [C̃R] (27)

where C̃ =

(

C̃x −MT

0 C̃m

)

C̃R =

([

∆d

] [

0
]

[

0
] [

∆d

]

)

with

C̃x/m =

∫

V

(∇[N])T (C∇x/m)T∇[N]dV +

∫

V

[N]T (Cx/m)T [N]dV

+

∫

∂V

(C∇x/m)−T (C̃bx/m)T (C∇x/m)T [N])dσ

and [∆d] representing the detector matrix, that is zero every-

where, except for having unity value at the detector nodes.

Frechet Derivative

The GFEM formulation for (20) is

[

δϕ
]

=
[

Ψ
]T [

δC
][

ϕ
]

(28)

where

δC =

(

δCx 0

−δM δCm

)

with δM =
∫

V
[N]T ∂Cβ

∂p
δp[N]dV

δCx/m =

∫

V

[∇N]T
∂Cx/m

∂p
δp[∇N]dV

−

∫

V

[N]T
∂Cx/m

∂p
δp[N]dV

+

∫

∂V

[N]T C̃∇bx/m ∂C∇bx/m

∂p
δpC̃

bx/m[N]dσ

−

∫

∂V

[N]T C̃∇bx/m ∂Cbx/m

∂p
δp[N]dσ

The variation in the composite moments can thus be written

as:

[δϕ] = Jϕδp (29)

where δp denotes the vector of elemental perturbations of

the optical parameter, and Jϕ represents the corresponding

Jacobian matrix.

The FEM formulation for the sensitivity of the partial

current is thus:

[δJ+] = (CJ + C∇J C̃b)[δϕ] ≡ Jpδp (30)

where Jp(= (CJ + C∇J C̃b)Jϕ) denotes the Jacobian corre-

sponding to the first variation of the partial current with respect

to the elemental vector of the optical parameter p.

Note: If C̃R = [(CJ +C∇JC̃b)], then

δJ+ = [Ψ]T [δC][ϕ] ≡ Jpδp
Further, for shape reconstructions, having defined our un-

known in (8) as h =
(

α,xcT ,ycT , θcT
)T

, we can write the

first variation of the elemental vector p with respect to the

shape parameters as:

δp = Hρ[s]δα+ αdiag(H ′
ρ[s])δs (31)

where s is the vector of level-set values taken at the centroids

of the mesh-elements.

Now, the first variation of the level-set values δs with respect

to the coordinates of the RBF centers and the normals at those

points can be written symbolically as:

δs = Jc





δxc

δyc

δθc



 (32)

where the explicit form of the Jacobian matrix Jc is given in

[27] and is not repeated here for the sake of brevity.

Hence, we can now write:

[δJ+] = Jp

(

Hρ[s] αdiag(H ′
ρ[s])Jc

)

δh ≡ Jhδh (33)

with Jh(≡ Jp

[

Hρ[s] αdiag(H ′
ρ[s])Jc

]

) being the Jacobian

matrix corresponding to the variation of the measured partial

currents with respect to the shape-based-unknown vector, h.

V. NUMERICAL STUDIES

In this study, two kinds of settings were considered, the

first for a scattering dominated medium and the second, for an

absorption dominated medium, with square domains of sizes

2cm× 2cm and 1cm× 1cm respectively. In the first setting

the optical properties for the phantom were chosen to mimic an

actual tissue sample as in [17]. The extrinsic fluorophore con-

sidered is indocyanine green (ICG) with excitation wavelength,

λx = 785nm and emission at λm = 830nm. In the second

setting, the optical properties for the phantom are chosen as in

[18]. The extrinsic fluorophore considered in this case is Qdot
R©565 [37] with excitation peak at λx = 300nm and emission

at λm = 565nm. This choice of wavelengths (for excitation

and emission) as well as the optical parameters enables us to

investigate a setting wherein the diffusion approximation is

clearly not valid (we have also verified this via comparison

with Monte Carlo results for the given excitation wavelength).

The optical properties for both the settings are listed in Table

I and the anisotropy factor g is taken to be 0.8 in all cases.

An excitation source of strength 1mW/cm−2 and mod-

ulated at a frequency of 100 MHz is placed at the centre

of each side of the square domain sequentially. Nineteen

equispaced detectors are placed on each side of the phantom

that measure the fluorescent emission. In each setting, we

consider two kinds of phantoms, one with a bean shaped

concave inhomogeneity (CS or CA resp.), and the other with

two square objects (DS or DA resp.).

Our SP3 codes have been validated with respect to

Monte Carlo simulations for homogeneous media with

and without fluorescence as well as heterogeneous me-

dia with fluorescence. The Monte Carlo codes used by

us for verification are open source codes available at

http://omlc.org/software/mc/.

In Fig.1 we plot maps of the sensitivity for phantoms DS,

DA and DA2; where, DA2 denotes an absorption-dominant
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TABLE I
DESCRIPTION OF THE PHANTOMS AND THE FLUOROPHORES FOR BOTH THE GROUPS OF SIMULATIONS.µa(cm−1) AND µrs(cm−1) ARE THE

ABSORPTION AND SCATTERING COEFFICIENTS RESPECTIVELY. η IS THE FLUORESCENT QUANTUM YIELD AND τ IS THE FLUORESCENCE LIFETIME FOR

THE FLUOROPHORE. THE SUBSCRIPTS i/f DENOTE QUANTITIES RELATED TO THE BACKGROUND AND FLUOROPHORE AND THE SUPERSCRIPTSx/m
INDICATE QUANTITIES AT EXCITATION/EMISSION WAVELENGTH RESPECTIVELY.

µx
ai µx

af µm
ai µm

af µx
rs µm

rs ηf τf (ns)

Phantom 1 0.031 0.006 0.7987µx
ai 0.0846µx

af 10.95 0.732µx
rs 0.016 0.56

Phantom 2 0.45 0.087 0.45 0.043µx
af 2.0 2.0 0.019 0.4
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Fig. 1. Maps of absolute value of the normalized sensitivity for a phantom with two square inhomogeneities in different settings:(a)Scattering dominant
medium with domain size 2cm× 2cm (DS); (b) Absorption dominant medium with domain size 2cm× 2cm (DA2); (c) Absorption dominant medium with
domain size 1cm× 1cm (DA); (d) Cross sectional plot of absolute values of normalized sensitivity for a phantom with two square inhomogeneites in different
settings along x = 0.

phantom, which is of dimension 2cm× 2cm and has a double-

square inhomogeneity. It is observed that in the absorption-

dominant setting, the sensitivity values in the central region are

very low for a large domain (2cm× 2cm) (refer Fig.1(b) and

(d)). This presents a limitation to the reconstruction algorithms

for such larger domains in predominantly absorbing media and

the reconstructions are prone to artifacts in regions of very low

sensitivity. Hence a smaller domain size (1cm× 1cm, Fig.1

(c)) is considered for this setting.

The Frechet derivatives have been validated by comparison

of the adjoint based calculated values with those obtained

from a finite-difference calculation in our earlier work [29].

The computation of the sensitivities on a structured grid with

3200 elements requires 3 seconds (on average) using the

adjoint approach (with a vectorized implementation detailed in

[17]) and 940 seconds (on average) using the finite difference

method in MATLAB on a system powered by the Intel

Xeon(R) processor. This huge speedup (313 times) in the

evaluation of the Frechet derivatives justifies the use of the

adjoint method for such problems.

Reconstruction results are presented using two regular-

ization schemes. A regularizing Levenberg-Marquardt (LM)

method [34] is used for the elementwise reconstructions and an

iteratively regularized “c-minimum-norm” Tikhonov scheme

[25], [27] is used for the small scale RBF-level-set based

shape based reconstructions with the vector c acting as prior

information. The LM scheme being a “no-prior” method, is

used by us to obtain element-wise reconstructions wherein we

assume a very rudimentary initialization of a homogeneous

medium of absorption coefficient 0.001cm−1 for all phantoms.

Comparisons between the linearized and non-linear recon-

structions are also presented in an element-wise framework.

In order to quantify the quality of reconstructions we utilize

two criteria [38], [39]: (a) a normalized mean square error

of the area-parameter product; parameter here referring to the

optical parameter of absorption-coefficient-difference (w.r.t the

background) i.e.µx
af , and, (b) the distance of the centroid(s)

of feature(s) of interest in the image. In addition, only for

the shape reconstructions we also measure the normalized

absolute error of the optical parameter reconstructed. These

error metrics are defined in Table II.

The area and centroid coordinates are evaluated by discretiz-

ing the reconstructed/actual images, and are defined as:

Aobject =
∑

i,j

χobject(xi, yj) (34)

xobject =

∑

i,j xiχobject(xi, yj)

Aobject
, yobject =

∑

i,j yiχobject(xi, yj)

Aobject

(35)

where the indices (i, j) represent the x and y-indices of the

triangle centroids and range over the extent of the discretized

image, and χobject(.) is the characteristic function with respect

to the object support.

Reconstructions are shown for three moderately noisy data

sets for each phantom in each setting, and corresponding error

measures obtained are tabulated in Table III.

In the figures, the actual object is shown in dashed (green)

lines and shape reconstructions are depicted as solid (red)

lines. The nonlinear reconstructions are characterized by their

gray-scale map and the linearized ones are represented only

in terms of their spatial extent with a wire-frame. For the re-

constructed optical parameter (µx
af ), Table IV gives the shape-

reconstructed value, as well as only the peak values obtained

from the elementwise linearized and nonlinear reconstructions.
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TABLE II
DEFINITIONS OF THE MEASURES USED TO QUANTIFY THE ELEMENT-WISE AND SHAPE RECONSTRUCTIONS.α DENOTES THE OPTICAL PARAMETER, A

THE AREA OF THE OBJECT AND (x, y) ARE THE CENTROID COORDINATES. THE SUPERSCRIPTS ‘rec’ AND ‘ac’ ARE USED TO DENOTE THE

RECONSTRUCTED AND ACTUAL QUANTITIES RESPECTIVELY. FOR THE ELEMENT-WISE CASE, i RELATES TO THE i-TH ELEMENT.

Measure Element-wise Shape

Area-parameter product Ea =
|
∑

i(α
rec
i Ai)−

∑
i(α

ac
i Ai)|∑

i |αac
i Ai|

× 100% Ea = |αrecArec−αacAac|
|αacAac|

× 100%

Euclidean distance Ec =
√

(xrec − xac)2 + (yrec − yac)2 Ec =
√

(xrec − xac)2 + (yrec − yac)2

Normalized absolute error Not applicable Eα = |αrec−αac|
|αac|

× 100%

TABLE III
ERROR MEASURES FOR SHAPE AND ELEMENTWISE RECONSTRUCTIONS; FOR RESPECTIVE SET A,S , C∗-N1, C∗-N2 AND C∗-N3 DENOTE THE CONCAVE

PHANTOM DATA WITH NOISE LEVELS N1,N2 AND N3 RESPECTIVELY, AND D∗-N1, D∗-N2 AND D∗-N3 DENOTE THE DATA FOR THE DOUBLE PHANTOM;
Ea , Ec AND (ONLY FOR SHAPE RECONSTRUCTIONS)Eα DENOTE THE AREA-PARAMETER-PRODUCT, CENTROID, AND OPTICAL-PARAMETER ERROR

MEASURES RESPECTIVELY;Ec = (Ec1, Ec2) CORRESPONDING TO THE TWO OBJECTS (ASSOCIATED WITH y < 0 AND y > 0 RESPECTIVELY) FOR THE

DOUBLE PHANTOMS

Noise-level (dB)
Ea%(element)

Ea% (shape)
Ec(mm)(element)

Ec (mm) (shape) Eα%(shape)
linearized non-linear linearized non-linear

Scattering-dominant setting
CS-N1 34.49 0.58 4.34 0.12 0.424 0.257 0.021 2.75
CS-N2 28.43 3.21 1.61 1.13 0.438 0.262 0.016 5.65
CS-N3 25.18 4.87 0.57 0.67 0.467 0.187 0.008 11.79
DS-N1 35.62 8.39 7.38 0.55 (0.094,0.480) (0.209,0.584) (0.101,0.288) 19.62
DS-N2 28.64 13.77 11.75 0.46 (0.030,0.102) (0.171,0.191) (0.148,0.159) 8.50
DS-N3 23.25 7.61 5.67 0.32 (0.252,0.327) (0.178,0.095) (0.082,0.373) 8.52

Absorption-dominant setting
CA-N1 34.81 50.88 51.86 0.50 0.369 0.099 0.007 0.50
CA-N2 28.96 50.82 52.42 0.09 0.374 0.071 0.033 4.59
CA-N3 22.59 51.28 55.40 1.31 0.327 0.153 0.022 8.36
DA-N1 35.20 10.03 2.79 0.14 (0.245,0.234) (0.093,0.114) (0.028,0.028) 20.08
DA-N2 28.68 18.47 3.00 0.94 (0.181,0.118) (0.147,0.261) (0.212,0.039) 2.80
DA-N3 23.00 26.99 13.16 1.03 (0.180,0.099) (0.195,0.125) (0.216,0.052) 24.49

TABLE IV
RECONSTRUCTED OPTICAL PARAMETER VALUE IN THE

SCATTERING-DOMINANT(CS, DS) AND ABSORPTION-DOMINANT (CA,
DA) SETTINGS FOR THE ELEMENTWISE AS WELL AS SHAPE

RECONSTRUCTIONS. IN THE ELEMENTWISE SETTING, THE PARAMETER

VALUES TABULATED CORRESPOND TO THE MAXIMUM VALUE OF THE

OPTICAL PARAMETER WITHIN THE REGION OF INTEREST

Data-set
Element-wise

Shape
linearized non-linear

Scattering-dominant setting, µx
af,true = 0.006cm−1

CS-N1 0.0032 0.0044 0.0061
CS-N2 0.0029 0.0034 0.0063
CS-N3 0.0028 0.0051 0.0053
DS-N1 0.0039 0.0053 0.0048
DS-N2 0.0042 0.0055 0.0055
DS-N3 0.0056 0.0053 0.0055

Absorption-dominant setting, µx
af,true = 0.087cm−1

CA-N1 0.0376 0.0639 0.0866
CA-N2 0.0372 0.0624 0.0830
CA-N3 0.0377 0.0719 0.0797
DA-N1 0.0619 0.0760 0.1045
DA-N2 0.0576 0.0711 0.0846
DA-N3 0.0569 0.0825 0.0657

A. Reconstruction results in scattering-dominant setting

Fig.2(a,c,e) and Fig.2(b,d,f) show the reconstructions ob-

tained for the single concave phantom and double square

phantom cases respectively.

The linearized as well as non-linear reconstructions of

optical parameter (µx
af ) in the elementwise setting are plotted

after thresholding the reconstructed µx,rec
af at 0.2max(µx,rec

af ).
In the elementwise setting, we initialise the fluorophore ab-

sorption coefficient to be homogeneous with value 0.001cm−1

for both the phantoms. In both, the single phantom (CS), as

well as the double phantom reconstructions (DS), the centroid

error (Ec) observed is low, demonstrating the effectiveness of

the regularizing LM reconstruction scheme in localizing the

objects. We also observe that in the scattering dominant case

the linearized reconstruction scheme performs at par with the

non-linear reconstruction scheme in terms of the error metrics

(see Table III), however the non-linear scheme consistently

outperforms the linearized reconstruction scheme in terms of

the peak parameter value estimated (see Table IV). In the

double phantom reconstructions, artifacts are observed very

close to the boundary and also close to the center. These are

of considerably low value and small extent.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Reconstructions in scattering-dominant setting for 1.Concave phantom
(a) data-set CS-N1, (c) data-set CS-N2 and (e) data-set CS-N3 and 2.Double
phantom (b) data-set DS-N1, (d) data-set DS-N2 and (f) data-set DS-N3. In
the figure, comparisons are presented between the true object (bright green-
dashed line) and (i) non-linear reconstructions in an element-wise setting
(solid-grayscale) (ii) linearized reconstructions in an element-wise setting
(wire frame) and (iii)RBF-level-set based shape reconstructions (red, solid
line).

For the shape reconstructions, we initialise the single phan-

tom reconstructions by a circular object of radius 0.4cm (of

the order of twice the actual object size, as is also observable

from the elementwise reconstructions) and absorption coeffi-

cient 0.001cm−1. The double phantom reconstructions were

initialised by a single circular object of radius 0.5 cm and

absorption coefficient 0.001cm−1; the reconstructed iterates

obtained see the split of the single-phantom initial estimate

into two distinct objects. The results shown for the shape

reconstructions in Fig. 2 show a clear localization and good

optical parameter reconstructions, which are evident from the

low centroid and parameter errors in both the single phantom

and double phantom reconstructions, and also from Table IV.

In addition, the single concave phantom’s concavity, which is

the salient shape feature of the phantom, is well captured.

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Reconstructions in absorption-dominant setting for 1.Concave phan-
tom (a) data-set CA-N1 , (c) data-set CA-N2 and (e) data-set CA-N3 and
2.Double phantom (b) data-set DA-N1 , (d) data-set DA-N2 and (f) data-
set DA-N3. In the figure, comparisons are presented between the true object
(bright green-dashed line) and (i) non-linear reconstructions in an element-
wise setting (solid-grayscale) (ii) linearized reconstructions in an element-wise
setting (wire frame) and (iii)RBF-level-set based shape reconstructions (red,
solid line).

B. Reconstruction results in absorption-dominant setting

Fig.3(a,c,e) and Fig.3(b,d,f) show the reconstructions ob-

tained for the single concave phantom and double square phan-

tom cases respectively. The linearized as well as non-linear

reconstructions of optical parameter (µx
af ) in the elementwise

setting are plotted after thresholding the reconstructed µx,rec
af

at 0.3max(µx,rec
af ). In the elementwise setting, we initialise

the fluorophore absorption coefficient to be homogeneous with

value 0.001cm−1 for both the phantoms. For the concave

phantom, the low centroid errors in the elementwise setting

too indicate that the object is reasonably well localized though

spread out in extent. For this case, the linearized reconstruction

scheme underestimates the parameter value as compared to

the non-linear scheme. However the area-parameter product

(Ea) measure for both the schemes is similar since in the

linearized reconstructions, the underestimated parameter value

is compensated by an overestimation of the spatial extent of

the reconstructed object. In the double phantom case, while



0278-0062 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2017.2718028, IEEE
Transactions on Medical Imaging

10

with the non-linear scheme a distinct split is obtained between

the two objects, it is not so in the linearized scheme. As with

concave phantom, in this case too the peak parameter value is

underestimated by the linearized scheme with higher values of

µx,rec
af very close to the boundary. The reconstructions in the

double phantom case are more sensitive to the initial estimate.

The shape reconstructions are also able to clearly resolve

the two square-shaped inhomogeneities. The iteratively regu-

larized scheme is started with a single circular object of radius

about 0.4 cm of absorption coefficient of about 0.015cm−1 and

it converges to the two-objects. The absorption coefficients

are also very well reconstructed with values given in Table

IV. The single-concave-object’s reconstructions show a good

reconstruction of the concavity as well as the absorption

coefficient as is seen in Fig.3 and further quantified by the

values of Ea, Ec and Eα in Table III. This further underscores

the utility of the shape-reconstructions with of course the

underlying assumptions.

We observe that the nonlinear reconstruction scheme per-

forms better than the linearized one in terms of the maxi-

mum parameter value estimated, as well as in capturing the

actual spatial support of the object. These benefits of using

a non-linear reconstruction over a linearized reconstruction

are highlighted in the absorption dominant setting since the

errors due to not considering the full adjoint sensitivity (as in

the non-linear scheme) but only an approximation to it (as in

the linearized scheme) are significant when the value of the

fluorophore absorption coefficient is large. These observations

are consistent with those presented by Eppstein et al in [40].

In our simulations, we observe that with the non-linear

reconstruction scheme in the elementwise as well as shape

based settings, stable results are obtained upto about SNRs of

25 dB in both the scattering and absorption dominant settings.

As the SNRs go down to about 20dB, reconstructions can

be obtained but they are unstable and often diverge rapidly

after the appropriate regularization-parameter/reconstruction

is reached. For these low SNRs, we observe that at these

points of “correct” regularization parameter, the data residual

is quite large, which tells us that we are obtaining a reasonable

reconstruction by avoiding overfitting the data. Hence, we only

present the results of the moderately noisy cases.

VI. CONCLUSIONS

This paper presents Gauss-Newton based fully nonlinear

reconstructions for the SP3 approximated fluorescence optical

tomography problem with respect to level-set shape-based as

well as conventional elementwise (in a finite element frame-

work) representations. The contribution of this paper is the

Frechet derivative calculations for this problem and demonstra-

tion of non-linear reconstructions with both representations.

We present reconstructions of tumor-mimicking phantoms in

scattering as well as absorption dominant settings in two

dimensions for moderately noisy data sets. Comparison of the

nonlinear reconstructions with those obtained from a linearized

FOT reconstruction in an elementwise setting demonstrate

better localization of the object as well as estimation of the

optical parameter with the nonlinear scheme.

The elementwise reconstructions carried out using the regu-

larizing Levenberg-Marquardt method start with practically no

prior information and give the necessary support information

to start the shape reconstructions. The significantly reduced

errors in area-parameter product, the object centroid, as well

as the reconstructed optical parameter, show the improvement

in localization as well as parameter-reconstruction of the

shape-based scheme over the elementwise reconstructions. The

results obtained demonstrate the viability of the SP3-modeled

fully nonlinear reconstructions for fluorescence optical tomog-

raphy.

The demonstrated scheme is scalable to three dimensions.

In a 3D framework, in order to retain the efficacy of the adjoint

based evaluation of the Frechet derivative, the source-detector

configuration needs to be optimized; this is the subject of

ongoing study.
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APPENDIX

FRECHET DERIVATIVE FOR THE LINEARIZED PROBLEM

To linearize the SP3 forward model, it is assumed (as

in [14]) that the contribution of the fluorophore absorp-

tion coefficient, µ
x/m
af to the total absorption coefficient

µ
x/m
af is small. Hence, perturbations in the system matrices

C∇x/m, Cx/m, C∇bx/m and Cbx/m due to perturbations in

µ
x/m
af are neglected. Incorporating these assumptions, the

expression for the sensitivity of the composite moments with

respect to µx
af given by (20) reduces to:

δϕm =

∫

V

ΨT
mmC

βϕxdV (36)

In [40] this is referred to as the approximate adjoint sensitivity.

In the same paper a detailed comparison of reconstructions

of µx
af with the exact and approximate adjoint sensitivities

for the diffusion approximation has also been presented. The

approximate sensitivity for partial current at the emission

wavelength can now be written as,

δJ+m = (CJm + C∇JmC̃bm)δϕm (37)

REFERENCES

[1] V. Ntziachristos, “Fluorescence molecular imaging,” Annual Review of
Biomedical Engineering, vol. 8, no. 1, pp. 1–33, 2006, pMID: 16834550.

[2] N. Thekkek and R. Richards-Kortum, “Optical imaging for cervical
cancer detection: solutions for a continuing global problem,” Nature
Reviews Cancer, vol. 8, no. 9, pp. 725–731, 2008.

[3] A. Ishimaru, Wave propagation and scattering in random media. Aca-
demic press New York, 1978, vol. 2.

[4] S. Chandrasekhar, Radiative transfer. Courier Corporation, 2013.
[5] A. D. Klose and E. W. Larsen, “Light transport in biological tissue based

on the simplified spherical harmonics equations,” J. Comput. Phys., vol.
220, no. 1, pp. 441–470, dec 2006.

[6] S. R. Arridge, “Optical tomography in medical imaging,” Inverse
problems, vol. 15, no. 2, p. R41, 1999.



0278-0062 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2017.2718028, IEEE
Transactions on Medical Imaging

11

[7] C. Siewert, “A discrete-ordinates solution for radiative-transfer models
that include polarization effects,” Journal of Quantitative Spectroscopy
and Radiative Transfer, vol. 64, no. 3, pp. 227–254, 2000.

[8] K. M. Case and . Zweifel, Paul Frederick, Linear transport theory.
Reading, Mass. : Addison-Wesley Pub. Co, 1967.

[9] M. Chu, K. Vishwanath, A. D. Klose, and H. D. and, “Light transport
in biological tissue using three-dimensional frequency-domain simpli-
fied spherical harmonics equations,” Physics in medicine and biology,
vol. 54, no. 8, p. 2493, 2009.

[10] M. Chu, “Modelling light transport through biological tissue using the
simplified spherical harmonics approximation,” 2010.

[11] Y. Lu, B. Zhu, H. Shen, J. C. Rasmussen, G. Wang, and E. M.
Sevick-Muraca, “A parallel adaptive finite element simplified spherical
harmonics approximation solver for frequency domain fluorescence
molecular imaging,” Physics in medicine and biology, vol. 55, no. 16,
p. 4625, 2010.
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