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Abstract: We propose a gradient based scheme to solve the fluorescence
photoacoustic tomographic (FPAT) problem in a fully-nonlinear one-step setting,
which aims to reconstruct the map of the absorption coefficient of an exogenous
fluorophore from boundary photoacoustic pressure data. Adjoint based gradient
evaluation is presented for the FPAT problem in a frequency-domain photoacoustic
equation setting. Numerical validations of the resulting BFGS reconstruction
scheme have been carried out in two-dimensions for full as well as limited data
test-cases, and the results are compared with existing Jacobian based one-step
FPAT reconstructions. The reasonably comparable results of the one-step gradient
and Jacobian based FPAT reconstruction schemes coupled with the significant
computational savings of the former, potentially set up the one-step gradient based
schemes as an advantageous method of choice for FPAT reconstructions. Further
reconstruction studies carried out using QPAT based chromophore reconstructions
as inputs to the FPAT inversions, show a robustness of fluorophore absorption
coeflicient reconstructions to the QPAT-obtained inputs.

1. Introduction

Photoacoustic tomography (PAT) yields a map of the absorbed optical energy
density (AOED) in a tissue medium, from measured pressure signals obtained
due to a heat source formed by the interaction of incident laser radiation with the
tissue of interest [1]. The obtained AOED can also be further used to reconstruct
the underlying optical parameters of the medium; this tomographic optical-
parameters retrieval is known in the literature as quantitative photoacoustic
tomography (QPAT) [2-18].

Absorption contrast (due to intrisic chromophore distribution) at the early stages
of tumor development may not be strong enough for an accurate diagnosis [19].
In such cases, exogenous fluorescence markers are injected to tag the tumor
cells and the reconstructed maps of their concentration are reconstructed in
order to provide contrast enhanced images of the underlying pathology. This
aspect in addition to the progress in the development of high quantum efficiency
and low toxicity fluorophores [20,21] has led to the importance of quantitative
fluorescence photoacoustic tomography.

The idea of quantitative fluorescence photoacoustic tomography (FPAT),



and first such optical parameter reconstructions from assumed AOED data
were demonstrated using Newton’s method by Ren and Zhao in the diffusion-
approximation [22]. Radiative transport equation (RTE) based algorithms
were also developed in [23,24] and reconstructions of optical parameters from
AOED data were demonstrated in scattering-dominant as well as non-scattering-
dominant media. The algorithms in [22,23] involve computation of adjoint
assisted Hessians and gradients at each iterate to carry out reconstructions.

A quantitative/fluorescence PAT (QPAT/FPAT) problem basically involves two
steps: reconstruction of (a) AOED from boundary PA data, and (b) the desired
optical parameters considering the reconstructed AOED map as internal data.
The works [22-24] deal only with the second step of the FPAT problem. To
address the aspect that the reconstruction errors from the first PA step cannot
simply be modeled as random noise, as well as to cut-down numerical errors in
two-step reconstructions, the complete nonlinear FPAT problem of reconstructing
optical parameters from actually measured boundary pressure data was solved
with a Jacobian based one-step inversion scheme [25,26]. The one-step algorithm
was observed to produce superior reconstruction results as compared to the
two-step algorithm where the AOED was reconstructed first, followed by a
second step optical parameter reconstruction. Similar results were reported for
non-fluorescence QPAT as well [17, 18].

With the objective of reducing computational complexity associated with the
nonlinear optimization schemes, the use of gradient-based algorithms ( [2-9] for
two-step, and [10—13] for one-step schemes) have been considered in place of
Jacobian-based ones ( [14—16] for two-step, and [17, 18] for one-step schemes)
in QPAT. However, it has been previously reported in literature that the gradient
based method does not give as accurate results as the Jacobian-based method both
visually and quantitatively [5]. If the gradient based scheme does comparably
well as the Jacobian based one for a significant class of test cases, then that is a
justification of the necessity of the computationally much lighter gradient based
methods. That has indeed been found in the FPAT formulation proposed by us in
this paper.

In our present work, for a frequency-domain PA-equation modeled FPAT
problem, adjoint-based gradients have been evaluated, and then used in a BFGS
scheme to obtain reconstructions for optical absorption coefficient of exogenous
fluorophore at excitation wavelength for full- as well as limited-data test cases.
To the best of our knowledge, these are the first full-FPAT reconstructions with
a gradient based inversion. While the existing results in FPAT consider known
intrinsic absorption coeflicient maps, in practice those need to be reconstructed
using QPAT. We have thus also considered a phantom with unknown intrinsic
absorption properties, and used QPAT to reconstruct the absorption coefficients
at excitation and emission wavelengths. These reconstructed chromophore maps
(instead of the actual maps) are then used in the proposed FPAT scheme to
reconstruct gy r; the pqyp reconstructions obtained show a robustness with



respect to the QPAT-obtained inputs.

The rest of this manuscript is constructed as follows. The forward model of
the coupled FPAT problem, and corresponding inverse problem are provided in
section 2. The adjoint assisted gradient based scheme for one-step reconstruction
is formulated in section 3. Section 4 deals with the numerical test-cases considered
in the present work, and provides a detailed discussion of the reconstruction
results thus obtained. The concluding remarks are offered in section 5. Appendix
A briefly discusses the finite element (FE) formulation of the coupled diffusion
equations (CDE) in nodal basis, and appendix B contains the corresponding
adjoint equations and excitation and emission fluence sensitivities. Appendix C
contains the FE formulation for solving the gradient evaluation related adjoint
equations and corresponding sensitivities evaluation. The FE formulation of
the CDE and the corresponding adjoint equations provided in appendices A
and C are similar to [27]. However, in our calculations, the domain parameters
are implemented in nodal basis while in [27] they have been implemented in
elemental basis.

2. Problem definition

When biological markers are injected in the tissue like medium, they get tagged
with the cancerous tissues and fluoresce on excitation. Recovery of the sources
of fluorescent emissions i.e. the spatial concentration map or the absorption
coefficient map p, ¢(7) of the markers reveal the size and location of tumors
inside the tissue. A fluorescent photoacoustic tomography (FPAT) problem
aims to recover the map of optical parameters such as absorption and scattering
coefficients of chromophores and fluorophores, anisotropy factor, etc. in the
region of interest from the measured PA pressure data. In this section, we briefly
introduce the forward and inverse problems of FPAT.

2.1. Forward Model

2.1.1. Fluorescent light propagation

The fluorescence photoacoustical forward problem is the prediction of the
measured pressure data assuming known optical properties of the medium,

via the solution of the photoacoustic equation (PAE); in our work we use the
frequency domain PAE (Helmholtz equation) [28]:

(V24 KDp(F. k) = ik () 1)
Cp
where h(F) = ky(F)®,(F) + k,,(F)®@,,(7) is the total absorbed optical energy
density (AOED), with absorbing boundary condition (ABC) [29]:
i Vp(F) + ikp(7) =0 on dQ, )

with @, (respectively ®,,) being the excitation (respectively emission) fluence,
and Ky /m = Ma(x/m)i + Ha(x/m)f>» Where gy (respectively pqpy;) is the absorption



coefficient of the intrinsic chromophore at excitation (respectively emission)
wavelength; and correspondingly t14(x/m) s being the excitation / emission absorp-
tion coefficients of the fluorophores. k is the acoustical wavenumber, v is the
speed of sound, g is volumetric expansion coefficient, Cp is the specific heat at
constant pressure.

The distribution of excitation and emission fluences in the medium is governed
by the coupled diffusion equations (CDE) [27] for excitation (x) and emission
(m) wavelengths as:

-V. (DqV(Dq) + k@, =S, (q=x,m) in Qy 3)

where D, and

1
3(ﬂaqt tlaqf +/qu)

) Sw forg = x
17 |pd,, forg=m

with 8 = ¢, s, where ¢ denotes the quantum efficiency of the exogenous
fluorophores. The boundary conditions are Robin boundary conditions for
q=x,m

i (DgV®O,) +by®, =0 on 0Q)y 4)

with b, R, being the Fresnel reflection coeflicients.

-R,
2(1+R )’

2.2. The measurement equation

In our work, we focus on the reconstruction of y, r, the fluorophore absorption
coeflicient at excitation wavelength. The discretized heat source A for a nominal
discretized distribution of fluorophore absorption coefficient Hoos is given by:

h=Hp, )= Z(u tp, )00, )
where H denotes the heat source operator, © represents the pointwise multipli-
cation and @, ,, are obtained by solving (24). The forward problem of FPAT,
defined in the above subsection is discretized in our work in a finite element
method (FEM) framework to yield a nonlinear relation between the PA pressure

data vector P, measured at detector positions 74, (i = 1, ..., M) at frequencies
wi(j=1,. L) and the unknown fluorophore absorption coefﬁc1ent vector u
in the domain, and can be written as :

Preas = JeH (1, ) =G, ) (6)

medas

where the PA measurement operator J, which relates the PA measurements with
the heat source £, and discrete-domain FPAT measurement operator G = J, H
which relates the PA measurements with the fluorophore absorption coeflicient
Maxf» are explicitly given in [26].



2.3. Inverse problem

The FPAT inverse problem can be written as:

~ , _ 1 2
Fypy = argmin €W, )= 5lP, s =G, I )

—axf

f

In general, we assume knowledge of f14(x/m) and y; (x/m) which can be obtained
in principle via QPAT at excitation and emission wavelengths [17,30] before
fluorophore injection, and focus on reconstruction of 1,y .

3. Reconstruction scheme

The nonlinear optimization problem corresponding to one-step FPAT seeking
Max s Teconstruction from boundary PA data, can be written as the minimization
of the data-residual, expressed as:

. . 1 2
i,y = argmin e, ) =3P, .~ Gw, ®)

—axf

f

3.1. Gradient computation

The first variation of the above functional can be written (using Eq. (5),(6)) as:
_ _ T
oep, V== .~ G, oGk, J)
_ _ T
=-=(p G, D) IndHp, )

—medas

= —V/oH(y, )= ~EH (@, )y

T

= —(k, 000 +¢ Ok +k, 060 +¢ ©Ok,) v )
where y := JhT(Ijmws - Q(Eaxf)). Also since k. = Mo+ gaxf, :,, ok, =
5Eaxf and k, = p .+ YH T ok, =v 5ﬁaxf (y being the ratio of the

absorption coefficients of exogenous fluorophore, at the emission and excitation

wavelengths: y = Z “’"; ), we obtain,

T
be=—(k, 08¢ +9 0o, +k, 050 +yp ©ou )y
=0€1+ 06 +06 +0¢y (10)

The second and fourth terms (d€; and de4 respectively of Eq. (10) can be written
as:

Sy = _(Qx o 6Haxf)TK - (5Haxf)T(_K o gx) (11)

and
des= (¢, 00p, )y =6pu, ) (roe) (12)



The first term of Eq. (10)
N
se1 = —v'(k, ©6¢ )= - Z Vioky, 6O (13)
N w=1
where w denotes the nodes in the domain. The relation between 6®, and adjoint
Wy is linear (Eq. (37) in Appendix C), and can be written in the form,

—axf (1 4)
where w(w) is the solution to the adjoint problem with Dirac source at the w'"

node (A(W)) A :,b(w) = A(W) and L, is defined in Eq. (37) (in Appendix C).
Therefore,

N N
— _ (w) — _ (w)
de1 == ) vk, L@ op, = —Lax() vk ¢ op
w=1 w=1
N
= —.Exx(Ax_l Z Vwkxwé(W))(sﬁaxf = Lxx(gxx)éﬂaxf = (6Haxf)T§x (15)
w=1

with g = [L(¥. )], and adjoint ¥__ is solution to,
Sy —XxXx —xx
AY =S, (16)

where S = = ¥N_, vk, A™. Similarly, using Egs. (36) and (38), the third
term of Eq. (10) can be written as:
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m

(17)

with g = [Lm(¥,,,) + Lxm(gxm)]T, and adjoints ¥, . ¥ are solutions of,

mm’

Amgmm = Sm’ Axgxm = Mﬁgmm (18)



with S = = 3N_ vk, A", Therefore, using Eq. (11),(12),(15),(17) in
Eq. (10), we can write:

de=(op, ) (g ~vod +g —ywog )=@6u e (19

axf
where the gradient g is given as:

8= L ) ~v0 ¢ +[Lun(¥,,)+ LnE, ) —yvod  (20)

—Xnm

3.2. Inversion scheme

The gradient based reconstructions were carried out using BFGS algorithm [31],
a quasi-Newton approach. The update direction A,u{l if at any (say j'") iterate is

computed by solving,
(D = 50)

BOUY), = ey
where gU/) is the gradient vector at present iterate, and BY) is an approximation
to the Hessian matrix, which is initialized as identity matrix (of size N x N) and
updated at each iterate using

G _ g0 4 YDy Rl G BT
B =B D 22
y<J>Ts(J> sUT BU)sU) (22)

Here y(f) = gUH) - g(f) and s(f) = cyA,u(’)f is the total update, where the
steplength « is computed using a line search algorithm [32].

4. Numerical Studies
4.1. Test cases

‘We consider the domain of interest to be of dimension 2cm X 2c¢m, with the
overall computational domain set at 3cm X 3cm for PA modeling. The CDE
(Eq. (3)) is solved in 2c¢m x 2cm domain to obtain the heat source, followed by
solving the frequency-domain PAE (Eq. (1)) in the overall 3cm X 3cm domain.
The set-ups considered in our numerical studies are depicted in Fig. 1.
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Fig. 1: Set up for computational experiments in (a) full and (b) limited data setting
Setting-1: Background optical properties of the CDE domain are considered to

be homogeneous, with i, = 0.023cm™", ttgmi = 1.2565 - o, pts, = 9.84cm™",



Algorithm 1 One-step, gradient based FPAT algorithm

procedure ONE STEP, GRADIENT BASED FPAT RECONSTRUCTION
Ho= zeroes(N X 1) (Initialization by zero)
—ax,

1:

2

3 Predict absorbed optical energy density 4*

4 Compute PAT measurement matrix Jp,

5: Predict boundary PA data p*

6 B=eye(N x N) (Initialization by identity)

7 8, = zeros(N x 1) (Initialization by zero)

8 Compute € « ||p° = p*|[3

9 while € < tol or the residual is unchanging do

10: Compute gradient g
11: Compute the update direction Apax
12: Compute steplength @ using line search
13 update 5 aAEaxf
14 Hop < Hop +5
15: Predict absorbed optical energy density #*
16: Predict boundary PA data p*
I7: y=8-§,
18: 8, &
»w'  BssTBT
19: B&B—i_ﬁ_—ETBE
20: Compute € « ||p? - p*||?
21: end while o
22: return p ¢

23: end procedure

Mo = Mo, © = 0.4, Ry )y = 0.431, pgyr = 0.005¢m~! and Hamp = 0.1012 - pgy s
[26,33,34]. The phantoms we aim to reconstruct are: (i) phantom 1: a circular
fluorescent inhomogeneity (uq.s = 0.0Scm_l)(Fig. 2a) and (ii) phantom 2:
a concave (Ugxf = 0.04cm™") as well as a circular inhomogeneity (q, F =
0.05cm™") (Fig. 2b).

Setting-2: We have also considered a more realistic scenario, where the
chromophore absorption coeflicients’ (ugy; and pg,;) maps (at excitation and
emission wavelengths respectively) are unknown, and reconstructed by carrying
out QPAT at the two wavelengths. These reconstructed maps are then utilized to
further reconstruct g,

To carry out this study, we have considered a phantom 3 with the fluorescence
distribution and the background chromophore optical properties kept the same as
phantom-2. It has a circular (u,y; = 0.04 cm~1) and a concave (Haxi = 0.03 em™h
shaped chromophore absorption inhomogeneities with low target-background
contrast (~ 1.5 : 1) representing early stages of tumor growth. As previously
mentioned , the chromophore absorption coeflicient at emission wavelength
(ami) is related to the absorption coeflicient at excitation wavelength (1)
as: Ugmi = 1.2565 - u4yi. The properties and distribution of the exogenous
fluorophore have been kept the same as phantom-2.



The acoustic properties of the PAE modeling domain are chosen to be ho-
mogeneous: [ = 4 X 10*K~! and Cp = 4000JKg_1K_1 [1,26]. Equations

g (0) g (0) g (o) P (eM7)
1 0.07 0.07 0.07 0.07
0.06 0.06 0.06
0.05 0.05 0.05
0.04 0.04 0.04
0.03 0.03 0.03
0.02 0.02 0.02
0.01 0.01 0.01
0 0

(a) (b) () (d)

Fig. 2: True maps of p,xr (a) phantom 1, (b) phantom 2, and true (¢) pqx; and(d) pgm; maps for
phantom 3, which has the same ¢ map as phantom 2.

involved in this work have been solved using the finite element method. The PA
data are computed at 100 frequencies between 9.6kHz to 960kHz, at 160 and
41 detector locations for full and limited data cases respectively, with detector
separation of 1/16 ¢m. The experimental PA measurements are simulated at a
mesh resolution of 1/128 cm. The gradient and forward solver computations, as
well as reconstructions are carried out at 1/64cm resolution.

4.2. Reconstruction studies

Reconstruction procedure starts with an initial guess for Hoos which we choose to

be a zero vector. Algorithm 1 is implemented to obtain the y,, s reconstructions
of phantom 1 and 2 in full and limited-data settings, displayed in Fig. 3 and 4
respectively.

Accuracy of the reconstructions has been quantified on the basis of the
correlation coefficient(p) and the deviation factor (6) defined as [35]:

i LR AN B R

2
(N —1)aprapt Apt ()

where N is the total number of nodes, Ap’ and Ap” are the standard deviations
and p' and p" are the mean values of the true and reconstructed values of the
parameter respectively. The error measures (p, §) obtained for these reconstruc-
tions are tabulated in (Table 1), alongside those obtained from Jacobian based
reconstructions [26].

It is observed that, when PA data is noiseless, accurate reconstructions are ob-
tained for both the phantoms using the gradient based scheme in full data settings
(Fig. 3(a,e)) . With increasing noise level in measurements, the reconstructions
display noisy artifacts. However, the shape of inhomogeneities and parameter
values are accurately reconstructed for noisy data (even with SNR as low as 5dB)
as well, as displayed in figure 3.
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Fig. 3: Reconstruction results obtained for full-data setting for (a,e) noiseless PA data, and data
with (b,f) 15dB , (c,g) 10dB, and (d,h) 5dB SNR
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data with (b,f) 30dB , (c,g) 20dB, and (d,h) 10dB SNR



Table 1: Correlation coefficients p and deviation factors ¢ for one-step Jacobian and gradient
based reconstructions

Jacobian based | Gradient based
Data setting Phantom SNR

o o P o
Noiseless | 0.82 0.74 0.81 0.89
15dB 0.78 0.87 0.78 1.02

Phantom-1

10dB 0.74 0.90 0.67 1.13
5dB 0.67 0.97 0.63 1.13

Full data

Noiseless | 0.87 0.57 0.85 0.65
15dB 0.85 0.63 0.84 0.67

Phantom-2
10dB 0.81 0.68 0.82 0.70
5dB 0.77 0.74 0.74 091
Noiseless | 0.80 0.63 0.70 0.79
30dB 0.70 0.78 0.63 1.03

Phantom-1
20dB 0.57 1.02 0.59 1.17
10dB 0.49 1.18 0.56 1.13

Limited data

Noiseless | 0.85 0.54 0.79 0.69
30dB 0.82 0.61 0.77 0.77
20dB 0.75 0.74 0.75 0.85
10dB 0.71 0.87 0.69 0.94

Phantom-2

Under limited data settings, the reconstructions carry characteristic directional
artifacts. Using the proposed scheme, the reconstructions with noisy data are
found to reconstruct the inhomogeneities accurately. However, at low SNRs,
though inhomogeneities are located well, the reconstructed parameter values
are not that accurate. Artifacts in the reconstructions are more prominent as
compared to those observed under full data settings.

The reconstructions obtained from the proposed gradient based scheme were
further compared with the results obtained using a Jacobian based scheme [26],
and tabulated in table 1. In full data settings, the gradient based scheme
yields similar results as obtained from the Jacobian based reconstructions for
SNR > 10dB. However, the artifacts in the gradient based reconstructions are
more than they are in the Jacobian based reconstructions for low SNR. In the
limited data test cases, the BFGS scheme yields relatively lower correlation
coefficients and higher deviation factors as compared to the Jacobian based
scheme.

It needs to be noted though, that computation of Jacobian at each iterate requires
solving the corresponding adjoint models (to obtain {Y/x, ¥yum, ¥xm}) N (number
of nodes in the domain) times. While, computation of gradient requires these
models (to obtain {¥,, ¥m, Yxm}) to be solved only once. In FPAT, for the
settings presented in this manuscript, the Jacobian computation needs 3 x 16641
runs(for 3 adjoints and 16641 nodes in the domain), while the proposed gradient
computation requires 3 runs of the corresponding adjoint solvers. Therefore, even



though gradient based scheme in observed to need higher number of iterations
for convergence, it produces reconstructions significantly faster than the Jacobian
based scheme. The computational advantage of the gradient based scheme with
respect to Jacobian based scheme naturally improves with increase in the number
of nodes in the reconstruction domain, thus making it a powerful method of
choice in three-dimensions or dynamic settings.

The existing FPAT results in literature demonstrate reconstructions for known
and homogeneous chromophore distribution, and the reconstruction studies for
phantom 1 and 2 (Fig 3 and 4) have also been carried out under the same
assumptions. In case of phantom 3, we have considered a more realistic
problem, where the chromophore absorption coefficients’ (u,,; and p4,,i) maps
(at excitation and emission wavelengths respectively) are first reconstructed by
carrying out QPAT at the two wavelengths and then utilized to further reconstruct
Max s using the FPAT scheme proposed in this paper.

The p4(x/m)i maps were reconstructed using a one-step Jacobian based QPAT
scheme as in [17] with the initial guess for the t14(x/m); being 0.01 cm~! distributed
uniformly in the domain. The reconstructed py(x/m,); maps were then utilized to
reconstruct p,, ¢ using Algorithm 1 proposed in section 3. The reconstruction
results thus obtained for full and limited data settings are provided in Fig. 5 and
corresponding error measures are provided in Table 2.

Table 2: Correlation coefficients p and deviation factors o for u, .y reconstuctions, when g (x/m)i
were reconstructed using QPAT

Maxf

Data setting SNR
o 0

Noiseless | 0.85 | 0.53
10dB 0.77 | 0.74
Noiseless | 0.75 | 0.75
20dB 0.72 | 0.90

Full data

Limited data

Early stages of tumor are associated with low absorption contrast [19]. As
evident in Fig. 5, the QPAT reconstructions of ,(y/m); result in poor contrast, and
the shapes and sizes of the tumors cannot be retrieved precisely especially under
noisy and limited data settings. Exogenous fluorescent markers are injected in
the tissue which tag the tumors and reconstruction of their distribution yields
contrast enhanced images as illustrated in u,, s reconstructions carried out using
Algorithm 1 depicted in Fig. 5(c.f,i,]1). It is observed that the fluorescence targets
have been reconstructed quite well for noiseless as well as noisy PA data in both
full and limited data settings. Also, under noisy and limited data settings while
the 114(x/m); TECONStructions carry artifacts, we are still able to reconstruct the
Mayx s reasonably well. Therefore the FPAT reconstructions are seen to be robust
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Fig. 5: The first two rows correspond to the (noiseless and 10dB SNR respectively) full data
reconstructions, while the bottom two rows display the (noiseless ans 20dB SNR respectively)
limited data reconstructions. The first column (a,d,g,j) corresponds to (,y; reconstructions,
the second column (b,e,h,k) corresponds to ug.m,; reconstructions, and third column (c,f,i,l)
corresponds to {1,y reconstructions.



with respect to the QPAT reconstruction errors.

5. Conclusion

A gradient based BFGS reconstruction scheme for one-step FPAT has been
developed, to reconstruct the fluorophore absorption coeflicient at excitation
wavelength from boundary PA (pressure) data in a frequency-domain PA-equation-
modeled setting. An adjoint based scheme has been developed for gradient
computation. The gradients evaluated were implemented in a BFGS scheme to
obtain reconstructions under full as well as limited data settings. To the best
of our knowledge, these are the first results on gradient based one-step FPAT
reconstructions.

The results thus obtained were compared with existing Jacobian based recon-
structions [26]. Over the test cases considered here, the gradient and Jacobian
based schemes perform comparably for PA measurements obtained in full data
setting. The Jacobian based scheme yields slightly better reconstructions as
compared to the gradient based schemes under very noisy as well as limited data
settings, but at a much higher computational cost.

Construction of Jacobian needs the adjoint model to be solved O(N) (N: number
of nodes in the domain) times while for computation of gradient, it needs to be
solved O(1) times. Therefore, although the gradient based scheme took larger
number of iterations to converge, overall it was found to be significantly faster as
compared to the Jacobian based scheme. The reasonably comparable results of the
gradient and Jacobian based reconstruction schemes coupled with the significant
computational savings of the former, potentially set up the one-step gradient
based schemes as an advantageous method of choice for FPAT reconstructions
with good scale up possibilities to 3D and dynamic settings.

Reconstruction studies have also been performed to study the sensitivity of
FPAT reconstructions with respect to the QPAT reconstruction errors. A phantom
with low-contrast absorption inhomogeneities was considered and the QPAT
at excitation and emission wavelengths were carried out to reconstruct the
absorption coefficient maps at excitation and emission wavelengths (t14(x/m);)-
These reconstructions were utilized in the proposed FPAT scheme to reconstruct
the 4y ¢ (fluorophore absorption coeflicient at excitation wavelength) map. It is
observed that the TiiCuorescence targets thus obtained have been reconstructed
quite well for noiseless as well as noisy PA data in both full and limited data
settings.The p,, ¢ reconstructions were found to be reasonably good even when
QPAT reconstructions carried artifacts, especially in the cases with noisy PA
measurements and limited data settings, indicating the robustness of the proposed
scheme.
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Appendix A: Finite element formulation of coupled diffusion equations

The FE formulation of the CDE and the corresponding adjoint equations provided
in appendices A and C are similar to [27]. However, in our calculations, the
domain parameters are implemented in nodal basis while in [27] they have been
implemented in elemental basis. Using Galerkin’s formulation and expressing the
variables in finite element nodal basis, the CDE can be expressed in a discretized
form as (similar to Eq.(31) of [27]):

Aq@ngq; q=xorm (24)

where subscripts ¢ = x or m imply the quantities at excitation and emission
wavelengths. The domain parameters C € {Dy, k, by, B} are implemented in
nodal basis. System matrices A, (or A(Dy, ky, by)) and Mg (or M(p)) are the
assembled form of elemental matrices A, (D, k4, by) and M() respectively,
defined as (similar to Eq.(38),(39) of [27])

Ay(Dyg kg by) = KD, + Foky + Kby,  M(PB) =FaB.  (25)

where,
KiD, = [z;_lfg N; D, (VIN])TV N] Jo (v ]D V[N],
Koky = [ j= 1./9 quj[N N] :fg Nlk,INJ, (26)
K = [ 1 o, NiBJINITIN]| = [, (N NJ,

Kby = |21 fro, qu,[N NI| = o, (VINDTIN ]l_qu[N]

[N] = [N N, N3] being the linear basis function (size: 1 X 3) for a triangular
element e, and V[N] denotes its gradient matrix (size: 2 X 3). Index j (= 1,2, 3)
corresponds to the nodes in element e. /K, i = 1,2, 3 denote that integral matrix
operators for a nodal basis representation of the parameters. The parameters
C € {Dy;, ky;, by, B} are represented in nodal basis, i.e. the value of coeflicient
C at any point in an element can be expressed as C = Z?:O N;C; = [N] C, where
Q = [C) C, C3]" (size: 3 x 1) denotes the nodal values of parameter C in element
e . The source vectors are defined as,

: S, forg =x
g = Mg® , forg=m

where s is the assembled form of S, = Q[N1(7y) N3(7s) N3(75)]"; Q and 7, being
the strength and location of the point source.



The discretized heat source for a nominal distribution of fluorophore absorption
coeflicient u p is given by:
—ax

h = 7_[(Eaxf) - Z (ani + anf) © @q (27)
q=x,m

where H denotes the heat source operator, © represents the pointwise multiplica-
tion and ®,-, ,, are obtained by solving (24).

Appendix B: Adjoints based fluence sensitivities [27]

The sensitivity calculations are the same as Eq.(21)-(26) of [27] and are provided
here for completeness and clarity of the notations.
If the adjoints ¥y, Ypm, Y satisfy:

V(D V) + ke = by on Q 28)
i (DxVihyx) + byhix =0 on 6% (29)
=V - (D VYum) + knibmm = Aa on Q (30)
n- (DmV‘pmm) + bmwmm =0 on 02 (31)
=V (DxVrim) + kxthm = BYmm on (32)

- (DxVram) + bxyxm = 0 on 6% (33)

the perturbed excitation and emission fluence can be expressed as:

0D ok ob
6(1))( =~ / VlﬂxX—xépVQDx N / lﬂxX_xép (DX N / lﬂxx—xfsp (I)X (34)
Q ap Q ap Q ap

00, = —/ Vtﬁmm—épV(I)m — / lﬁmm—(Sp o, — / (ﬁmm—ép o,
Q dp Q dp Q op
0D, Ok, 0b, 0
_/ wam 6qu)x - / lﬁxm—5p O, - / wxm_épq)x + / wmm_ﬁép D,
Q dp Q op Q op Q op
(35)

Appendix C: Finite element formulation of Adjoints and fluence sensitivities

Solving for the adjoints (Eq. (28)-(33)) using Galerkin’s formulation yields
(similar to Eq.(42)-(44) of [27])

A = A Ay =AM Ay = Mgy ™) (36)

where é(w) denotes the source vector corresponding to a point source with unit
strength at w' node. Using the finite element formulation, and Eq. (34), (35),



the excitation and emission sensitivities at w'” node with respect to parameter
P = Maxf can be expressed as (similar to Eq.(49)-(51) of [27])

oD ok |

, ou
a#axf a,uaxf

T
60 =~y ™ F((Dx’ Hory

ELXX(&(W))éﬁaxf 37

and

9D ok, LT P
’ aﬂaxf’ 0,Uaxf —axf —mim

9B _ ) o
a/‘l“xf) B Lxm(l/’ﬂ wﬁaxf * me(wﬂ )6Haxf
(38)

5(D<w>:_¢<w)TF((D ((D 0D Ok
—m Lxm

" aﬂaxf, aﬂaxf) Eaxf

ou

+¢(W)TU((DX, K

—mm

oD, Ok,
F((Dq’ Optaxf’ Opaxs
elemental matrices computed in a nodal basis in our work as:

oD,
a,uaxf a,Uaxf

) and U( v (Mﬁ f), (g = x,m) are the assembled form of

7 (@, )= [ NrVINg, (Nl @,

o [ NN, (INJo @) 39

and

9B
Opaxy
respectively, where &ﬁ =¢[111]7, ;. = [111]and o = y[1 1 1], and
ap =-1. /[3(k +f ') land &), = ~y./[3(k,, +i ).2] where k(x/m), fls(x/m)
denote the vector of 1 nodal values of corresponding parameters in element e, “./”

denotes component-wise division, and “(-).>”” denotes component-wise squaring
of the quantity in parentheses.

U(o. 52 ) = [ INFINI, (Mo &,)") (40)
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