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Abstract

Pharmacokinetic analysis of optical fluorophore provides physiological information of the abnormalities in
tissue. Compartment modeling of the fluorophore pharmacokinetics quantify the physiological changes in the
tissue. We propose a shape based tomographic reconstruction of pharmacokinetic rates, concentrations and
volume fractions of the fluorophore using the time varying near infra-red measurements. Radial basis function
based parametric levelsets are used to represent the boundary of the spatially varying parameters of interest. A
regularized Gauss-Newton filter based scheme is used reconstruct shape, pharmacokinetic rates, volume fractions
and concentration parameters. Reconstruction results for tumor mimicking numerical phantom validate our

proposed approach.
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1. INTRODUCTION

Biological changes such as high permeability and an-
giogenesis!'2 in the cancerous tissue affect the pharma-
cokinetics of injected fluorophores. Spatially varying
pharmacokinetic rate analysis of optical fluorophores
can capture physiological changes due to abnormalities.
Imaging the spatial pharmacokinetic rates using near-
infrared (NIR) measurements can be a potential tool
for cancer diagnosis and drug monitoring. Indocyanine
green (ICG) is a commonly used optical fluorophore
for cancer detection studies.>* Compartment analysis
of ICG pharmacokinetics®® extracts the physiological
changes in tissue. In compartmental analysis, the re-
gion of interest is divided into virtual compartments,
such as blood plasma compartment and (tissue) extra-
cellular and extravascular space compartment (EES);
the pharmacokinetic rates describe the transfer rate of
fluorophore between plasma and EES compartments.

Previous studies of pointwise-reconstruction of spa-
tially varying pharmacokinetic rates® ” using NIR mea-
surements have used stochastic estimation methods
such as the extended Kalman filter and its variants. To
improve the computational tractability, and reduce the
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search space dimension, we propose shape based recon-
struction of the pharmacokinetic rates which are repre-
sented via parameterized levelsets (PALS) with radial
basis functions (RBF). In our work we use the Gauss-
Newton filter® ¥ to reconstruct the pharmacokinetic pa-
rameters and concentrations.

In section 2, we describe the problem setting and
the state variable model. Section 3 contains the re-
construction scheme followed by numerical results and
conclusion in section 4 and 5 respectively.

2. PROBLEM DEFINITION

The injected fluorophore leaks into EES compartment
at tumor location and emits light with varying inten-
sity over time. The exchange and elimination of the
fluorophore in the compartments is governed by the fol-

lowing coupled ordinary differential equation'®
Ce _ _kep(r) kpe(r) Ce
Cyp kep(r) — —(kpe + Keim) Cp
_ Ce

(1)
where C, = Cp(r,t) (uM), C. = Ce(r,t) (uM)
are the concentrations of ICG in the plasma and EES



compartment respectively, kpe (s71) (respectively ke,
(s71)) is the transfer rate of ICG from the plasma com-
partment to the EES compartment (respectively the
transfer rate of ICG from the EES compartment to the
plasma compartment), ke;, (s7!) is the transfer rate
at which ICG is eliminated from the region of inter-
est. Let ©g be the set of unknown parameters needed
to be reconstructed; Oy = {C’é(O),C’;(O),Cs(O),CZ(O),
c
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Denoting A as the sampling interval, the discretized
state equation corresponding to 1 is given by®

CE(T7.7:+ 1) — KA Ce(ﬁj)
|: CP(T’] + 1) :| |: Cp(ra.j) :|
_ [ T11(r)  T12(7) } [ C’e(r,]') }
To1(r)  Ta2(r) Cyp(r,7)

The relation between the time varying absorption
coefficient fiq(g/m)f(7,j) ("z/m’ refers to excitation or
emission wavelength) of the injected fluorophore and
the concentration at a particular time instant j is given
by®: 11

Ha(z/m)f (1, J) = 1010 - €z /m) - (0pCp(r, §) +veCe(r, §))

3)
where €(; /) is the extinction coefficient, v, and v, be-
ing the volume fractions of the plasma and EES repec-
tively.

Levelset representation of the spatially varying phar-
macokinetic parameters (ke, with & = ep, pe, elm) is
given by

ke(r) = keH(o(r, 7)) + k(L= H(o(r, 7)) (4)

where ké and kg represent ké (r) values inside and out-
side the tumor region respectively. H(-) represents the
Heaviside function, and ¢(r,v) a function whose zero
level set represents the boundary of the tumor. ~y rep-
resents a set of shape parameters that define the level-
set. We use a radial basis function representation of the
object boundary with compactly-supported parametric
level sets.'? Concentrations in different compartments,
which are dependent on pharmacokinetic rates are also
assumed to be piecewise constant inside and outside the
tumor region. The volume fractions, v, and v, are large
in tumor region’ %13 as compared to healthy region.
Hence the concentrations and volume fractions can also
be represented using levelsets. Using level-set represen-
tation of concentrations and volume fractions, equation
3 can be rewritten as

Ha(a/m)# (r:3) = In10-€ [(CE(5)ve+Cyp (5)vp ) H (6(r))+
(CCUwe + Co()vp) (1 = H(o(r))]  (5)

The discretized state equation at time instant j + 1
can be written as

Ce(d+1) Ce(5)
Cp(i+1) ‘ Cy(9)
e +1) 0 0| Cej)
coi+1) | =] 0 T 0| cCot) | ©)
k 0 0 I k
v v
Loy L7

where T/ = l ] and I is the iden-

tity matrix.

The measurement equation can be formally written
as

y=9(60) (7)

where y represents the vector of measurements and
G(-) represents the measurement operator; in our case
it is evaluated using the finite element method (FEM)
for the solution of the governing fluorescence diffusion
model.14

3. RECONSTRUCTION

Reconstruction of this dynamic problem can be accom-
plished using stochastic methods like extended Kalman
filter®” (EKF) or deterministic methods like Gauss-
Newton® (GN) filter. We employ the GN filter for re-
constructing the unknown parameters. Letting g be the
discretized version of G and f denoting the nonlinear
state transition function, the measurement equation at
time instant j is given by

yi = 9i(9;)
= 9i(fj1(--- fo(80) ...)) (8)

where ©; is the parameter set at the time instant j.

The state variable model (6), (7)and (8) can be solved
for unknown ©q by solving the following regularized
nonlinear least squares problem®

1

Oy = ar%min F(O) = B (g(©0) — Y)H2+7'R(@0) (9)



where R(-) is the regularization functional and T
is the regularization parameter. Here we consider
R(©y) = ||© —¢|?, where ¢ represents an apriori
known constant vector. This nonlinear least squares
problem can be solved by the Levenber-Marquardt
method in a line search or trust region framework,® 15
with the following update

(IT +7R"(80) + A)pe, = —(I"r + 7R (6)) (10)

where the Jacobian (sensitivity matrix) is given as
Jo

J= (11)

Jv—1
where M denotes the number of time instants and

Ji-1=Gj1[0;1]F;1[0;4]... Fo[©]  (12)
where G[-] and F[-] are the Frechet derivatives of mea-
surement and state transition functions respectively. In
our work the updates is carried out in a trust region
framework!®

4. NUMERICAL STUDIES

We consider a computational domain of size 4 x 4 cm
with the origin as the center of the domain. A point
sources (10mW power, 100Mhz modulation frequency)
is placed at the center of each of the four boundary
edges of the domain. Eight detectors are placed on
each side of the domain with spacing of 0.4 cm; the de-
tectors are placed symmetrically on either side of the
source on that edge. Measurements are taken for 40
time instants with a sampling interval of 5 sec. At
each time instant one source (counter clockwise) is on
and 32 readings are taken from the detectors. Complex
log intensity'® of 1280 emission fluence measurements
are used for reconstruction. The homogeneous optical
properties of the phantom are'® : ,,; = 0.031 ecm ™1,
fami = 0.00415 em™Y pl. = 10.95 em™1, ul,, =
9.29 em™!, 7 = 0.56 ns, ¢ = 0.016, R,,, = 0.431,
€, = 130000 M ~tem™!, €, = 11000 M ~tem 1.

We test the proposed scheme with two numerical
phantom; P1 being a two object inhomogeneity phan-
tom and P2 being a single bean shaped phantom. The
pharmacokinetic rates of invasive ductal carcinoma® are
used to obtain synthetic data. We assume 6.5 pM con-
centration of fluorophore is injected via bolus. For data
generation we consider the plasma concentration at the
first time instant to be 6.5 M and 0 M for EES com-

partment.

The data is generated using finer mesh discretized
with 160801 nodes containing 320000 triangular ele-
ments. Noise is added to data for generating two
data sets (39.07dB-P1D1, 33.05dB-P1D2) for two ob-
ject phantom and two sets (39.17dB-P2D1, 33.46dB-
P2D2) for bean phantom. Reconstruction is done us-
ing coarser mesh discretized with 1681 nodes containing
3200 triangular elements. All the simulations are done
in Matlab ® 2014a.

Table 1 shows the parameter values reconstructed for
datasets of two phantoms. Shape reconstruction results
obtained using proposed scheme are shown in figure 1.
Red line denotes the shape of true object. Blue line
indicates the initial lecelset contour. Black line is the
reconstructed contour. Figures 1 (a) and (b) show the
shape reconstruction of the phantom P1 and 1 (¢) and
(d) that of phantom P2.

We observe from our results (in table 1 and figures 1
and 2) a good object localization and reasonably good
reconstruction of the pharmacokinetic parameters, thus
enabling a clear demarcation of the tumor region.
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Figure 1. Reconstruction of two object phantom for IDC tu-
mor case. Red denotes the shape of true object, blue denotes
the initial levelset and black denotes the reconstructed shape.
(a)dataset PD1, (b) dataset PD2
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Figure 2. Reconstruction of bean shape phantom for IDC tu-
mor case. Red denotes the shape of true object, blue denotes
the initial levelset and black denotes the reconstructed shape.
(a)dataset P2D1, (b) dataset P2D2



Table 1. Pharmacokinetic parameters for Invasive ductal carcinoma Test case

Parameter | True values | P1D1 | P1D2 | P2D1 | P2D2
C? 0 1 1 1 1

CI’J 6.5 6.5 6.5 6.5 6.5
Ce 0 0 0 0 0

C’g 6.5 6.5 6.5 6.5 6.5
k;e 0.0687 0.0571 | 0.0583 | 0.0654 | 0.0535
k:;e 0.0306 0.0276 | 0.024 0.0228 | 0.0211
k;p 0.0496 0.0217 | 0.0193 | 0.016 0.0188
kgp 0.0166 0.0162 | 0.0133 | 0.0157 | 0.0179
ki 0.00449 0.0048 | 0.005 0.0037 | 0.0039
kS, 0.00446 0.0044 | 0.0035 | 0.0038 | 0.0037
v 0.3 0.1044 | 0.1199 | 0.0989 | 0.0969
v? 0 0 0 0 1.2x1071
vy, 0.06 0.07 0.07 0.07 0.0662
vg 0.02 0.019 0.017 0.0166 | 0.0148

5. CONCLUSION

In this work, we propose a shape based dynamic to-
mographic reconstruction scheme for pharmacokinetic
parameters using a regularized Gauss-Newton filter ap-
proach. The pharmacokinetic parameters, concentra-
tions and volume fractions in a two compartment model
are represented via an RBF based PALS representation.
Numerical studies on tumor mimicking numerical phan-
toms are presented, that validate the proposed scheme.
Our results show good localization and reasonable pa-
rameter reconstructions.
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