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Abstract. Pharmacokinetic tomography is emerging as an important methodology of detecting abnormalities in
tissue based upon spatially varying estimation of the pharmacokinetic rates governing the leakage of an injected
fluorophore between blood plasma and tissue. We present a shape-based reconstruction framework of a compartment-
model based formulation of this dynamic fluorescent optical tomography (FOT) problem, to solve for the pharmacoki-
netic rates and concentrations of the fluorophore from time-varying log intensity measurements of the optical signal.
The compartment-model based state variable model is set up in a radial basis function (RBF) parameterized level set
(PALS) setting. The state (concentrations) and (pharmacokinetic) parameter estimation problem is solved with an
iteratively regularized Gauss-Newton filter in a trust-region framework. Reconstructions obtained using this scheme
for noisy data obtained from cancer mimicking numerical phantoms of near/sub-cm sizes, show a good localization
of the affected regions and reasonable estimates of the pharmacokinetic rates and concentration curves.
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1 Introduction

The detection of early cancer requires the capturing of physiological changes that occur in the af-

fected cells before their structure/morphology changes. Tomographic modalities that capture the

tell-tale biochemical/physiological signatures of early cancer are nuclear medicine based schemes

such as positron emission tomography (PET) or optical tomography based ones such as fluores-

cence optical tomography (FOT). Two kinds of information that can be inferred about the region of

interest from these modalities are the absorption (concentration) distribution of introduced markers

(that attach themselves to the affected regions), and, the rates at which the markers enter and leave

the regions of interest.1–14

Pharmacokinetic rates are the parameters that govern the passage of the markers across no-

tional compartments in the body such as blood-plasma and tissue ones.15–17 These rates have
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been found to bear the signatures of abnormalities in the tissue,1, 4, 9, 10, 18–22 thus yielding a poten-

tially powerful tool of early diagnosis. In FOT, pharmacokinetic-rate reconstructions have been

proposed in a compartment model setting, to detect oncological abnormalities in tissue,9, 10, 19–22

where a state variable model is constructed with fluorophore-concentrations being the states, and

the pharmacokinetic rates and volume fractions being the parameters. In Alacam et al.21 the con-

centrations at all points in the domain are reconstructed at each time instant from a linearized

(Rytov) approximation based inversion of the complex log-intensity data at each instant. Sub-

sequently, in a second step, at each spatial point, a state variable model using the reconstructed

total concentration of the fluorophore in tissue as the measurement, is used to estimate the states

(compartment-concentrations) and the pharmacokinetic parameters. The estimation process uses

an extended Kalman filter (EKF) framework.

Alternatively in a one-step method, Alacam et al.9 and Wang et al.10 demonstrate that the use of

log-intensity measurements to directly reconstruct spatially resolved compartment-concentrations

and pharmacokinetic rates (rather than going via the pointwise total concentrations) offer poten-

tially better reconstructions. Exhaustive reconstruction studies have been carried out by Alacam

et al.9 comparing the performance of “one-step” linear as well as nonlinear inversions, with the

“two-step”21 linearly modeled approach for diffusion-model studies in an EKF framework.

Dual mode (X-ray CT with FOT) dynamic FOT pharmacokinetic reconstructions have also

been approached in one and two-step least-squares based inversions, with linear Born-approximation

propagation models using compartment-model derived bi-exponential temporal solutions, with

structural priors obtained from X-ray CT.13, 23–25 The structural priors better specify tissue optical

properties corresponding to the organs housing various regions in the image, as well as, regularize

the reconstructions.26 In such a dual-mode setting,12 a Karhunen-Loeve transform (KLT) based

2



reconstruction is first carried out with a linear Born-type measurement model for the time-varying

concentrations, and then a bi-exponential temporal model is used to obtain corresponding pharma-

cokinetic parameters.

Shape-based tomographic reconstructions are gaining importance27–35 in order to reduce search

space dimensions and thus enhance computational tractability. A B-spline parametrization is used

to represent absorption distribution in a two dimensional (2D) diffuse photon density wave model

which is solved using a greedy type optimization approach.36 An ellipsoid representation of the

absorption anomalies is used in an optical tomography (OT) problem setting using the Gauss-

Newton (GN) method with line search.28 Spherical harmonic parametrization is used to repre-

sent diffusion and absorption coefficients in a three dimensional (3D) OT problem, which is then

solved using a line search based GN scheme.29 In an implicit parametrized level-set framework,

Aghasi et al.37 solve the diffusion optical tomography problem with radial basis function (RBF)

based parametric level sets (PALS). A Hermite interpolation based RBF representation is used in

a 2D FOT problem by Naik et al.38 to represent the fluorophore absorption coefficient at excita-

tion wavelength; the FOT problem is then solved in pointwise and shape-based frameworks using

Levenberg-Marquardt/Gauss-Newton methods.

A dynamic optical tomography problem in straight path ray-tomography was also solved39

using RBF level-set object-boundary representations and Gauss-Newton filter based estimation

of the dynamic shape and optical parameters. Non-parameterized pointwise-specified level-sets

are used to implicitly represent the boundary of time varying fluorescence yield40 in fluorescence

molecular tomography. The pointwise level-set function and the piecewise constant values of the

yield for the different time instants and projection angles are reconstructed using a gradient descent

method.40 It should be noted that a state variable model is not used in the above mentioned work
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to relate the fluorescent yield at different time instants.

Considering that we require spatially resolved images of various pharmacokinetic rates and vol-

ume fractions, with the objective of making the compartment model based dynamic pharmacoki-

netic reconstruction problem more computationally tractable, we have proposed an RBF level-set

parameterized shape-based tomographic inversion scheme using a regularized trust region based

Gauss-Newton filter in a diffusion-approximation modeled FOT setting. Preliminary results from

such a formulation in a Levenberg-Marquardt setting have been recently presented.41 In our phar-

macokinetic tomographic settings, the (static) boundary of the tumor is reconstructed along with

the dynamic concentrations within as well as the state-variable model’s pharmacokinetic param-

eters and volume fractions. Decay of the concentrations is assured by the structure of the state

ODE-model’s coefficient-matrix. Hence, in order to ensure proper time-decay of concentrations we

directly solve for the pharmacokinetic parameters instead of going via their exponential propagator

matrix components (designated as “interim kinetic parameters” in Wang et al.10). Suitable error

metrics have been then defined and detailed numerical studies for near/sub-cm tumor-mimicking

phantoms for two kinds of cancer and various data-SNRs have been presented and quantified with

respect to the metrics. We see that our scheme yields a good localization of the test-objects and

reasonable estimates of the pharmacokinetic rates and concentration profiles.

The present paper differs from our recently presented work41 in that: (a). The detailed formu-

lation and derivation of the GN-filter Jacobians have been given in the present manuscript, (b) the

details of the trust-region based regularized Gauss-Newton filter proposed have been given, and,

(c) error metrics have now been defined, and detailed numerical studies have now been included

for tumor-mimicking phantoms of two different kinds of cancer (invasive ductal carcinoma and

adenocarcinoma) for various noise levels in the data and importantly the results have been well
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quantified by the error-metrics.

In section 2 we discuss the compartment analysis of pharmacokinetics and shape reresentation

of the states and parameters. Section 3 presents the proposed trust-region based iteratively regular-

ized Gauss-Newton filter for the dynamic reconstruction as well as the Frechet derivatives of the

measured log-intensity of the emission fluence with respect to pharmacokinetic and shape parame-

ters. Section 4 contains the numerical studies on test-cases of typical tumor mimicking phantoms,

followed by the summary in section 5. The appendix gives the expressions for the interim kinetic

parameters in terms of the pharmacokinetic parameters.

2 Problem definition

2.1 State variable model for pharmacokinetic compartment analysis

Compartment modelling of pharmacokinetics is used in imaging studies9, 19, 21, 42–44 for cancer de-

tection. In compartment analysis, the region of interest is divided into virtual compartments or

volumes where the fluorophore concentration reaches rapid equilibrium upon injection.16, 45 Indo-

cyanine green (ICG) is an optical contrast agent, widely used for cancer detection studies.46–48 A

two compartment model (schematic in figure 1) has been reported to be suitable for describing

ICG pharmacokinetics.44 ICG administered intravenously into blood stream binds to plasma pro-

teins (albumin) and acts as a macromolecular agent.43, 46 Due to high leaky vasculature in tumor

region,43, 49 the macromolecule leaks into cancerous tissue, absorbs the incident light at excitation

wavelength and emits (fluorescent) light at a longer wavelength hence acting as a contrast agent

for identifying tumors. The pharmacokinetic rates between the (blood) plasma compartment and

the (tissue) Extracellular and Extravascular space compartment (EES) is higher in the tumor region

due to the leaky nature of blood vessels there.
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Fig 1 Block Diagram of two compartment model

The fluorophore’s volume of distribution of a compartment is the apparent volume into which

a given mass of fluorophore needs to be diluted in order to give the observed concentration.50

As the contrast agent is leaked into the EES compartment, the apparent volume of distribution of

ICG is more in the tumor region, than in the healthy region. Thus, due to angiogenesis, defining

the volume fractions of a compartment (ve/p) as the ratio of its volume of distribution (Ve/p) and

the total volume of distribution (V = Ve + Vp), we see that the volume fraction of ICG in both

compartments is greater in the tumor region.43, 44, 51 In the tumor regions, ve is in the range 0.2 to

0.5,52 whereas vp is in the range 0.013 to 0.067.43, 44

Let Cp (µM), Ce (µM) be the concentration of ICG in the plasma compartment and EES

compartment respectively, kpe (s−1) (respectively kep (s−1)) is the transfer rate of ICG from the

plasma compartment to the EES compartment (respectively the transfer rate of ICG from the EES

compartment to the plasma compartment), kelm (s−1) is the transfer rate at which ICG is eliminated

from the region of interest.

The change in concentration of ICG in each compartment is described by the coupled ordinary
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differential equations9 (ODE)

Ċ(~r, t) = K(kpe(~r), kep(~r), kelm(~r))C(~r, t) (1)

where ′~r′ denotes spatial coordinates and C(~r, t) =

 Ce(~r, t)

Cp(~r, t)

 ;

K(kpe(~r), kep(~r), kelm(~r)) =

 −kep(~r) kpe(~r)

kep(~r) −(kpe(~r) + kelm(~r))


The corresponding discrete time state model corresponding to time instants tj and tj+1 (indexed

as j and j + 1 respectively) for (1) is given by9, 53

C(~r, j + 1) = T(τ11(~r), τ12(~r), τ21(~r), τ22(~r))C(~r, j) (2)

where

T ≡ eKts ≡

 τ11(~r) τ12(~r)

τ21(~r) τ22(~r)

 (3)

and ts = tj+1 − tj is the sampling interval.

Denoting by subscripts ‘x’ and ‘m’ excitation and emission related quantities respectively, the

frequency domain governing equations which describe light propagation in tissue are given by54

−∇ · (Dx∇Φx) + kxΦx = Sx

−∇ · (Dm∇Φm) + kmΦm = βΦx

in Ω (4)
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subject to the Robin boundary conditions

~n · (Dx∇Φx) + bxΦx = 0

~n · (Dm∇Φm) + bmΦm = 0

on ∂Ω (5)

where,

Dx/m =
1

3(µa(x/m)i + µa(x/m)f + µ′s(x/m))
, β =

φqµaxf
1− iωτl

,

bx/m =
1−R(x/m)

2(1 +R(x/m))
, kx/m =

iω

c
+ µa(x/m)i + µa(x/m)f

(6)

′x/m′ stands for either ‘x’ (excitation) or ‘m’ (emission), ~n is the outward normal to the

boundary, Sx (W/cm2) is the excitation source with modulation frequency ω (rad/s), Φx (W/cm2)

is the excitation fluence, Φm (W/cm2) is the emission fluence, Dx/m is the diffusion coefficient at

excitation/emission wavelength, kx/m is a decay coefficient, µa(x/m)i and µa(x/m)f being the ab-

sorption coefficients due to intrinsic chromophores and extrinsic fluorophores respectively, µ′s(x/m)

being the respective reduced scattering coefficient, (all in cm−1) at the two wavelengths, β and φq

being the unitless emission source coefficient and fluorescence quantum efficiency respectively, τl

fluorescence lifetime(in s), c is speed of light in the medium (cm/s), i =
√
−1, bx/m are Robin

boundary coefficients, Rx/m are the reflection coefficients. We use a frequency domain modeling

of the FOT process because of the inherent advantage of such systems in time-sampling based

applications especially at reasonably good data SNRs.

The measurements are the complex log-intensity (defined below) at the detector locations at

excitation and emission wavelengths in general. In the present work, we focus on obtaining the
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absorption coefficient of the tissue at excitation wavelength (µaxf ) from measured complex log-

intensity at the emission wavelength.54 We assume an apriori known linear relationship between

µaxf and µamf .54 The measured log-intensity is:

log(Φm[{~rd}]) ≡ log |Φm(~rd)|+ iν(~rd) (7)

where Φm ≡ |Φm(~rd)|eiν , and ~rd denotes a detector location. Hence we can formally express

the discrete-domain measurement equation at a time instant t, as:

y(~rd,t) ≡ log Φm[{~rd}, t] ≡ G(µ
axf

(~r,t)) (8)

where y(~rd,t) represents the vector of measurements at time t, µ
axf

(t) the vector of unknown

absorption coefficients on the computational grid at time t, and, G(·) represents the measurement

operator; in our case G(·) is evaluated using the finite element method (FEM) for the solution of

the governing fluorescence diffusion model in the equations (4,5).54

The relation between the total fluorophore concentration in the region of interest and the ab-

sorption coefficient is given by.9

µa(x/m)f (~r, t) = ln10 · ε(x/m) · C(~r, t) (9)

where εx/m is the fluorophore extinction coefficient, C(~r, t) is the total fluorophore concentra-

tion in the tissue and is given by9

C(~r, t) = vp(~r)Cp(~r, t) + ve(~r)Ce(~r, t) (10)
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2.2 Level-set representation and state variable model

We consider a level-set based representation of a pharmacokinetic parameter kξ, with ξ ∈ {ep, pe, elm},

as

kξ(~r) = kiξ(~r)H(φγ(~r)) + koξ(~r)(1−H(φγ(~r))) (11)

where kiξ(·) and koξ(·) represent kξ(·) values inside and outside the region of interest respec-

tively. In our work, we consider kiξ and koξ to be respective constants inside and outside the tumor

region. H represents the Heaviside function, and φγ(~r) a function whose zero level-set represents

the boundary of the tumor, and whose value is positive (resp. negative) inside (resp. outside) the

tumor region. γ represents a set of parameters that define this level-set. In our work we are using

a radial basis function representation of the object boundary with compactly-supported parametric

level sets (PALS).37

The compactly supported RBF level-set function can be written as37 :

φγ(~r) ≡φ(~r, [α, ζ,χ]︸ ︷︷ ︸
γ

) =
m∑
l=1

αlψ(‖ζl(~r − χl)‖†) (12)

r̃ ≡ ‖~r‖† =
√
‖~r‖2 + v2 (13)

v is a small real number, ψ is a compactly supported radial basis function (RBF),55 m is the

number of RBFs used, αl is the weighting factor, ζl is the dilation factor, χl denote the RBF center

coordinates.
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In the present work, we use as basis functions a C2 polynomial of degree 537, 55

ψ(r̃) = (1− r̃)4
+(4r̃ + 1) (14)

where the (·)+ denotes a cutoff function55 defined as:

(x)+ = x ·H(x). (15)

whereH(x) is the Heaviside function. We also use a mollified Heaviside function in our work56

:

Hε(φ) =


1 if φ > εw,

0 if φ < −εw,

1
2

+ φ
2εw

+ 1
2π
sin(πφ

εw
) if |φ| ≤ εw.

(16)

where εw is the half-width of the transition region of the Heaviside. Concentrations in different

compartments Ce, Cp which are dependent on pharmacokinetic rates are similarly assumed to be

piecewise constant and they can be expressed as

C(e/p)(~r, j) = Ci
(e/p)(j)Hε(φγ(~r)) + Co

(e/p)(j)(1−Hε(φγ(~r))) (17)

The volume fractions ve and vp being different in healthy and tumor regions can also be simi-

larly expressed via their inside/outside values denoted as vi/oe and vi/op respectively, as:

v(e/p)(~r) = vi(e/p)(~r)Hε(φγ(~r)) + vo(e/p)(~r)(1−Hε(φγ(~r))) (18)

Substituting the level-set representation of concentrations and volume fractions in the above
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equation (for relation between µaxf and C), we obtain

µ(~r, j) = ln10 ·ε · [(Ce(~r, j)ve(~r)+Cp(~r, j)vp(~r))] = ln10 ·ε · [(Ce(j)ivie+Ci
p(j)v

i
p)Hε(φγ(~r))+

(Co
e (j)voe + Co

p(j)vop)(1−Hε(φγ(~r)))] (19)

where the subscripts on µ and ε have been omitted for ease of notation.

Using the level-set representation of pharmacokinetic rates and concentrations, the coupled

ODE (1) is rewritten as

 Ċe
i
(t)

Ċp
i
(t)

Hε(φγ(~r))+

 Ċe
o
(t)

Ċp
o
(t)

 (1−Hε(φγ(~r))) =

 −kiep kipe

kiep −(kipe + kielm)


 Ci

e(t)

Ci
p(t)

Hε(φγ(~r))+

 −koep kope

koep −(kope + koelm)


 Co

e (t)

Co
p(t)

 (1−Hε(φγ(~r))) (20)

The time-discretized version for the above equation can thus be written as



Ci
e(j + 1)

Ci
p(j + 1)

Co
e (j + 1)

Co
p(j + 1)


=



τ i11 τ i12 0 0

τ i21 τ i22 0 0

0 0 τ o11 τ o12

0 0 τ o21 τ o22





Ci
e(j)

Ci
p(j)

Co
e (j)

Co
p(j)


(21)

where the relations between the interim kinetic parameters, the τ ’s and the pharmacokinetic

parameters, the k’s, arise from eq(3) and are given in the appendix.
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This state (concentration) and parameter (pharmacokinetic as well as shape parameters) es-

timation problem can be solved using either stochastic estimation schemes such as EKF and its

variants9, 10, 22, 57 or, deterministic schemes such as the Gauss-Newton (GN) filter.39, 58 In our work

we propose an iteratively regularized deterministic GN-filter in a trust-region setting for our recon-

structions. We define the state vector at time j as

Θj ≡ {Ci
e(j), C

i
p(j), C

o
e (j), Co

p(j)︸ ︷︷ ︸
C

, kipe, k
i
ep, k

i
elm, k

o
pe, k

o
ep, k

o
elm︸ ︷︷ ︸

k

, vie, v
o
e , v

i
p, v

o
p︸ ︷︷ ︸

v

, α, β, χ1, χ2︸ ︷︷ ︸
γ

}. (22)

Assuming our state equation is exact, we would need to explicitly reconstruct only Θ0.

We can rewrite the state equation as



Ci
e(j + 1)

Ci
p(j + 1)

Co
e (j + 1)

Co
p(j + 1)

k

v

γ



=



τ i11 τ i12 0 0 0 0 0

τ i21 τ i22 0 0 0 0 0

0 0 τ o11 τ o12 0 0 0

0 0 τ o21 τ o22 0 0 0

0 0 0 0 I6 0 0

0 0 0 0 0 I4 0

0 0 0 0 0 0 I4m





Ci
e(j)

Ci
p(j)

Co
e (j)

Co
p(j)

k

v

γ



(23)

where ID denotes identity matrix of size D × D (D ∈ {6, 4, 4m}). The above equation can be

written in simplified form as

Θj+1 = A(Θj) ·Θj = f(Θj) (24)
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where f denotes the nonlinear state transition function, matrix A(Θj) is

A(Θj) ≡


T i 0 0

0 T o 0

0 0 I4m+10

 ; T i/o =

 τ
i/o
11 (k) τ

i/o
12 (k)

τ
i/o
21 (k) τ

i/o
22 (k)

 (25)

The discrete-time measurement equation at time j can be formally written from (8) as

yj ≡ gj(Θj) = gj(fj−1(. . . f0(Θ0))) (26)

3 Reconstruction scheme

3.1 Gauss-Newton filter scheme

The Gauss-Newton (GN) filter solves the state variable model with the state Eq. (23) and measure-

ment equation (26) by solving the following regularized nonlinear least squares problem using the

GN method:39, 58

Θ̂0 = argmin
Θ0

F(Θ0) :=
1

2
‖(g(Θ0)− y)‖2 + τR(Θ0) (27)

where τ is the regularization parameter and R(·) is the regularization functional, y and g(Θ0)

are the concatenated set of observed and model-predicted measurements respectively.

R(Θ0), the regularization functional is chosen here as a minimum-norm penalty:

R(Θ0) = ‖Θ0 −Θc‖2 (28)
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where Θc represents an apriori known constant vector. The nonlinear least squares problem

can be solved by iterative regularization scheme using either line search or trust region methodolo-

gies.39, 59, 60 A regularized GN update pΘ solves at the current iterate Θ:

p̂Θ = argmin
pΘ

∥∥∥∥∥∥∥∥
J(Θ)pΘ + r

√
τ(Θ−Θc + pΘ)

∥∥∥∥∥∥∥∥
2

(29)

where the Jacobian J and the residual r are given by

J =


J0

...

JM−1

 ; r =


r0

...

rM−1

 ; (30)

M denotes the number of time instants and Jacobian at time instant j is given by

Jj−1 = Gj−1[Θj−1]Fj−1[Θj−1] . . . F0[Θ0] (31)

where G[·] and F [·] are the Frechet derivatives of measurement and state transition functions

respectively. The residual at time instant j is given by

rj = gj(Θj)− yj = gj(fj−1(. . . f0(Θ0)))− yj; (32)

3.2 Reconstruction algorithm

To solve the above minimization problem we propose a trust region based iteratively regularized

Gauss-Newton filter algorithm. We first observe that for a linear residual, the Gauss-Newton
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method converges in a single iteration. An iteratively (Tikhonov) regularized scheme needs to

solve a succession of nonlinear regularized least squares sub-problems, each with different val-

ues of the regularization parameter, with the solution obtained for a given parameter used as the

starting estimate for the next lower parameter-value.

Our computational experience shows that we need not solve each sub-problem exactly; hence

assuming that a linear assumption to the residual is approximately valid, we shift to lower param-

eter values if we are close to a full Newton step for a “good” update,32 with the “goodness” of

the step being decided upon by the actual reduction in the residual with respect to its predicted

decrease in our currently used trust region framework explained below.

Now, each step of a Gauss-Newton scheme needs to solve the problem 29, which is a least-

squares version of the linear system JapΘ = −ra, where we use the augmented Jacobian

Ja ≡

 J

√
τI

 and the augmented residual ra ≡

 r

√
τ(Θ0 −Θc)

.

The step pΘ obtained from a Gauss-Newton step is found using either line-search or trust-

region approaches in order that the overall algorithm exhibits global convergence. In our work, we

choose to work with the trust region class of schemes, wherein we assume a quadratic model of

the cost-function to locally hold in some ball (decided by a trust region radius) around the current

estimate. The trust region’s radius is varied with iteration as per the ratio of the actual to predicted

cost-function-decreases.

Given a trust-region radius, the trust region step satisfies

∆ = ‖(JTa Ja + λI)−1JTa ra‖2 (33)
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where we calculate the parameter λ using a suitable root-finding technique.60, 61

To ensure proper scaling, the variables are scaled as Θ = S · Θ̃ using a diagonal scaling matrix

S, with elements given by59

Sii =
1√∑
j J

2
ij + τ

(34)

Thus, from Eq. (33), we see that the scaled-domain counterparts of Ja and ∆, namely, J̃a =

Ja · S and ∆̃ (the trust region radius in the scaled domain) respectively, satisfy

∆̃ = ‖(J̃Ta J̃a + λI)−1J̃Ta ra‖2 (35)

The update in the scaled domain p̃Θ is then defined to satisfy the equation

 J̃a

√
λI

 p̃Θ0 = −

 ra

0

 (36)

The update in the original domain pΘ is thus given by

pΘ = Sp̃Θ (37)

We then calculate the cost function F and reduction ratio, ρ = actual reduction
predicted reduction

at the nominal

estimate Θt. The regularization parameter, τ is reduced if ρ is above a threshold ρth with a mini-

mum limit of τmin. The trust region radius updating rule, values of η1, η2 and parameter γbad are

based on the practical algorithm in Conn et al.62 The algorithmic flow of reconstruction is shown

in the algorithm table “Algorithm 1” below .
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Algorithm 1 Trust region based iterative regularized Gauss-Newton filter
1: Initialization: Θ0, Θc = Θ0, ∆0, η1 = 0.01, η2 = 0.9, τ0 = 0.8, i = 0
2: while i < imax do
3: Calculate Ji, ri, F(Θi) using Θi

4: calculate λ using (33)
5: solve for pΘ using (36) and (37)
6: Θt = Θi + pΘ

7: Evaluate F(Θt) and ρ
8: if ρ > η1 then
9: Accept update. Θi+1 = Θt;

10: if ρ > ρth then
11: τi+1 = max(τi/3, τmin);
12: end if
13: else
14: Θi+1 = Θi;
15: end if
16:
17: if ρ > η2 then
18: ∆i+1 = max(2.5 · ‖p̃Θ‖,∆i);
19: else if ρ ≥ η1&ρ < η2 then
20: ∆i+1 = ∆i;
21: else if ρ ≥ 0&ρ < η1 then
22: ∆i+1 = 0.25 · ‖p̃Θ‖;
23: else if ρ < 0 then
24: ∆i+1 = min(0.25 · ‖p̃Θ‖,max(0.0625, γbad) ·∆i);
25: end if
26:
27: i = i+ 1;
28: end while
29: Choose the stopping iterate when εrel < tol, or, the data-residual staying stable or toggling

across iterations.
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The following relative measure39 of the residual is used as a reflection of “how much” of the

residual is left in the range of the augmented Jacobian and serves as a useful stopping criterion.

εrel =
‖PJara‖
‖ra‖

(38)

where PJa is the orthogonal projection onto the range space of Ja.

3.3 Frechet derivative calculation

3.3.1 Frechet derivative of measurement function

The Frechet derivative of the measurement function (eq (8)) with respect to the parameter set at a

given time instant j is given by

Gj =

 ∂yj
∂C(j)︸ ︷︷ ︸
D×4

∂yj
∂k︸︷︷︸
D×6

∂yj
∂v︸︷︷︸
D×4

∂yj
∂γ︸︷︷︸

D×4m

 (39)

The sensitivity equation with respect to s ∈ {Ci
e(j), C

i
p(j), C

o
e (j), Co

p(j),

kipe, k
i
ep, k

i
elm, k

o
pe, k

o
ep, k

o
elm, v

i
e, v

o
e , v

i
p, v

o
p, α, β, χ1, χ2} is calculated using the chain rule as:

∂yj(~rd)

∂s
=

1

Φm(~rd, j)

[
∂Φm(~rd, j)

∂µaxf (j)
× ∂µaxf (j)

∂s
+
∂Φm(~rd, j)

∂µamf (j)
× ∂µamf (j)

∂s

]
(40)

The derivative of the fluence Φm with respect to µaxf is given in Fedele et al.54 To derive the

sensitivity of µaxf and µamf with respect to unknowns Θ, consider equation (19) for the time-

19



varying absorption coefficient

µ(~r, j) = ln10 · ε · [(Ci
e(j)v

i
e + Ci

p(j)v
i
p)Hε(φ(~r)) + (Co

e (j)voe + Co
p(j)vop)(1−Hε(φ(~r)))] (41)

The sensitivity of µ(~r, j) with respect to {Ci
e(j), C

i
p(j), C

o
e (j), Co

p(j), vie, v
o
e , v

i
p, v

o
p} are given

below

∂µ(~r, j)

∂Ci
e/p(j)

= ln10 · ε · vie/pHε(φγ(~r));
∂µ(~r, j)

∂vie/p
= ln10 · ε · Ci

e/p(j)Hε(φγ(~r)); (42)

∂µ(~r, j)

∂Co
e/p(j)

= ln10 ·ε ·voe/p(1−Hε(φγ(~r)));
∂µ(~r, j)

∂voe/p
= ln10 ·ε ·Co

e/p(j)(1−Hε(φγ(~r))); (43)

The variation of µ(~r, j) with respect to γ ∈ {α, ζ,χ} is given by

∂µ(~r, j)

∂γ
=

∂µ(~r, j)

∂Ce(~r, j)

∂Ce(~r, j)

∂γ
+

∂µ(~r, j)

∂Cp(~r, j)

∂Cp(~r, j)

∂γ
+

∂µ(~r, j)

∂ve(~r)

∂ve(~r)

∂γ
+
∂µ(~r, j)

∂vp(~r)

∂vp(~r)

∂γ
(44)

where (from (19))

∂µ(~r, j)

∂Ce/p(~r, j)
= ln10 · ε · ve/p(~r);

∂µ(~r, j)

∂ve/p(~r)
= ln10 · ε · Ce/p(~r, j); (45)
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Further, from the level-set representation of Ce/p (17) and ve/p (18), we have

∂Ce/p(~r, j)

∂γ
= (Ci

e/p(j)− Co
e/p(j))H

′
ε(φγ(~r))

∂φ

∂γ
;

∂ve/p(~r)

∂γ
= (vie/p − voe/p)H ′ε(φγ(~r))

∂φ

∂γ
;

(46)

where the sensitivities of the level-set, φ with repect to the shape parameters are given by37

∂φ

∂αl
= ψ(‖ζj(x− χj)‖†) (47)

∂φ

∂ζl
= αjζl

‖(x− χl)‖2

‖ζl(x− χl)‖†
ψ′(‖ζj(x− χl)‖†) (48)

∂φ

∂χkl
= −αlζ2

l

(xk − χkl )
‖ζl(x− χl)‖†

ψ′(‖ζl(x− χl)‖†) (49)

where χkl is the kth component of center χl.
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3.3.2 Frechet derivative of state transition function

The state transition equation is given by



Ci
e(j + 1)

Ci
p(j + 1)

Co
e (j + 1)

Co
p(j + 1)

k(j + 1)

v(j + 1)

α(j + 1)

ζ(j + 1)

χ(j + 1)



=



bi1(k, j)

bi2(k, j)

bo1(k, j)

bo2(k, j)

k(j)

v(j)

α(j)

ζ(j)

χ(j)



(50)

where

bi1(k, j) ≡ τ i11(k)Ci
e(j) + τ i12(k)Ci

p(j)

bi2(k, j) ≡ τ i21(k)Ci
e(j) + τ i22(k)Ci

p(j)

bo1(k, j) ≡ τ o11(k)Co
e (j) + τ o12(k)Co

p(j)

bo2(k, j) ≡ τ o21(k)Co
e (j) + τ o22(k)Co

p(j)

(51)

The variables τ i/opq (p, q = 1, 2) are functions of parameters {ki/oep , ki/ope , ki/oelm} whose expressions

are given in the appendix. The Frechet derivative, Fj of the state transition function at time instant

j is given by
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Fj =

τ i11 τ
i
21 0 0

∂bi1
∂kipe

∂bi1
∂kiep

∂bi1
∂kielm

0 0 0 0

τ i21 τ
i
22 0 0

∂bi2
∂kipe

∂bi2
∂kiep

∂bi2
∂kielm

0 0 0 0

0 0 τ o11 τ
o
21 0 0 0

∂bo1
∂kope

∂bo1
∂koep

∂bo1
∂koelm

0

0 0 τ o21 τ
o
22 0 0 0

∂bo2
∂kope

∂bo2
∂koep

∂bo2
∂koelm

0

0 0 0 0 0 0 0 0 0 0 I4m+10


4 Numerical Studies

4.1 Test-case and reconstruction settings

A computational domain of size 4×4 cm, with origin as the center is considered for our numerical

test cases.63 Eight detectors are placed symmetrically on each of the 4 sides of the domain, as

shown in the figure 2. Four collimated sources each with strength 10mW modulated at 100MHz are

placed at the center of each side and modelled at the depth of one mean free path as in Schweiger

et al.64 The homogeneous optical properties of the tissue-mimicking phantom used in FOT with

ICG as a fluorophore (at excitation and emission wavelengths 785 nm and 830 nm respectively)

are given by:65 µaxi = 0.031 cm−1, µami = 0.00415 cm−1, µ′sx = 10.95 cm−1, µ′sm = 9.29 cm−1,

τ = 0.56 ns, φ = 0.016, Rx,m = 0.431, εx = 130000 M−1cm−1, εm = 11000 M−1cm−1.

The pharmacokinetic rates mentioned for invasive ductal carcinoma (IDC) and adenocarci-

noma (AC)21 are used to obtain synthetic measurement data. We assume 6.5 µM concentration

of fluorophore is injected43 via bolus. At the first time instant in the data generation, we assume

the fluorophore concentration in the plasma compartment to be 6.5 µM and 0 µM in the EES
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Fig 2 Schematic on the left represents source and detector setting for the numerical study; Figure on the right is a
typical fluence map obtained for the two object phantom for the IDC case (parameters in table 2) with source on
bottom face (at (0,-2))

compartment. Measurements are taken for 40 time instants with a sampling interval of 5 sec. At

each time instant one source is on and measurements are taken from all the detectors (32 in our

setting). Measurements used for reconstruction are the complex log intensity59 of the fluence at

the emission wavelength for all time instants (1280 in this setting).

The data are generated using a finer mesh discretized with 160801 nodes containing 320000

triangular elements. Reconstructions are performed using a coarser mesh discretized with 6561

nodes containing 12800 triangular elements. Frechet derivatives evaluated using the method of

adjoints is validated using finite difference method.

Numerical studies are done for each of the two cancer-types (IDC and AC), for two phantoms;

“T” denoting a two-object phantom (adjacently-placed “smoothed corner square like” objects)

with each having approximate extent of 0.5cm in each direction with their boundaries separated by

approximately 1.5cm, and, “B” being a single bean shaped phantom with lateral and longitudinal
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Table 1 SNR of the synthetic data
T Phantom(IDC) SNR(dB) B Phantom (IDC) SNR(dB)

I-T1 38.99 I-B1 39.35
I-T2 33.2 I-B2 33.47
I-T3 29.77 I-B3 29.75

T Phantom (AC) SNR(dB) B Phantom (AC) SNR(dB)
A-T1 39.02 A-B1 39.29
A-T2 32.87 A-B2 33.4
A-T3 29.35 A-B3 29.83

extents being approximately 0.7cm and 1.3cm respectively. Data is generated for the two phantoms

at three SNR levels as given in table 1. All the computations are performed in the Matlab R© 2016a

programming environment.

Initial estimates for pharmacokinetic rates are taken in between healthy and tumor values. Ini-

tial fluorophore concentration in plasma compartment (Ci
p and Co

p) assumed to be 6.5 µM and

concentration of the fluorophore in EES compartment (Ci
e and Co

e ) is assumed to be 0 µM . The

algorithm is terminated when εrel < tol, or, the data-residual staying stable or toggling across

iterations.

The shape reconstructions of two-object and bean phantoms for IDC as well as AC under

various noise conditions, are shown in figures 3 and 4 respectively. The concentration curves (with

respect to time) for both phantoms corresponding to regions inside and outside the tumor in IDC

and AC settings are shown respectively in figures (5 for two-object phantom, 6 for bean phantom)

and (7 for two-object phantom, 8 for bean phantom). In the figures, a time-index is defined as

representing the sampling interval used (5 seconds in our case).

Tables 2 and 3 show the reconstructed values of the pharmacokinetic parameters for IDC and

AC tumor cases respectively. In order to gauge the performance of the algorithm, across all test

cases considered, (i.e along each row) we evaluate across all cases for each parameter, (a) the nor-

malized mean square error (Row NMSE) of the reconstructions, and, (b) the maximal normalized
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Fig 3 Reconstruction of two object phantom for IDC (left column; top-to-down: data-sets I-T1, I-T2, I-T3) and AC
(right column; top-to-down: data-sets A-T1, A-T2, A-T3) tumor cases. Blue dotted line denotes the initial level-set,
red dashed line denotes the shape of true object, and black solid line denotes the reconstructed shape.
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Fig 4 Reconstruction of bean shape phantom for IDC (left column; top-to-down: data-sets I-B1, I-B2, I-B3) and AC
(right column; top-to-down: data-sets A-B1, A-B2, A-B3) tumor cases. Blue dotted line denotes the initial level-set,
red dashed line denotes the shape of true object, and black solid line denotes the reconstructed shape.

27



x- axis (cm)
-2 0 2

y
-a

x
is

 (
c

m
)

-2

0

2

Time Index 
0 100 200 300 400

C
o

n
c
e
n

tr
a
ti

o
n

 (
µ

 M
)

0

2

4

6

8

Ce
in

 true

Ce
in

 obtained

Cp
in

 true

Cp
in

 obtained

Time Index
0 100 200 300 400

C
o

n
c
e
n

tr
a
ti

o
n

 (
µ

 M
)

0

2

4

6

8

Ce
out

 true

Ce
out

 obtained

Cp
out

 true

Cp
out

 obtained

Time Index 
0 100 200 300 400

C
o

n
c
e
n

tr
a
ti

o
n

 (
µ

 M
)

0

2

4

6

8

Ce
in

 true

Ce
in

 obtained

Cp
in

 true

Cp
in

 obtained

Time Index
0 100 200 300 400

C
o

n
c
e
n

tr
a
ti

o
n

 (
µ

 M
)

0

2

4

6

8

Ce
out

 true

Ce
out

 obtained

Cp
out

 true

Cp
out

 obtained

Time Index 
0 100 200 300 400

C
o

n
c
e
n

tr
a
ti

o
n

 (
µ

 M
)

0

2

4

6

8

Ce
in

 true

Ce
in

 obtained

Cp
in

 true

Cp
in

 obtained

Time Index
0 100 200 300 400

C
o

n
c
e
n

tr
a
ti

o
n

 (
µ

 M
)

0

2

4

6

8

Ce
out

 true

Ce
out

 obtained

Cp
out

 true

Cp
out

 obtained

IDC Phantom

Fig 5 Concentration vs time plot for two object phantom for IDC tumor; 1 time-index= 5 seconds. Schematic of
phantom placed on top. Red denotes the decay of concentration in true phantom and blue denotes the decay in
reconstructed phantom. Left column shows Cein and Cpin plots in the tumor region. Right column shows Ceout and
Cpout plots outside the tumor region. First row corresponds to dataset I-T1, second row to dataset I-T2, and third row
to dataset I-T3

28



x- axis (cm)
-2 0 2

y
-a

x
is

 (
c

m
)

-2

0

2

Time Index 
0 100 200 300 400

C
o

n
c
e
n

tr
a
ti

o
n

 (
µ

 M
)

0

2

4

6

8

Ce
in

 true

Ce
in

 obtained

Cp
in

 true

Cp
in

 obtained

Time Index
0 100 200 300 400

C
o

n
c
e
n

tr
a
ti

o
n

 (
µ

 M
)

0

2

4

6

8

Ce
out

 true

Ce
out

 obtained

Cp
out

 true

Cp
out

 obtained

Time Index 
0 100 200 300 400

C
o

n
c
e
n

tr
a
ti

o
n

 (
µ

 M
)

0

2

4

6

8

Ce
in

 true

Ce
in

 obtained

Cp
in

 true

Cp
in

 obtained

Time Index
0 100 200 300 400

C
o

n
c
e
n

tr
a
ti

o
n

 (
µ

 M
)

0

2

4

6

8

Ce
out

 true

Ce
out

 obtained

Cp
out

 true

Cp
out

 obtained

Time Index 
0 100 200 300 400

C
o

n
c
e
n

tr
a
ti

o
n

 (
µ

 M
)

0

2

4

6

8

Ce
in

 true

Ce
in

 obtained

Cp
in

 true

Cp
in

 obtained

Time Index
0 100 200 300 400

C
o

n
c
e
n

tr
a
ti

o
n

 (
µ

 M
)

0

2

4

6

8

Ce
out

 true

Ce
out

 obtained

Cp
out

 true

Cp
out

 obtained

IDC Phantom

Fig 6 Concentration vs time plot for bean shape object phantom for IDC tumor; 1 time-index= 5 seconds. Schematic
of phantom placed on top. Red denotes the decay of concentration in true phantom and blue denotes the decay in
reconstructed phantom. Left column shows Cein and Cpin plots in the tumor region. Right column shows Ceout and
Cpout plots outside the tumor region. First row corresponds to dataset I-B1, second row to dataset I-B2, and third row
to dataset I-B3
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Fig 7 Concentration vs time plot for two object phantom for AC tumor; 1 time-index= 5 seconds. Schematic of
phantom placed on top. Red denotes the decay of concentration in true phantom and blue denotes the decay in
reconstructed phantom. Left column shows Cein and Cpin plots in the tumor region. Right column shows Ceout and
Cpout plots outside the tumor region. First row corresponds to dataset A-T1, second row to dataset A-T2, and third
row to dataset A-T3
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Fig 8 Concentration vs time plot for bean shape object phantom for AC tumor; 1 time-index= 5 seconds. Schematic
of phantom placed on top. Red denotes the decay of concentration in true phantom and blue denotes the decay in
reconstructed phantom. Left column shows Cein and Cpin plots in the tumor region. Right column shows Ceout and
Cpout plots outside the tumor region. First row corresponds to dataset A-B1, second row to dataset A-B2, and third
row to dataset A-B3
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error (MNE) in the reconstruction. The evaluations in (a) and (b) above are found in the last two

columns respectively of the tables 2 and 3.

The contrast in the pharmacokinetic-rates and plasma-volume fractions indicate the presence

of high-permeability and angiogenesis respectively in the tumor region. From our reconstructions

we see that we are able to obtain a good delineation between tumor and healthy tissue as well

as the contrast in the pharmacokinetic rates and plasma-volume fraction. We observe that the

reconstructions are reasonably stable for data sets of SNR about 30dB, below which the quality

and stability of reconstructions tend to go down.

Table 2 Pharmacokinetic parameters for invasive ductal carcinoma (IDC) test cases with average and maximal errors;
a “*” in the last two columns would indicate that the error is not normalized owing to true values being zero

Reconstructed values

Parameter True I-T1 I-T2 I-T3 I-B1 I-B2 I-B3 Row NMSE MNE

Ci
e 0 0.01 0.01 0.01 6×10−4 0.01 0.01 *8 ×10−5 *0.01

Co
e 0 0 0.0029 0 0 0 0 *1 ×10−6 *0.0029

Ci
p 6.5 6.49 6.5 6.5 6.49 6.5 6.45 8 ×10−6 0.0073

Co
p 6.5 6.5 6.5 6.5 6.5 6.46 6.5 5 ×10−6 0.0059

kipe 0.0687 0.0896 0.0900 0.0900 0.0453 0.0803 0.0659 0.07 0.34

kope 0.0306 0.0282 0.0282 0.0265 0.0315 0.0225 0.0220 0.03 0.28

kiep 0.0496 0.0436 0.0583 0.0470 0.0446 0.0586 0.0484 0.01 0.18

koep 0.0166 0.0142 0.0140 0.0206 0.0185 0.0153 0.0157 0.02 0.24

kielm 0.00449 0.0070 0.0047 0.0070 0.0041 0.0028 0.0042 0.13 0.55

koelm 0.00446 0.0029 0.0047 0.0038 0.0041 0.0028 0.0040 0.05 0.38

vie 0.3 0.4423 0.4390 0.4770 0.3556 0.3144 0.3385 0.14 0.58

voe 0 0 3.1×10−6 0 0 0 0 *1.5×10−12 *3.1×10−6

vip 0.0600 0.0700 0.0498 0.0700 0.0669 0.0700 0.0700 0.02 0.16

vop 0.0200 0.0190 0.0200 0.0160 0.0198 0.0167 0.0175 0.01 0.19
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Table 3 Pharmacokinetic parameters for Adenocarcinoma (AC) test cases with average and maximal errors; a “*” in
the last two columns would indicate that the error is not normalized owing to true values being zero

Reconstructed values

Parameter True A-T1 A-T2 A-T3 A-B1 A-B2 A-B3 Row NMSE MNE

Ci
e 0 0.01 0.01 0.01 0.01 0.0017 0 *8.37×10−5 *0.01

Co
e 0 0 0 0 0 0 0 *0 *0

Ci
p 6.5 6.5 6.5 6.5 6.5 6.49 6.5 2×10−7 1.3×10−3

Co
p 6.5 6.5 6.5 6.5 6.49 6.5 6.5 1×10−10 3×10−5

kipe 0.0292 0.0225 0.0199 0.0229 0.0223 0.0286 0.0216 0.05 0.31

kope 0.0114 0.0103 0.0136 0.0133 0.0102 0.0071 0.0075 0.05 0.37

kiep 0.0158 0.0118 0.0136 0.0117 0.0100 0.0121 0.0100 0.08 0.36

koep 0.0065 0.0060 0.0066 0.0082 0.0069 0.0067 0.0057 0.02 0.26

kielm 0.0043 0.0038 0.0025 0.0031 0.0039 0.0032 0.0033 0.06 0.41

koelm 0.0035 0.0035 0.0025 0.0031 0.0039 0.0032 0.0033 0.02 0.28

vie 0.2000 0.0794 0.0645 0.0891 0.1317 0.0901 0.0967 0.3 0.67

voe 0 0 0 0 0 0 0 *0 *0

vip 0.0400 0.0472 0.0291 0.0342 0.0428 0.0416 0.0377 0.02 0.27

vop 0.0200 0.0191 0.0199 0.0187 0.0196 0.0170 0.0185 0.01 0.15

4.2 Quantification of errors

To quantify the quality of our shape based reconstructions we use four error measures, namely,

normalized error of area-parameter product across time instants, the distance of the centroid of the

reconstructed object from the actual object, the Dice coefficient for the shape reconstructions, and

normalized mean square error (NMSE) for the pharmacokinetic rates.

In addition, we also use an NMSE for pointwise evaluated pharmacokinetic rate and volume

fraction images in order to get an image-quality metric for our shape-based reconstructions. We

mapped our shape and pharmacokinetic parameter reconstructions into pointwise values to com-

pute these NMSEs. The spatial values are obtained using equation 11.
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The area-parameter product error measure,38 EAP is defined across all the time instants at

which measurements are taken as

EAP =

([∑M
j=1 |µirec(j)Arec−µiac(j)Aac|∑M

j=1 |µiac(j)Aac|

]
/M

)
×100%; (52)

where Aac, Arec represents the area of actual and reconstructed object respectively, µirec(j) (re-

spectively µiac(j)) represents reconstructed (respectively actual) fluorophore absorption coefficient

(41) inside tumor region at time instant j. This definition allows emphasis w.r.t. time instants with

more significant product values.

Area of an object is given by

Aobject = aelement
∑
i,j

χobject(xi, yj) (53)

where aelement is the area of an element (a constant in our studies), χobject(·) is the characteristic

function with respect to object support, (i, j) represents the indices of centroid coordinates x and

y of the discretized domain. The centroid coordinates of an object is given by

x̄object =

∑
i,j xiχobject(xi, yj)

Aobject
; ȳobject =

∑
i,j yjχobject(xi, yj)

Aobject
(54)

The Euclidean distance between the centroids of reconstructed object and actual object is given by

Ec =
√

(x̄rec−x̄ac)2+(ȳrec−ȳac)2 (55)

The Dice coefficient66 quantifies the localization and similarity of the shape reconstruction with

the original shape. If S denotes the set of nodes inside the reconstructed object and H denotes the
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set of nodes inside the true object, the Dice coefficient is given by

D(S,H) =
2|S∩H|
|S|+|H|

(56)

|S∩H| denotes the number of nodes present in S and also belongs to H . The Dice coefficient

varies from 0 (indicating complete mismatch) to 1 (indicating accurate shape reconstruction).

The NMSE defined for a reconstructed quantity Xr with respect to its actual value Xa is

defined as

ENMSE =
‖Xr−Xa‖2

‖Xa‖2
(57)

The error metrics for the reconstruction of two phantoms at different noise levels are tabulated

in table 4. We note that the NMSE for the pharmacokinetic rates evaluated in this table is based on

the reconstructions of the concatenated vector k as shown in eq(22).

The error metrics evaluated further emphasize the good localization in general given by our

approach for the small (near/sub-cm) phantoms in our study, in addition to a reasonable error in

the reconstructed pharmacokinetic parameters and the area-parameter-product aspect.

In the table 5, in order to relate our shape-based results to pointwise error estimates with the

purpose of checking image-quality acceptability with respect to existing literature (to the best of

our knowledge, the only paper that solves for the present pharmacokinetic parameters along with

volume fractions in a “one-step” reconstruction considering a fully-nonlinear FOT model is the

work of Alacam et al.;9 they solve the pointwise problem with an extended Kalman filter), we
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Table 4 Error measures for the shape reconstructions (for the two object case the centroid error is an ordered pair (a,b)
corresponding to each object)

Phantom EAP% EC (cm) D(S,H) ENMSE(k)

I-T1 1.29 (0.04, 0.04) 0.84 0.058

I-T2 2 (0.14, 0.07) 0.80 0.064

I-T3 1.24 (0.04, 0.08) 0.81 0.059

I-B1 0.2 0.01 0.88 0.068

I-B2 8.9×10−2 2 ×10−3 0.89 0.034

I-B3 0.34 0.07 0.79 0.01

A-T1 0.47 (0.02,0.03) 0.59 0.047

A-T2 0.66 (0.12,0.05) 0.46 0.076

A-T3 0.97 (0.21,0.03) 0.5 0.049

A-B1 0.51 0.02 0.91 0.063

A-B2 0.59 0.012 0.83 0.026

A-B3 0.85 0.07 0.84 0.082

evaluate NMSE values (in the form of 20 log(NMSE) dB) for the mapped-pointwise recon-

structed images of the pharmacokinetic parameters and volume fractions. Our obtained pointwise

NMSEs for kpe (kin in Alacam et al.9) range from −31 dB to −16.9 dB and those for kep (kout in

Alacam et al.9) range from −31.3 dB to −20.94 dB across data SNR levels. The work of Alacam

et al.9 reports NMSEs of −19.77 dB and −18.49 dB for kin and kout respectively for noiseless

data with their synthetic phantoms; they do not report any error values for their volume fractions.

This shows that our reconstructions are well within accepted ranges for reconstruction quality.

5 Summary

In this work, we propose a shape based dynamic tomographic reconstruction scheme for fluores-

cence based pharmacokinetics using a regularized Gauss-Newton filter approach. The contribution

of the present work is to represent spatially varying pharmacokinetic parameters, fluorophore con-
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Table 5 Values of 20 log(NMSE) dB for the spatial pharmacokinetic parameter and volume fraction values

Phantom E (kpe) dB E(kep) dB E(ve) dB E( vp) dB E(kelm) dB

I-T1 -31 -24.22 -17.03 -63.82 -18.55

I-T2 -30.9 -25.07 -17.36 -67.11 -51.5

I-T3 -26.9 -22.01 -10.25 -49.57 -31.11

I-B1 -30 -28.9 -26.2 -65 -44.4

I-B2 -22.6 -28.57 -38.53 -59 -16.8

I-B3 -20.76 -25.74 -20.13 -51 -40.05

A-T1 -28.26 -30.11 -13.7 -60 -61.49

A-T2 -22.61 -24.65 -9.38 -79.29 -21.59

A-T3 -23.5 -20.94 -10.38 -73.3 -35.18

A-B1 -30.49 -28.3 -32.01 -86.1 -39.62

A-B2 -16.92 -31.3 -19.31 -62.73 -39.74

A-B3 -18.55 -26.11 -20.2 -79.38 -42.68

centrations and volume fractions using compactly supported RBF based level-set representations

and derive the corresponding shape based Frechet derivatives for time-varying log intensity mea-

surements of the optical signal. An iteratively regularized trust region based Gauss-Newton filter

has been proposed to solve this reconstruction problem. It should be noted that we directly re-

construct pharmacokinetic rates, rather than the state equation propagator components (the interim

kinetic parameters) as in some previous works.9, 10

Numerical studies with noisy synthetic data obtained from tumor mimicking numerical phan-

toms having near/sub-cm dimensions are presented, that validate the proposed scheme. The recon-

structions demonstrate good localization and reasonable shape and optical parameter reconstruc-

tions, thus demonstrating the good potential of this methodology as an early cancer diagnostic. To

obtain a pointwise reconstruction error measure, we mapped our shape and pharmacokinetic pa-

rameter reconstructions into pointwise values to compute pointwise-image-NMSEs; comparison
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of these pointwise-image-NMSEs with the errors reported in literature for the pharmacokinetic

rates show that they are well within acceptable ranges.

The aim of our detailed computational study is to obtain a clear understanding of the numerical

characteristics of our proposed algorithm before going to experimental data. Aspects related to

application to in vivo settings, in addition to the three-dimensional modeling requirement, would

be:

1. Characterization of the data-acquisition in terms of limited-data aspects, source-detector

configurations(especially depending on region to be interrogated as well as object representation

chosen) and detection numerical apertures, detector sensitivity and temporal resolution possible

to obtain sufficient data SNRs (for accurate reconstructions, since we observe that in our work

the data SNRs would be needed to be above about 30dB), would be needed while applying the

algorithm in actual physical settings.

2. The present results are for scattering dominant media where the diffusion approximation

holds as the governing model of light propagation. However for tissues that are absorption domi-

nant over the wavelengths of use, we will have to go in for forward models such as the full RTE67

or approximations such as the simplified spherical harmonics (SPn) ones.38, 68

3. The development of computationally efficient algorithms in 3D and detailed reconstruc-

tion studies with respect to image representation and data-acquisition configurations, which is the

subject of ongoing work.
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Appendix

Expressions of τij i, j = {1, 2} interms of kξ, with ξ = {ep, pe, elm}, are given by equations (58)

to (60) (for ease of notations we have omitted the superscript i/o on τ and k-related quantities)

τ12 =
4 kep kpe( eΓ2− eΓ1)

4 kep
√

Ξ1

; τ21 = −kep eΓ1−kep eΓ2

√
Ξ1

(58)

τ11 =
eΓ1
√

Ξ1+eΓ2
√

Ξ1−kelm eΓ1 +kelm eΓ2 +kep eΓu
1−kep eΓ2−kpe eΓ1 +kpe eΓ2

2
√

Ξ1

(59)

τ22 =
eΓ1
√

Ξ1+eΓ2
√

Ξ1+kelm eΓ1−kelm eΓ2−kep eΓu
1 +kep eΓ2 +kpe eΓ1−kpe eΓ2

2
√

Ξ1

(60)

where Ξ1, Ξ2, Γ1 and Γ2 are given by the following expressions

Γ1 = Ξ2−
ts
√

Ξ1

2
; Γ2 =

ts
√

Ξ1

2
+Ξ2 (61)

Ξ1 = kelm
2−2 kelm kep+2 kelm kpe+kep

2+2 kep kpe+kpe
2 (62)

Ξ2 = −kelm ts
2
− kep ts

2
− kpe ts

2
(63)

The derivatives of τij with respect to kξ have expressions which are too large to be included here.
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