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47 Abstract. « Characterization of inherent reconstruction errors arising from algorithm-
48 parameter choices is becoming an important requirement for photo-acoustic (PA)
49 tomographic systems. In the present work, we derive an estimate of the inherent
50 errors which arise in universal back-projection based photo-acoustic tomography (PAT)
51 because of the filtering of the forward PA data. Based on the developed error
52 estimates, we further devise an algorithm to choose the forward data with the best
33 SNR from the sets of data procured under different conditions. A prudent choice of
gg the cut-off frequency is critical to obtain good reconstructions from a forward data
56 set. While a high cut-off frequency brings in noise artifacts in the reconstructions,
57 a low cut-off frequency leads to loss of the features encoded in the higher frequency
58 components. Therefore, we further propose a method to obtain an appropriate cut-off
59 frequency, which suppresses the noise while preserving the important features in the
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PA reconstruction. Numerical validations of the proposed schemes are presented for
Hamming filter based smoothed UBP reconstructions of sharply varying initial pressure
distributions.

PACS numbers: 42.30.Wb, 87.57.C-, 87.57.N-, 87.57.Q-

Keywords: Photo-acoustic tomography, Universal back-projection algorithm, Inherent
errors, Noisy data discrimination, Optimal reconstructions
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1. Introduction

When a laser pulse is incident on a sample, absorption of optical energy leads to
local heating. Consequently thermo-elastic expansion takes place generating photo-
acoustic (PA) waves that propagate in the medium./ The photo-acoustic (PA) source,
proportional to the absorbed optical energy in the sample creates an initial distribution
of pressure [1]. Reconstruction of this PA seureenis done through photo-acoustic
tomography (PAT) (also known as opto-acousti¢ tomography) from the boundary
pressure signals captured by ultrasonic transducers.on/a detector grid, which partially
or completely encases the specimen of ‘interest. PAT combines the contrast and
resolution advantages of optical and ultrasound interrogations respectively and hence it
has immense potential in the field of biomedical imaging (2, 3, 4, 5, 6, 7]. Currently, PAT
systems are being clinically tested [8]. The linear PA reconstruction problem (assuming
known acoustic parameters of the medium) ean be solved in several ways such as back-
projection based scheme [1, 9,410}, time reversal scheme [11, 12, 13] and model-based
schemes [14, 15, 16]. Typically, PAT systems utilize piezoelectric transducers arrays or
contact based Fabry-Perotretalons,inplanar [17, 18, 19, 20, 21], spherical [22, 23] and
circular scanning/cylindrical J24, 25, 26] detection geometries for data acquisition.

Reconstructiontageuracy.is affected by many factors such as a low-pass/ band-pass
filter used to ameliorate neise effects [27, 28, 29|, detector bandwidth [30, 31, 32], acoustic
attenuation related bandwidth truncation [27], limited-view effects [33], inhomogeneous
sound speed [274:34], finite detector aperture [30, 35] and acoustic reflections [36]. While
effects such as, unknewn acoustic attenuation, limited-view effects, inhomogeneous
sound speed can befaddressed using model-based schemes, we note that the effects
such as source .and detector bandwidth and acoustic-attenuation related frequency
domain truncation can be modeled as low-pass/band-pass filtering operations [27, 30].
Reconstruetion’ algorithms need to correct for these effects via deconvolution (for
ingtance agsshown in [27]); these corrections however have the effects of enhancing noisy
components of the data which then needs to be addressed. Reconstruction algorithm-
design corresponding to noisy data with known frequency domain truncations is thus
an impertant aspect.
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A critical aspect of setting up a practical system is thus a characterization of
the reconstruction obtained with respect to the forward data. For instanceg it is
important to know the nature of data used to obtain the reconstruction and whether
the reconstruction has been optimized with respect to various algorithmic parameteérs.
In time reversal based PAT, an error estimate was provided with respect te.the cut-
off time under the non-trapping sound speed condition [13]. The choice of various
parameters required in a reconstruction algorithm brings in errors inherent to the
algorithm itself. With the ultimate aim of being able to design an appropriate analytical
reconstruction scheme for given data-acquisition settings with corresponding, frequency
domain effects, our present work proposes a characterization of the inherént errors of
the PA reconstruction obtained from time domain PAT using universal back-projection
(UBP) algorithm, a commonly used reconstruction algorithm for PAT. The inherent
error arises due to using of smoothing filters meant to ameliorate the effects of noise in
the data. In our work we use a bank of filters to propose both, ascheme to distinguish
between data of different noise levels, as well as an appropriate choice of filter cut-off
frequency that plays a defining role in UBP algorithm £ Thepresented scheme and results
obtained are essential baseline studies towards recomstructionrdesign corresponding to
noisy data with known frequency domain truncations.

The UBP algorithm has a generic similarity touthe filtered (or convolution)
back-projection(FBP or CBP) algorithm,  [37, 38] commonly used in straight path
computerized tomography (CT). Inherent ertor estimates have been developed for the
FBP algorithm in two dimensions by Munshi et al. [39], Wells et al. [40] and Jain et
al.[41] (in three dimensions). These estimates have been shown to provide information
pertaining to the spatial frequency content of the phantoms and investigate instrumental
errors as well as incompletenesgof projectiondata [41, 42]. In 2014, Shakya et al. utilized
these estimates in X-ray tomographic reconstructions of a three-phase flow system[43].
They implemented these estimates to werify the goodness of the projection data and
quantify the X-ray absorptionscontent of the cross-section. They further utilized the
error estimates in the study of the distribution of different phase fractions in a three-
phase bubble column reactor [44] and found the estimates to provide information about
the size of bubbles and the attenuation of X-rays.

The band-limitedness of the detection system is responsible for the loss of a part
of information about the original PA source, that is encoded in the high frequency
components ofsthe PA signals. Hence, in our error estimate calculations, the band-
limited rectangular windew (7) reconstruction in a given frequency window has been
chosen as_the datum reference. In an earlier work [28], we had presented and validated
error estimates for planar detection geometry. Preliminary results of our present work for
arbitrarysdetection geometry and noisy-data discrimination have been given in [29]. In
the'present, work, we develop the error estimates for the UBP algorithm for an arbitrary
detection geometry and propose a scheme for discriminating between data of differing
noise levels. In addition, we also suggest a method to obtain an appropriate cut-off
frequency to be used in the filter to obtain best possible reconstructions for a given
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Figure 1: Detection geometry

to choose data with the best SNR and 3) obt:
which results in removal of noise significantly,
of the phantom. In order to validate ou
numerical studies with phantoms of diffe
generic spherical and planar detecti

In this paper, the inherent error
section 2 . In section 3 the er
for arbitrary detection geomet Schemes for noisy data discrimination and choosing

an appropriate cut-off freque proposed in section 4. In section 5, we numerically
validate the propositions mad ons 3 and 4. The work is summarized in section
6.

2. The inherent e ion problem

t) laser pulse leads to a pressure source po(7) = A(7)T'(7)
(known as PA s6 re A(r) is absorbed energy per unit volume, I'(F)(= v?3/C))

PA equ ) (9], which describes the propagation of PA waves in acoustically
homogeéneous non-attenuating acoustic media for delta pulse excitation.

< ) (v?—%%i)p(m) - BB, m

VOpagating PA signals are acquired using ultrasonic transducers (position vector
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7o) forming a detector grid Sy (figure 1) that completely or partially encloses the region
of interest.

The inverse problem of PAT is to recover the initial PA source po(7) from @ set
of boundary PA data p(7%,t) or its Fourier transform (on variable ¢ = vt) p(7gsk)-2In

the UBP algorithm [9, 30], in order to reconstruct the PA source (pg), back-projection
term b(f’o,t = ‘F_—vﬁ"> corresponding to each detector point 7 is evaluated and then

integrated across solid angles to compute pj®(7) as:

|7 — 7o

dS)g
Tec — b ond t —
Do (T_j % <T07 v ) QO )

(2)
where {2 is the solid angle subtended by the detector grid on the/point Qf reconstruction

b, 1) = 20/ 1) — 21 2000 (3)

Due to filtering of the detected signal in the temporal frequency domain by a filter,
characterized by function H (k), the filtered signal is given, by [30]

and the filtered signal in time domain is given as y
(o, t) = F 15 7o, b)) Yo £ M (e = D), )

where the operator F~! implies the inversesFourier transform (IFT) and # is the IFT
of H(k) . In practice, band-limited filtetsfunctions are considered for smoothening of
signals. These filters are typically. of the form:

k) Z\{ W(kfk:) k| <k | (6)

0 : otherwise

where W (k/k.) is a windew/function and k. is the cut off frequency. Consider a band-
limited rectangular window (RW) filter function, characterized by cut-off frequency k.

of the form:
How (k) 1 k| < ke )
VAR = 0 : otherwise.
The filtered signal isffed into a reconstruction scheme (characterized by an operator 7’:’,)
to obtainsthe initiallPA source

Py (7) = RIH (k)p(ro, k))]. (8)
For the case of noiseless data and a chosen cut-off frequency, the PA data with
rectangular window filtering leads to the best reconstruction.

~

PSZCW(F) = R[HRW(k)ﬁ(Fo, k?))] (9)
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We define the inherent error in the PA reconstruction as the average error in
reconstruction, considering the RW reconstruction as reference.

NZ (phc () — s, (7)), (10)

where the 7; represent the locations of the points of reconstruction (indexed by i) and
N is the total number of such points lying in the domain of reconstruction.

3. Inherent error estimates

In this section, we derive inherent error estimates for arbitrary defeetion geometries,
thus generalizing our earlier results in [28]. Accuracy of PA temographie reconstruction
depends on the number of detectors, their locations, the sampling frequency of data
acquisition, noise level, reconstruction algorithm and ‘the, parameters chosen in the
algorithm for reconstruction. Y. Hristova has provided error estimates for the time
reversal based reconstruction as a function of cutéoff time [18]. The accuracy of the
UBP algorithm based PAT reconstruction is dictated by the properties of the filter
used, i.e. the choice of window function and the cut-off fréquency. Filtering of forward
signal is required to give a higher weightage to low frequency amplitudes and attenuate
noisy high frequency components. The frequency domain PA equation is the Helmholtz
equation written as

(v FRp ) i o (7) (1)

The UBP algorithm is a simplified formief Green’s third identity[45], according to
which, the PA pressure p(7, k) in the region enclosed by the detection surface Sy can be
calculated [9] as

5B # dSop(7o, k) [50 S0GP (7, 7). (12)
So

where 75° denotes the unit normial vector of Sy and é,(ﬂD)(F, 7o) is the Green’s function
corresponding to the Helmholtz equation

(V2 + KGN, 7)) = —6(F — 7). (13)
Taking the inverse Fourier transform of (12), we get

1

—)t _
p(T7_> 27T

/ dke'™® / dSep(Fo, k)[R0 VoGP (7 7). (14)
So

The initial pressure source that we aim to reconstruct is po(7) = p(7,t = 0), so

I - So & AD) >
po(r) = %/ dk/ dSoP(Toak’)[”go-VOG;D)(T’TO)]' (15)
—00 So

Page 6 of 34



Page 7 of 34

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - BPEX-100949.R2

Inherent error estimates for UBP based PAT 7

If the forward data p(7, k) has been filtered using a filter H(k), then using (4) the filtered
reconstruction pgec () corresponding to a window function W (k/k.) can be written as

His) = 5= [ b [ dsi DHOE TGP R oL 10
So

The window function W (k/k.) used for filtering (6) can be expanded using ayTaylor
series as

W (k/k.) = W(0) + kﬁW’(O) + (g) W”(0) + HO.T., (17)

where H.O.T. stands for “higher order terms”. The window functions considered in
this study attain the maxima at zero frequency (W'(k =40) = 0) with W(k=0)=1.
Substitution of this expansion in (16) gives

1 [he S5
P (7) ~ 2—/ ‘”“/ A505{o, )
™ J_k, So

where we have neglected the terms beyond thé second.omder in the Taylor expansion

y+<£>1y%m]m?i%éfkﬁ%n, (18)

of W(k/k.). Considering now the basic rectangular window, the band-limited
reconstruction of the initial PA pressure cambe written from (7) and (16) as

I 5. ) [0 O (7 7
P (7) = 5 / dk / dSopi(Fo, K)[50. VoGP (7, 7). (19)
—ke So

Thus from (18) and (19), we obtain

2
1 ke e k i = A(D) s
Doy (F) = D, (F) ~ o / dk / dsop<ro,k><—> W (0) (5 VoG (7 7). (20)
T ISk N WSo ke

Substituting the valuesof kQG'(D) (@, 7o) from (13) into (20) gives

ke
i) {5 [ a / AS0p(7 <k> W(0)
So

D (21)
S0 Vo (V2P (7, 7o) — 8(F — )]
271(F)+72(F)7
with,
ke i 1 SN 2~(D)7—,»7:»
1 (7) %/C@wam ()wmw 0 o (=V2GP) (7, )] "

-- (W,;(O) ) V2, (7)

C
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where we have used the definition of pyc () as in (19).
We now evaluate the second error term 2 (7),

72(7) = 27?/ dk/so dSop(70, k <k> W) RS NVo(=5(F— 7). £ (28)

Let us consider an N-dimensional orthogonal curvilinear coordinate‘system with
co-ordinates (&1, &, ... &n), scale factors (hq, ho,...hy) and corresponding unit vectors

(é1,€9,...,€éx). Then the Dirac delta function can be expressed as [46]
hl hQ hN ~
Let & = &0 be the detection surface, é; be the unitwector perpendicular

the detection surface (73°) and the detector area elementiybem@iven by dS, =
(hohs ... hy)(d€ndEsp - . . dEno). We can thus write o (7)4as

o (F) = VQVMQ / dk /S hahs ... hydéydSso . . - d&nop(To, k)
R WM& &)y 9N — Eno)
[61.V0< — 4 A I H -
= V;er / dk /SO d&20dE30m.. . AENOD(T0, )[5(52 — &%) - -
Oy — fzvo)ag 6(& — 510)]

If the detection grid is not awpart of domain of reconstruction, then & # &9 =
8%15(51 —&10) =0 = = 0._Hence

TeC rec W// (0) Tec g
pOW pOvaﬂ ~ 71 ( k2 ) V2poRW (T) (26)

Consider a discretized three dimensional image with N, x N, x N, voxels. The derived
error (26) is a pointwise estimate but the Laplacian of the discretized reconstruction
may lead to inaceurate results. Thus, the quality of reconstructions for a given filter
can be quantified in terms of the averaged error(€) (defined in (10)) as

NTaNysz
gL —1 rec rec
‘ NxNyNz |pOW(Z ]’k) pORW(Z ]’k)l
i,5,k=0 o)
Ny Ny,N,
1 W” 2 rec

- _NmNyNz v pORW xhijzk)

1,J,k=0
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One important aspect we notice from (27) is the linearity of € with respect to W”(0) for
a fixed cut-off frequency, which will be utilized in later sections. Moreover, thiszesult
holds only for commonly used smooth filters, otherwise the Taylor approximation of the
filter used in the proof would be highly inaccurate.

4. Noisy data discrimination and appropriate filter cut-off frequencies

The forward PA signals first undergo band-limited filtering and then are fed inte the
UBP algorithm to obtain PA reconstructions. The band limited filters.are ¢characterized
by a window function W and a cut off frequency k.. Different window functions and
cut off frequencies will lead to different reconstructions. We propese the averaged error
€ (27) as the measure of the performance of a filter in PA reconstruction.

The filters chosen in this work are

Halk) = { Wy(k/k.) = B+ (1 — B)cos(mk ko - |k| &k, o)

0 sotherwise

where Hp represents the class of Hamming filters with 0.5 <'B < 1.

Noiseless data characteristics: In the case of noiseless PA data, for a given cut-off
frequency the rectangular window filtering leads to the bgst approximation to the PA
source. The filters with higher W”(0) wilk,cause higher attenuation across frequencies
than lower W”(0) filters. Consequently, we have greater distortion in data and hence
more reconstruction error while using high W.”(0) filtered forward data (figure 2d).

According to our proposed érror estimate in (27), the averaged error € in PA
reconstruction for a fixed cut-off frequency will be linearly dependent on the double
derivative of the window function.at Fourier origin W”(0) . Hence, we construct the best
linear fit to average errors plotted with respect to a range of Hamming filters (indexed
by B). When these reconstructions are carried out for several cut-off frequencies, the
slopes of € vs W”(0) are foundsto,be increasing with decrement in cut-off frequencies
because of the k? in the denomindtor.

Noisy data chatacteristics: In case of noisy PA data, we expect the proportionality
of averaged error € for adfixed cut-off frequency with W”(0) to be preserved. However,
we do expect the noisereffects to play a role in the slopes of the best fits. When a
noisy data is filtered using a larger cut-off frequency, the high frequency amplitudes
(noise) are ineluded impthe reconstruction. The band limited reconstruction with a high
frequency content will lead, to noisy artefacts in the reconstruction and hence to a high
value of vngffw ()¢ Consequently, for low SNR signals, the slopes for higher cut-off
frequencies arefexpected to be higher than that for lower cut-off frequencies, which
results,in disordering in the € vs W”(0) slopes as compared to the noiseless case. With
improvement in SNR, the disorder of the slopes keeps decreasing until a certain high
SNRy, the ordering becomes the same as for noiseless data. Hence, we can consider the
slope ordering as a qualitative measure of SNR of the PA signal.
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Noisy data discrimination: Suppose that sets of photoacoustic forward data of
the same object have been generated under different experimental and environmental
conditions. Differing conditions will lead to different photoacoustic forward data. We
can carry out the reconstructions using the bank of Hamming filters for these datasetsat
different cut-off frequencies and plot the averaged error € vs W”(0). The slope,ordering
for each of these datasets goes back to that of the noiseless case for below a certain
cut-off frequency. As per our observations of the previous paragraph, we see.that the
dataset with the best SNR is the one that maintains the slope-ordering (as for the
noiseless data) for the maximum of the slope-order-maintaining cut-effyfrequencies.

Choice of appropriate cut-off frequency for a dataset: For a given data set, the €
vs W”(0) graph with different cut-off frequencies can assist in ch@osing an/appropriate
cut-off frequency. One chooses an appropriate cut-off frequency for a given PA data
such that noise is significantly curtailed while reducing loss ©f critical data. Hence, the
maximal cut-off frequency assuring the noiseless ordering of the'slepes can be chosen as
an appropriate cut-off frequency for a given noise level.

The present work has an ultimate objective of béing able to design an appropriate
reconstruction scheme for given data-acquisition settings with corresponding frequency
domain effects ; we note that the effects suclhimas. source and detector bandwidth
and acoustic-attenuation related frequency domain/truneation can be modeled as low-
pass/band-pass filtering operations. For imstance, while in the present work we address
the essential baseline case of ideal sourece and flat-passband detector settings, the
presented approach can be conjectured to be generalized to data-sets representable
in the form h * pgu, (for knowndexperimental temporal-impulse-response h(t) with
Pdata = P(Ty, 1) at detector position 7y)Wia deconvolution and subsequent application of
the above described algorithm:

5. Numerical studies

N
We validate our reconstruction characterization scheme with Hamming filter based

reconstructions obtained for/three numerical phantoms P1, P2 and P3 of the following
specifications:

P1: A big cube (préssuresotirce value 1 unit) with 9 small cuboids inside (pressure
source value 2 units). ( figure 2a, 3a)

P2: A big cylinder(pressure source value 1 unit) with 11 small cylinders (2 cylinders
with pressure source yvalue 0.5 unit, 6 cylinders with pressure source value 1.5 units and
3 cylinders with pressure source value 2 units) and 2 cuboids (pressure source value 2
units) inside.(figure 2b, 3b)

P3: A big cylinder (pressure source value 1 unit) with 23 small cylinders (10 cylinders
with pressure’source value 0.5 unit, 10 cylinders with pressure source value 1.5 units
and\3 cylinders with pressure source value 2 units) and 8 cuboids (pressure source value
2 units)pinside. (figure 2c, 3c).

The simulations were carried out in three different numerical settings:

Page 10 of 34
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Numerical Simulation 1 (Phantoms P1 and P2, spherical detection geometry,
8MHz sampling frequency): The measured PA signals are generated in a 401 x 401.x 401
(voxels) domain with 0.1 mm resolution for 831 detector positions, spread uniformly on
the surface of a sphere with radius 1.5cm at 8MHz sampling frequency using the finetion
“kspaceFirstOrder3D” of the k-wave toolbox [47] for P1 and P2. A criterion for proper
simulation in the k-wave framework is that the smallest wavelength at‘which the wave
propagation is simulated should be twice of the grid resolution. Therefore, forithe given
grid parameters the smallest wavelength at which the propagation can be supperted
is 0.2mm, which results in the maximum supported frequency for kswave,simulation
~ 7.5 MHz. For the phantoms chosen in this simulation, the major contribuition to the
frequency spectrum of the received signal is found to be contained within 4MHz; the
criterion used is a neglection of frequency components less than 1% of the maximum
amplitude. Hence the sampling frequency chosen is 8MHz.

Numerical Simulation 2(Phantom P3, spherical detection geometry, 16MHz
sampling frequency): The measured PA signals are generated.in a 801x801x 801 (voxels)
domain with 0.05 mm resolution for 1635 detector positions, spread uniformly on the
surface of a sphere with radius 1.5cm at 16MHz sampling frequency using the function
“kspaceFirstOrder3D” of the k-wave toolbox [47Jifor P3. Therefore, for the given
grid parameters the smallest wavelength at which/the propagation can be supported
is 0.1 mm, which results in the maximum supported frequency for k-wave simulation
~ 15 MHz. For the phantom chosen in this simulation, the major contribution to the
frequency spectrum of the received signal is found to be contained within S8MHz. Hence
the sampling frequency chosen is 16MHz:

Numerical Simulation 3 (Phantom P1 in two planar detection geometries, SMHz
sampling frequency): The measured PA signals are generated in a 601 x 601 x 601 (vox-
els) domain with 0.1 mm resolution for 3A) 2601 detectors and 3B) 3969 detectors,
spread uniformly on the surface of a square with side 10cm at S8MHz sampling frequency
using the function “kspaceFirstQrder3D” of the k-wave toolbox [47] for P1.

5.1. Validation of errorsestimates with noiseless data

Universal back projection based PA inversions have been carried out for a series of
filtered (using Hamming filter functions) forward data corresponding to the three
numerical simulations, The Hamming window is defined as [48]

Wg(k) = B+ (1 — B)cos(nk/k.), (29)

for 0.5°< B < 1. Note that B = 0.5 and B = 1 for the Hanning and the
regtangular windows respectively. Averaged errors € (27) are plotted with W”(0) for
each, of the reconstructions as a quantification of the performances of different filters
(W"(0))(figure 4). The following propositions which were made in section 4 have been
numerically validated.
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Figure 2: Initial pressure sources and the filters used in this study

e For a fixed cut-off frequency windowjithe filters with higher W”(0) lead to higher
attenuation in the corresponding frequency amplitudes than lower W”(0) filters.
This leads to more loss of'data and henee more error in reconstructions using high

W"(0) filtered forward data (figure 4).

e The slopes of € vs W”(0) are found to be increasing with decrement of cut-
off frequencies (figure 4).\A similar ordering was found with UBP based PAT
reconstructions with a gplanar detection geometry as well and reported in our
previous work [28].

5.2. Noisy data discrimimation and strateqy for choice of the appropriate cut-off
frequency for filtering

The filtering process of the forward data plays a major role in governing the accuracy of
PA reconstructions from noisy data. Choosing a rectangular window over the complete
frequency bandhfor PA reconstruction leads to the best reconstruction, if the data
is noiseless. However, doing so for low SNR data results in noise artifacts in the
redonstrucgion. Moreover, employing a sharp window (a window function with high
W"0) ) in a small frequency band leads to attenuation of useful signal and hence
false reconstructions. A judicious choice of the filter function is thus critical for a
goodireconstruction. Figure Ha,bc are the reconstructions obtained from data with
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Figure 3: Cross-sections of initial pressure seurces used in this study.

5dB SNR and all the frequencies participate in the reconstructions. Consequently, the
noise artifacts are visible in the cross-sections. Figure 5b,5d depict the cross-sections
reconstructed using the Hanning, window (thesteepest of all the Hamming windows) and
0.8 MHz cut-off frequency. Theschoice of a steep window with small cut-off frequency
leads to loss of high frequency components as well as attenuation of several low frequency
components of the PA signali WAs aresult, one can notice the missing characteristic
features in the reconstructions thus obtained. The computed forward data for the
phantoms were perturbed by white Gaussian noise to generate noisy data with desired
SNRs. The noisy data are then filtered using a series of Hamming windows and universal
back projection algorithm isused to carry out the PA reconstructions. Averaged errors €
are plotted against W (0) (figure 6-10). Although, the proportionality of averaged error
€ with W”(0) is'preserved, the noisy effects manifest in a “change in the ordering” of the
slopes of the best fits; with respect to that observed for noiseless data reconstructions,
where the.slopés of the best-fit lines are found to increase with decrement in the cut-off
frequencies. Assproposed in section 4, we observe that for low SNR signals, the slopes
for higher cut-off frequencies are higher than that for lower cut-off frequencies (figure 6-
10). As the quality of signals improve (higher SNRs), the disorder of the slopes keeps
decreasing upto a certain high SNR, where the ordering becomes same as for noiseless
data (figure 6-10).
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Figure 4: Plot of averaged error with W”(0) for noiseless PA data.

14

We further utilize the method proposed in section 4 to choose an appropriate cut-off
frequency &¢ for a rectangular window reconstruction. For the phantoms considered in
this'studyy the € w.r.t. W”(0) plots obtained from reconstructions of the phantoms P1
and P2 are given in figure 6-10. We intend to choose the maximum cut-off frequency
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ction of initial

Figure 5: Reconstruction of P1 from PA data (5dB SNR)(a)Rectangular window over
4.0 MHz cut-off (b)Hanning window over 0.8 MHz cut-off frequency; Reconstruction of
P2 from PA data (5dB SNR)(a)RW window over 4.0 MHz cut-off (b)Hanning window
over 0.8 MHz cut-off frequency

Table 1: Simulation 1:Appropriate cut-off frequency for thie phantoms at different
SNRs.

Appropriate cut-off frequency table forssimulationy1
Phantom | SNR(dB) | £¢(MHz) | Phantoms, SNR(dB) | £(MHz)
5 1.0 > 1.0
10 1.4 10 1.4
Pl 15 1.8 - s 15 2.1
20 3.0 20 3.0

where the signature of noise, that is the perturbation in slope ordering is minimal. In
other words considering that slopé'is. inversely proportional to k2, we need to find the
cut-off frequency that corresponds to the minimum of the slope vs cut-off frequency
graph (figure 11-15). The variation of slopes'for a range of cut-off frequencies from 0.5
MHz to 4.0 MHz was first coasselyrexplored. The region around the minimum of the
“cut-off frequency - slope curve” (indieated by the rectangles in figure 11-15 ), was then
probed at a finer cut-off frequency discretization of 0.1 MHz. In our computational
experience, we found that minor ¢hanges in the choice of k. around the minimum, do
not significantly affectéthe reconstructed cross-sections. Therefore the minimum of the
“cut-off frequency - slope curve” (k2, the appropriate cut-off frequency) was chosen by
inspection, as a high precision is not desired in the choice.

The appropriate cut-off frequencies (k%) obtained for the three sets of numerical
simulations aré tabulated in table 1,2 3.

The choices of{thenappropriate cut-off frequencies for 5dB, 10dB and 15dB
SNRs areqjustified by the reconstructions provided in figure 16-20. The first column
(figure [16a, 16dy 16g; figure 17a, 17d, 17g; figure 18a, 18d, 18g; figure 19a, 19d and
figure 20a, 20d) and the second column (figure 16b, 16e, 16h; figure 17b, 17e, 17h;
figare 18b, 18e, 18h; figure 19b, 19e and figure 20b, 20e) show the reconstructed
cross-sections using lower and higher cut-off frequencies than the corresponding £
respectively, while the reconstructions obtained using corresponding appropriate cut-
off frequencies are provided in the third column (figure 16¢, 16f, 16i; figure 17¢c, 17f, 17i;
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Figure 6: Simulation 1:

geometry (noisy forward data)
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figure 18¢,.18£18i;figure 19¢, 19f and figure 20c, 20f).
The three-dimensional reconstructions obtained for the three simulations using

appropriate cut-off frequencies (k%) for different SNRs are depicted in figure 21.

16

Averaged error for phantom P1 in spherical detection

Evaluation of accuracy of the reconstructions has been done on the basis of the
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Averaged error for phantom P2 in spherical detection

geometry (noisy forward data)

correlation.coefficient(p) and the deviation factor (6) defined as [49, 50]:

=)@ - )

5:

(N —1)AprApt

VN 5 — /N
Apt

(30)

(31)
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Figure 8: Simulation 2:" Averaged error for phantom P3 in spherical detection

geometry (noisy forward data)

where N _is thie total number of voxels, Ap' and Ap” are the standard deviations

and p' fland p” are the mean values of the reference and reconstructed values of the

parameter. respectively. In this work, we provide two sets of correlation coefficients (p

(o]

and p") and deviation factors (6°,0") in the the regions of interest, where subscripts

o and r denote that the true phantom and the noiseless full bandwidth rectangular

window reconstruction were chosen as reference. We observed that the quality of the

reéconstruction improves significantly when the proposed appropriate cut-off frequency
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Figure 9: Simulation 3A: Averaged error forphantom P1 in planar detection geometry
with 2601 detectors(noisy forward data)

Table 2: Simmulation,2:Appropriate cut-off frequency for the phantoms at different

SNRs.

Appropriate cut-off frequency table for simulation 2
Phantom | SNR(dB) k2(MHz)
5 1.8
10 2.2
b3 15 2.6
20 4.8
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Figure 10: Simulation 3B: Averaged error, for phantom P1 in planar detection

geometry with 3969 detectors (noisy forward data)

Table 3: Simulation 3:Apprepriate cut-off frequency for the phantoms at different

SNRs.

N

Approptiate cut-off frequency table for simulation 3

3A) 2601 detectors

3B) 3969 detectors

Phantom | SNR(dB)| £2(MHz) | Phantom | SNR(dB) | £%(MHz)
D 1.2 ) 1.5
Pl 10 1.6 Pl 10 1.8

is chosen for the reconstruetions (table 4, 5, 6).

We observe that our algorithm for the choice of appropriate cut-off frequency works

well for all the mumerical studies performed. However, we do notice that in the planar

detection geometry (simulation 3) the reconstructions obtained are less sensitive to the

choice of ctit-off frequency as compared to the spherical detection geometry.
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Figure 11: Simulation 1: Variation of slopes with cut-off frequency for phantom P1.

The rectangle indicates the region, which has.been finely explored to obtain the k2

Table 4: Correlation coefficient p and deviation factor § for reconstructions of simulation

1; p and 0 obtained using k¢ are given in boldface.

Stmulation 1: Correlation coefficients and deviation factors
Phantom | SNR[dB] | k. [MHz] | p 0 p ¢ | Phantom | SNR[dB] | k. [MHz] | p° 9° o or

0.5 0.38 | 1.13 | 0.61 | 0.86 0.5 0.72 | 0.76 | 0.86 | 0.54

5 2.0 0.52 | 1.23 | 0.71 | 1.00 5 2.0 0.72 | 0.82 | 0.82 | 0.71

1.0 0.66 | 0.87 | 0.90 | 0.50 1.0 0.80 | 0.64 | 0.93 | 0.39

0.5 0.39 | 1.12 | 0.62 | 0.85 0.5 0.73 | 0.75 | 0.86 | 0.53

P1 10 2.0 0.64 | 0.93 | 0.87 | 0.58 P2 10 2.0 0.80 | 0.64 | 0.93 | 0.40
1.4 0.69 | 0.83 | 0.93 | 0.42 1.4 0.83 | 0.59 | 0.96 | 0.30

1.0 0.70 | 0.80 | 0.95 | 0.33 1.0 0.83 | 0.59 | 0.96 | 0.29

15 3.0 0.65 | 0.92 | 0.88 | 0.54 15 3.0 0.81 | 0.63 | 0.94 | 0.38

1.8 0.71 | 0.79 | 0.96 | 0.31 2.1 0.84 | 0.58 | 0.97 | 0.25
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Figure 12: Simulation 1: Variation of slopes with cut-off frequency for phantom P2.

The rectangle indicates the region, which has.been finely explored to obtain the k2

N

Table 5: Correlation coefficient p and deviation factor § for reconstructions of simulation

2; p and 4 obtaineddusing k2 aregiven in boldface.

Simulation 2:Correlation coefficients and deviation factors
Phantom | SNR[dB] | k. [MHz] | p° 0° P o"
1 0.71 | 0.75 | 0.85 | 0.60
5 4.0 0.57 | 1.20 | 0.68 | 1.09
1.8 0.77 | 0.69 | 0.89 | 0.50
1 0.72 | 0.74 | 0.85 | 0.59
P3 10 4.0 0.71 | 0.83 | 0.65 | 0.62
2.2 0.80 | 0.64 | 0.93 | 0.41
1.0 0.72 | 0.73 | 0.86 | 0.58
15 4.0 0.78 | 0.67 | 0.94 | 0.36
2.6 0.82 | 0.61 | 0.97 | 0.25
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Figure 15: Simulation 3B: Variation of slopes with cut-off frequéncy for phantom P1
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Table 6: Corrélation coefficient p and deviation factor ¢ for reconstructions of simulation
3; p and d obtained asing'k’ are given in boldface.

Simulation 3: Correlation coefficients and deviation factors
3A)2601 detectors 3B) 3969 detectors
Phantom'| SNR[dB] | k. [MHz] | p° 0° o 0" | Phantom | SNR[dB] | k.[MHz] | p° 0° o or

0.5 0.36 | 1.43 | 0.62 | 0.85 0.5 0.36 | 1.43 | 0.65 | 0.80

5 2.0 0.58 | 1.33 | 0.93 | 0.37 5 2 0.61 | 1.26 | 0.95 | 0.30

P1 1.2 0.61 | 1.27 | 0.95 | 0.35 P1 1.5 0.62 | 1.24 | 0.96 | 0.28

1.0 0.61 | 1.25 | 0.94 | 0.38 1.0 0.61 | 1.24 | 0.96 | 0.29

10 3.0 0.59 | 1.33 | 0.95 | 0.33 10 3.0 0.61 | 1.26 | 0.96 | 0.27

1.6 0.61 | 1.26 | 0.96 | 0.27 1.8 0.63 | 1.22 | 0.98 | 0.20
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Figure 16: Numerical simulation-1:Cross-section of rectangular window reconstruction
of P1 using PA data with (a)/5dB SNRyand k. = 0.5 MHz (p° = 0.38,0° = 1.13)(b)5dB
SNR and k. = 2.0 MHz (p%=.0.52,6° = 1.23) (c) 5dB SNR and k. = k¢ = 1.0 MHz
(p° = 0.66,6° = 0.87) (d)[10dB SNR and k. = 0.5 MHz (p° = 0.39,6° = 1.12) (e) 10dB
SNR and k. = 2.0 MHz (p? = 064, 5° = 0.93) (f)10dB SNR and k. = k¢ = 1.4 MHz
(p° = 0.69,6° = 0.83) (g)15dB SNR and k. = 1.0 MHz (p° = 0.70,6° = 0.80) (h)15dB
SNR and k. = 3.0/'MHz (p%= 0.65,6° = 0.92)(i) 15dB SNR and k. = k% = 1.8 MHz
(p° =0.71,6° =0.79)
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Figure 17: Numerical simulation-1:Cross-section of rectangular window reconstruction
of P2 using PA data with (a)/5dB SNRyand k. = 0.5 MHz (p° = 0.72,6° = 0.76)(b)5dB
SNR and k. = 2.0 MHz (p%=.0.72,6° = 0.82) (c) 5dB SNR and k. = k¢ = 1.0 MHz
(p° = 0.80,6° = 0.64) (d)[10dB SNR and k. = 0.5 MHz (p° = 0.73,0° = 0.75) (e) 10dB
SNR and k. = 2.0 MHz (p? = 080, ° = 0.64) (f)10dB SNR and k. = k¢ = 1.4 MHz
(p° = 0.83,0° = 0.59) (g)15dB SNR and k. = 1.0 MHz (p° = 0.83,6° = 0.59) (h)15dB
SNR and k. = 3.0/'MHz (p%= 0.81,6° = 0.63)(i) 15dB SNR and k. = k% = 2.1 MHz
(p° = 0.84,6° =0.58)
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Figure 18: Numerical simulation 2: Cross-section of rectangular window reconstruction
of P3 using PA data with (a) 8dB SNR and k. = 1.0 MHz (p°® = 0.71,6° = 0.75)(b)5dB
SNR and k. = 4.0 MHz (p°® =10.57,02 = 1.20) (c) 56dB SNR and k. = k? = 1.8 MHz
(p° =0.77,6° = 0.69) (d) 10dB\SNR and k. = 1.0 MHz (p° = 0.72,° = 0.74) (e) 10dB
SNR and k. = 4.0 MHz (p°%= 0.71,° = 0.83) (f)10dB SNR and k. = k¢ = 2.2 MHz
(p° = 0.80,06° = 0.64) (g)15dBsSNR and k. = 1.0 MHz (p° = 0.72,6° = 0.73) (h)15dB
SNR and k. = 4.0.MHz (p° = 0.78,0° = 0.67)(i) 15dB SNR and k. = k? = 2.6 MHz
(p° =0.82,6° = 0.61)
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Figure 19: Numerical simulation 3A: Cross-sectiomof.rectangular window reconstruction
of P1 using PA data with (a) 5dB SNR and k. = 0.5 MHz% p° = 0.36, 6° = 1.43)(b)5dB
SNR and k. = 2.0 MHz (p° = 0.58,0° =,1.33) (c¢) 56dB SNR and k. = k¢ = 1.2 MHz
(p° =0.61,6° = 1.27) (d) 10dB SNR and k. =.1.0 MHz (p° = 0.61,6° = 1.25) (e) 10dB
SNR and k. = 3.0 MHz (p° = 0.59,0° = 1.33) (£)10dB SNR and k. = k% = 1.6 MHz
(p° =0.61,6° = 1.26)
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27 Figure 20: Numerical simulation 3B: Cross-sectionsof rectangular window reconstruction
28 of P1 using PA data with (a) 5dB SNR and k. & 0.5 MHz¥p° = 0.36, 6° = 1.43)(b)5dB
30 SNR and k. = 2.0 MHz (p°® = 0.61,0° =.1.26) (c) 5dB SNR and k. = k¢ = 1.5 MHz
31 (p° =0.62,6° = 1.24) (d) 10dB SNR and k.= 1.0 MHz (p° = 0.61,0° = 1.24) (e) 10dB
32 SNR and k, = 3.0 MHz (p° = 0.61,6° = 1.26) (£)10dB SNR and k., = k% = 1.8 MHz
34 (p° =0.63,0° = 1.22)
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Figure 21:43D visualization of appropriate frequency-rectangular window reconstruc-
tions:, Simulation 1: P1 using PA data with (a) 5dB SNR and k. = 1.0 MHz (b)10dB
SNR and k. = 1.4 MHz (c) 15dB SNR and k. = 1.8 MHz; P2 using PA data with (d)
5dB"SNR and k. = 1.0 MHz (e) 10dB SNR and k. = 2.8 MHz (f)15dB SNR and k. =
2.1 MHz. Simulation 2: P3 using PA data with (g)5dB SNR and k. = 1.8 MHz (h)10dB
SNR and k. = 2.2 MHz (i) 15dB SNR and k. = 2.6 MHz. Simulation 3A: P1 using PA
data with (g)5dB SNR and k. = 1.5 MHz (h) 10dB SNR and k. = 1.8 MHz. Simulation
3B: P1 using PA data with (i)5dB SNR and k. = 1.5 MHz (j) 10dB SNR and k. = 1.8
MHz
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6. Summary

An error estimate with respect to the band-limited reconstruction (pg® (7)), for UBP
based PAT for arbitrary detection geometry has been reported in this study (27).«lmeur
work we have utilized a bank of filters to develop a scheme for noisy data discrimination
and choosing an appropriate cut-off frequency. Numerical validations hayve been carried
out for various phantoms of differing sizes, noise-levels and for spherical as well as planar
detection geometries.

The proposed error estimate involves the cut-off frequency k., Laplacian of the
band-limited reconstruction 7*pi (%) and double derivative of fthe chosen’ window
function at the Fourier space origin W”(0). The calculated errorin PA reconstruction
of a phantom over different filter functions with same cut-off«frequency, shows
proportionality with W”(0) (figure 4). The proportionality oftaveraged error € with
W"(0) holds good for noisy signals as well, but the ordering of the slépes of € vs W”(0)
changes due to noise artifacts in reconstructions.

Observing this change of slope ordering due tosneise inydata, we can choose a
data set with the best SNR. Such a requirement arises in praetice in situations such as
where sets of PA forward data of the same object-have,been generated under different
experimental and environmental conditions. Different eonditions will lead to different
PA forward data. Now if we carry out the reconstructions using different filters for the
datasets at different cut-off frequencies andiplot theraveraged error € with W”(0), we
can choose the signal with the best SNR on'the basis of the strategy proposed in section
5.

Further, we have proposed a method to obtain an appropriate cut-off frequency £,
which results in removal of neise significantly, while preserving the important features
of the phantom. This is important since filtering of PA signals for attenuation of
noise is accompanied by thefloss of data as a trade-off. A smaller cut off window
chosen for reconstruction results.in loss of information about sharp boundaries and fast
variations, which are refléected/in the higher frequencies; while reconstructions carried
out with larger cut off windows incorporate noise artifacts. The presented scheme and
results obtained are essential baseline studies towards analytical reconstruction design
corresponding to neisy. data with known frequency domain truncations.
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