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Fluorescence optical tomography (FOT) is a well-known imaging technique, where fluorescent biological markers
are injected to tag targeted tissues (tumors, proteins), and the absorption coefficient of fluorophore is recon-
structed to provide contrast-enhanced images. Conventional FOT is known to have lack of stability to noise
and shallow imaging depth due to strong optical scattering in biological tissue. Photoacoustic tomography
(PAT) has been previously proposed to combine with FOT to resolve this issue. We propose a fully nonlinear
one-step reconstruction in a diffuse-approximation modeled fluorescence photoacoustic tomographic (FPAT)
setting, where the absorption coefficient of exogenous fluorophore is recovered directly from the photoacoustic
data. Computational validations in two dimensions in single- and dual-grid reconstruction settings using full as
well as partial data have been provided in support of the proposed algorithm. One-step schemes are particularly
useful with respect to dual representations of field (optical and pressure) variables and optical parameters,
especially in limited-data settings, which effectively help in constraining the optimization search space. We have
compared the results of one- and two-step FPAT schemes and concluded that the one-step reconstructions are
superior as compared with the corresponding two-step reconstructions. To the best of our knowledge, these are
the first comparisons of one-step and two-step reconstructions in FPAT.  © 2019 Optical Society of America

https://doi.org/10.1364/A0.58.003116

1. INTRODUCTION

Biological/biochemical changes in the human body are accom-
panied by changes in local absorption and scattering properties
of dissue. Diffuse optical tomography (DOT) is a well explored
noninvasive biomedical imaging technique that aims to recover
the distribution of optical absorption and scattering properties
of tissue. One of the most important applications of DOT is
tumor detection in soft tissues. Tumor development is followed
by higher blood flow to local tissues and hence leads to changes

development [5]. Major progress has been made in disease-
specific  fluorescent markers, experimental setups, and
reconstruction algorithms of FOT [6,7].

Consequently, the quality of images produced by FOT has
improved very much, but the major issue that still remains is its
lack of stability due to light getting multiply scattered in the
turbid media [2,8,9]. Various algorithmic as well as experimen-
tal approaches have been proposed in order to resolve the issue.
The seminal paper of Ren and Zhao (2013) proposed the as-

in absorption properties of the tissue. However, at the earlier
stages of tumor development, this absorption contrast is not
significant enough to provide good sensitivity and specificity
in tumor detection [1]. To improve this contrast, fluorescent
markers are injected to tag the targeted tissues (tumors), and
spatial distribution of exogenous fluorophore concentration is
reconstructed using fluorescence optical tomography (FOT)
[1,2]. Fluorescent markers have been widely employed to en-
hance the PA signals and hence assist in deep photoacoustic
(PA) imaging [3,4]. Fluorescent markers having high quantum
efficiencies while having low toxicity are reported to be under

1559-128X/19/123116-12 Journal © 2019 Optical Society of America

sistance of photoacoustic tomography (PAT) to stabilize the
FOT reconstructions by reconstructing the optical parameters
from photoacoustically reconstructed absorbed optical energy
density (AOED), thus yielding fluorescence photoacoustic
tomography (FPAT) [10]. They have proved the uniqueness
and stability properties of this inversion problem and shown
the reconstructions using AOED as data. The group further
developed the theory for radiative transport equation (RTE)
based FPAT and validated it using numerical simulations [11].
Recently, Wang and Zhou (2018) proposed an approach that
combines a squeeze iterative method (SIM) with a nonlinear
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optimization technique to enhance the quantitative accuracy
and convergence of RTE-based FPAT reconstructions [12].

In 2007, Razansky and Nitziachristos reported a hybrid
photoacoustic  fluorescence molecular tomography (PA-
EMT), which uses a PA reconstruction to generate an approxi-
mate absorption coefficient distribution to improve FMT
reconstruction quality [13]. The universal backprojection
(UBP) technique was utilized to reconstruct the AOED map of
the phantom from PA measurements. The AOED map was fur-
ther normalized by an analytically calculated diffusion-approxi-
mated optical fluence map for a phantom with constant
and known absorption properties, and a quantitative map of ab-
sorption coefficient was approximated. The chromophore
absorption map thus obtained was used to solve the linear
EMT reconstruction problem for the fluorophore absorption
coefficient.

PAT has already been combined with DOT (known as
quantitative photoacoustic tomography [QPAT]) to produce
highly accurate absorption as well as a scattering coefficient
map of endogenous chromophores [14-21]. A typical
QPAT is a two-step process: the AOED is reconstructed from
the boundary PA measurements in the first step, and the second
step recovers the maps of optical parameters from the photo-
acoustically reconstructed AOED map. The two-step QPAT
has been studied in detail by several groups around the globe
[14-19]. In 2012, Yuan and Jiang presented a one-step algo-
rithm to accurately recover the optical absorption coefficient
from multifrequency boundary PA data. The reconstructions
thus obtained were reported to be improved as compared with
the two-step reconstructions [20]. An iterative stochastic filter-
ing algorithm had been proposed in [22] for direct recovery of
the absorption coefficient map from multifrequency boundary
PA measurements. In 2016, Venugopal ez al. presented a sto-
chastic approach to one-step QPAT from time-domain PA data
[21] and reported its superiority over the two-step QPAT.

We note that a one-step scheme is particularly useful in dual-
representation (of field [optical and acoustic] variables and op-
tical parameters) methods especially needed in limited-data set-
tings because they effectively constrain the optimization search
space. In [23], preliminary studies on a one-step FPAT scheme
were reported to recover the fluorophore absorption coefficient
from boundary PA measurements. The contribution of the
present work is a detailed computational study of one-step
schemes and comparison with two-step schemes in a Tikhonov
regularized reconstruction framework for diffusion approxi-
mated FPAT. Reconstructions have been carried out in single-
and dual-grid representations and for complete as well as limited
data settings with tissue-mimicking phantoms for data of varying
noise levels. To the best of our knowledge, these are the first
comparisons of one- and two-step reconstructions in FPAT.

FPAT differs from QPAT in the fact that the initial heat
source as well as the measured PA signals also have contribu-
tions from the fluorescence light. The partial optical inverse
problem of reconstructing an unknown fluorophore absorption
coefficient under diffusion approximation assuming a known
pressure source has been discussed in [10]. The corresponding
RTE-based FPAT problem has been solved in [11,12]. The

inverse problem of FPAT can be formulated in two ways:
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(1) Two-step algorithm: The AOED is first reconstructed
from the pressure signal at the detector grid using PAT followed
by recovery of fluorophore concentration considering the PA
reconstruction as the data. In [10], the second step has been
formulated and validated by Ren and Zhao. The authors recon-
structed the fluorophore absorption coefficient and the quan-
tum efficiency from two sets of noiseless as well as noisy
synthetic internal data sets. However, it needs to be noted that
the errors in the PAT reconstructions occur because of errors
inherent to the reconstruction algorithms and data insuffi-
ciency. The nature of such reconstruction errors is naturally
different from what one would have if one only incorporates
random muldiplicative noise. In this paper, we have shown
the reconstructions obtained by solving the complete two-step
FPAT inverse problem.

(2) One-step algorithm: Reconstruction of fluorophore
absorption coefficient is computed directly from the pressure
signal at the detector grid. Preliminary results of this algorithm
have been reported in our previous work [23]. We solve the
fully nonlinear reconstruction problem with the FOT process
being modelled by the steady-state coupled photon diffusion
equation and the acoustic part by the Helmholtz equation with
a heat-source (AOED) term.

In the rest of this paper, Section 2 contains the forward
mathematical model of FPAT with its corresponding finite
element formulation, defines the reconstruction problem of in-
terest, and motivates the need to use an FPAT formulation over
a QPAT one. In Section 3, we set up reconstruction schemes
for one- and two-step algorithms in single- as well as dual-grid
frameworks. In Section 4, numerical validations are provided in
support of the proposed algorithms, and the reconstruction re-
sults are discussed in Section 5. Concluding remarks are pre-
sented in Section 6.

2. PROBLEM DEFINITION AND MOTIVATION

A hybrid photoacoustic-optical (PA-optical) tomographic prob-
lem aims to recover the map of optical parameters (e.g., absorp-
tion and scattering coefficients, fluorophore concentration,
anisotropy factor, etc.) in the region of interest from the mea-
sured PA pressure data. The coupled PA-optical forward prob-
lem is solved to predict the PA measurements at multiple
detector positions. The inverse problem addresses the recovery
of desired optical parameters’ maps from the PA pressure signal
measurements.

A. Forward Model

1. Fluorescent Light Propagation

Photon transport in turbid media is governed by the radiative
transport equation (RTE) [24]. Under the diffusion approxima-
tion for scattering-dominant media, the RTE reduces to the
diffusion equation. The propagation of excitation light (wave-
length 4,) along with generation and propagation of fluores-
cence light (wavelength 4,,), in the domain Q, C R (d=2
or 3) with boundary 0Q,, is commonly modeled in the steady-
state by the coupled diffusion equations (CDE) [25] as

V. (D,V®D,) + kD, =S,
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subject to the Robin boundary conditions
7 (Dx/qu)x/m) + bx/mq)x/m =0 on 094’) (2)

: — 1 —
with Dx/m = S(ﬂa(x/m)i+”ﬂ(x/m)f+ﬂ;(x/m))) /?x/m = Ha(x/m)i + Ha(x/m)>

R
/3 = ¢’/’taxf> bx/m :

= 05k
and m correspond to their values at excitation and emission
wavelengths, respectively. V is the 2 x 1 gradient operator, 7 is
the 2 x 1 vector normal to the boundary, S is intensity source,
@, is the excitation fluence, ®,, is the emission fluence,
D, ,, are diffusion constants at excitation and emission wave-
lengths, respectively, and, similarly, ., are decay coefficients,
(Musi> Hams) are absorption coefficients due to nonfluorescing

chromophore, (4fs famy) are absorption coefficients due to

The quantities with subscripts x

X

exogenous markers, and (¢, pt,,,) are reduced scattering coef-
ficients, (all in cm™) at the two wavelengths. § is the emission
source coefficient, ¢ is fluorescence quantum efficiency,
(b, b,,) are the Robin boundary coefficients, and (R,, R,,)
are the Fresnel reflection coefficients. The fluorophore absorp-
tion coefficient (at excitation wavelength A,) pi,. is directly
proportional to the fluorophore concentration C, ie.,
/ldxf(;) = eC(7), where € is the molar extinction coefficient
at excitation wavelength. We will thus use the fluorophore
absorption coefficient (i, ) instead of the fluorophore concen-
tration C.

2. Photoacoustic Modeling
The total AOED A(7) at a location 7 is given by

h(F) = k()P (7) + k,, (7D, (7). 3)

The medium is heated up due to the absorbed optical energy
and undergoes thermoelastic expansion to produce a pressure
(PA) field inside the medium. In practice, the time scale of light
propagation as well as the pulse width of excitation light is
much smaller than the time scale of acoustic propagation; thus,
the electromagnetic excitation can be approximated as delta
pulse excitation. The propagation of PA waves due to delta
pulse excitation in acoustically homogeneous nonabsorbing
media is governed by the PA equation [26]. The PA equation
in the frequency domain can be written as [27]

(V24 B)p(r, k) = i/eﬁ/](;), 4)
CP
with absorbing boundary condition (ABC) [28]
n-Vp(7) + ikp(F) =0 on 0Q,, (5)

where A(7) is AOED as defined in Eq. (3), £ is the acoustic
wavenumber, v is the speed of sound, f is the volumetric ex-
pansion coefficient, and C), is the specific heat at constant pres-
sure. The boundary condition above is a second-order ABC to
avoid artificial reflections from the computational domain
boundary, derived in [29], which reduces to Eq. (5) for rectan-
gular domains. The discrete-domain equation for PA measure-

ments at detector positions 7, (i = 1, ..., M) and frequencies
a)j(]’ =1,...,1) is formally expressed as

where G is the discrete-domain measurement operator explicitly
given in Eq. (C4) of Appendix C, and 2o and H,.p are the
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concatenated vectors corresponding to the measured pressure
signal and discrete fluorophore absorption coefficient distribu-
tion, respectively.

B. Inverse Problem

The FPAT inverse problem is to reconstruct from a set of PA
measurements the spatial distributions of the underlying optical
PArameters Ky, Hamis Hixs Him> Hax g that produced them, i.e.,
the unknown parameters in the map:

Aﬂaxi’ﬂami’”s,x’.ux,m!ﬂaxf:SXG) = pmeas(rd’ w)‘{;dl Ty Aoy o

(7)
where 7,(i=1,...,M) and ;(j=1...) denote the
position vector of the ith detector and jth frequency of the
PA measurement.

The recovery of ,,; and i/, can be carried out using QPAT
[14,20] at excitation wavelength, before injecting the markers.
Similarly, the recovery of y,,,; and y;,, can be carried out using
QPAT at the emission wavelength. When biological markers
are injected into the tissue-like medium, they get tagged with
the cancerous tissues and fluoresce on excitation. Recovery of
the sources of fluorescent emissions, i.e., the spatial concentra-
tion map or the absorption coefficient map p,,¢(7) of the
markers reveal the size and location of tumors inside the tissue;
this is the focus in the current work and is described in the
sequel.

C. Motivation for FPAT

Many practical applications utilize biochemical markers, which
have low quantum efficiency ¢. In such cases, the contribution
of fluorescence [second term of Eq. (3)] to the photoacoustic
heat source becomes negligible; therefore, the FPAT problem
practically becomes a QPAT problem. However, when the
quantum efficiency is significantly greater than zero, the con-
tribution of the fluorescence heat term in Eq. (3) becomes sig-
nificant and, neglecting that, in the reconstructions yields
erroneous results. We note that, of late, fluorescent markers
having high quantum efficiencies while having low toxicity
are reported to be under development [5].

To motivate the use of the FPAT formulation rather than
only QPAT, we have demonstrated reconstructions of the ab-
sorption coefficient at excitation frequency (i, ¢) from a noise-
less heat source corresponding to a test phantom, i.e., only the
second-step reconstructions are carried out here from the accu-
rately generated heat source from a ground truth. The test
phantom was chosen to have homogeneous fluorescence distri-
bution in the domain (. = 0.005 cm™) and three circular
fluorescent targets (/ldxf = 0.04, 0.045, and 0.05 cm™);
Hamp = 0.1012 -y, r (as in [30,31]). Significant quantum
efficiencies (¢ = 0.2,0.4,0.6) were chosen for comparison
of the FPAT and QPAT frameworks. Such ranges of values
are also used in [10-12,32].

As we increased the quantum efficiency ¢, we observed sig-
nificant improvements using the FPAT framework rather than
only the QPAT. Figure 1 shows the y,, s reconstructions when
the contribution of fluorescence to the heat source is considered
(FPAT reconstruction) or neglected (QPAT reconstruction).
The reconstructions have also been quantified in Table 1 in
terms of the error measures correlation coefficient (p) and
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Reconstructions of optical parameters from noiseless heat source generated from a ground truth. Leftmost is the actual phantom; top and

bottom rows correspond to second step FPAT and QPAT reconstructions, respectively; columnwise, left to right correspond to quantum efficiency

¢ = 0.2, 0.4 and 0.6, respectively.

Table 1. Error Measures for the Second-Step
Reconstructions Based on FPAT and QPAT Frameworks

¢$ =02 ¢$ =04 ¢$ = 0.6
Method p o p 0 P 1
FPAT 0.99 0.08 0.99 0.06 0.99 0.08
QPAT 0.95 0.65 0.84 1.29 0.70 2.10

deviation factor (8) [33] (definitions given in this paper in
Section 5). In the present work, we carry out numerical studies

for phantoms with ¢ = 0.4.

3. RECONSTRUCTION SCHEMES

With the markers injected, the tissue is excited by an optical
pulse at excitation wavelength (4,), and the PA measurements
Puncas (P> {®;}) are obtained. Experimentally, the frequency-do-
main PA data are generated by taking the Fourier transform of
the time-domain PA measurements. After recording the PA
data, we need to recover the map of exogenous fluorophore
absorption coefficient ,uﬂxf(;) in the tissue. As mentioned in
Section 1, it can be carried out using two schemes.

A. Two-Step Algorithm

The two-step FPAT reconstruction algorithm involves the re-
covery of the initial PA source p,(7) and hence the AOED A(7)
from the PA measurements p_ . (74, {®,;}) using PAT in the
first step; then, the fluorophore absorption coefficient g, ¢ (7)
is reconstructed considering the reconstructed AOED as the
internal data. In the first step, we aim to solve the following
least-squares (LS) problem:

-Jubl3, @)

—meas

b= argmin e,(h) = p
b

where 4 is the vector of the nodal values of the AOED (h(7)),
and J, denotes the PA measurement matrix. The formation

of J, [27] is given in Eq. (C2) of Appendix C. p =

£ meas
1,1

,1 1,2 M2 1,L M, INT
meas’ ** 'Pﬁ’l/leas’])meas’ ° 'pmeas . ‘Pmeas’ t ‘pmeas) 1s the measured

PA data and ||.||, denotes the appropriate Z?-n0rm. The present
problem being ill-posed [27], we solve the corresponding
Tikhonov regularized LS problem:

=1l + 20015, (9)

b = argmin €,(h) = ||]_7mCaS

h
where A denotes the regularization parameter. This functional
can be straightforwardly solved to obtain the reconstructed 4 as

b=UlTy+ 20" Jlp, . (10)

The regularization parameter A can be determined using regu-
larization schemes [34]; in our work, we use the L-curve
method.

Once the map of discrete domain AOED in the medium is
reconstructed (4), we need to solve the following nonlinear LS
problem in order to recover the fluorophore absorption coef-
ficient map of exogenous markers (4,,7) considering 4 as the
measured internal data:

= agmin &, ) = b= b, HIE, (1)

Ko

L‘:)

where Posr is the vector containing the nodal values of fluoro-
phore absorption coefficient distribution ., h(u f) is the

predicted AOED map for a nominal fluorophore absorption
coefficient distribution. We have used a Gauss—Newton
scheme to solve this LS problem, and the GN update Ay p

is computed using

Bu, o= UL T G- hu, ), (12)
and the updated parameter is obtained as
Eﬂxf = ‘liaxf + aﬂaxf’ (1 3)

where a is the step-length computed by line search [35]. This
inverse problem is quite similar to that of FOT, apart from the
fact that, in standard FOT, the value of fluence (®,,®,,) is
known only at points on the boundary, while here we have
the distribution of AOED (4(7) = k. ®, + #,,®,,) throughout
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the domain. The elements of Jacobian [J,, for this problem

]N xN

are calculated as % (change in the 4 value at the ith node,
onf

due to perturbation in the parameter p ,at jth node) and

obtained as
ob, oD, ok,
= =k, 4O, —
a.uzzxfj aﬂllej dﬂuxfj
oD, ok
+ leml. ~+ (DM, -
a/’tax f f aluax f |

= koS, + @5+ ko J o, 19,5, (14)

Ju

m;

where y = Uy /Mo r is the ratio of the absorption coefficients
of the exogenous fluorophores at emission and excitation
wavelengths, J, and J,, are the standard FOT Jacobians for
excitation and emission data, considering all V nodes in the
domain as detectors. The FOT Jacobians J, and J,,, have been

constructed using adjoint sensitivity calculations carried out
in [25].

B. One-Step Algorithm

In this algorithm, we propose to recover the fluorophore
absorption coefficient y,, r directly from the forward PA mea-
surements by solving the following nonlinear LS problem:

-~ . _ _ 2
Hop = ar%mm 63(”_axf) =lp__.. g(l_lﬂxf)“ : (15)
Koy

We use the Levenberg—Marquardt (LM) scheme to solve this
minimization problem, and the updated iterates are given as in
Eq. (13), with the step %xf being given as

M =TT +D) T -G, (16)

where J is the Jacobian for the one-step algorithm and is
defined as the variation in p _value at the 7th detector node,
—meas

due to a variation in the parameter y__ par the jth image node
and is constructed as

J =T 17

The damping parameter k is computed from the L-curve
method.

C. Dual-Grid Reconstruction Scheme
The optical and pressure field values vary rapidly in the do-
main. Consequently, an appropriate high-resolution meshing
is imperative for accurate forward modeling. However, the op-
tical parameters do not vary as rapidly in the domain, thus
allowing for a coarse meshing to represent them. Hence, a
so-called dual-grid reconstruction [36,37] employs a suitably
coarse-grid representation of the optical parameter p,,, in
our case. The dual-grid scheme is implemented in a regularized
LS framework via the following steps: (i) interpolating the op-
tical parameter from a coarse-grid to a fine-grid and computing
the forward solution, and (ii) calculating the Jacobian to update
the nodal values of the optical parameter on the coarse-grid.
The fine meshing in this work is done by splitting each of the
coarse elements into four fine elements (as depicted in Fig. 2).
The value of a parameter ¢ at ith node of the fine mesh can
be expressed in terms of the nodal values of the coarse mesh as

A «
b f
B C e

d

Fig. 2. Splitting a coarse element (ABC) into four fine elements

(abf, bcd, bdf, and fde).

N,
Qf/, = Z 5;']'7[/, (18)
j=1

where g ’ and q,, are the values of the parameter ¢ at ith node

of the fine mesh and at jth node of the coarse mesh, respec-
tively, and NV, is the number of nodes in the coarse mesh.
In compact notation, we can write Eq. (18) as

q,=5q, (19)
where E is the interpolation matrix with elements f,»]-, and q -

and ¢ are the vectors containing the nodal values of the param-
=C

eter ¢ in the fine and coarse meshing, respectively. Note that the
single-grid scheme can be considered as a special case of dual-
grid scheme, and E becomes the identity matrix.

Elements of the Jacobian matrix J, for such a problem are

M . .
defined as %q £ (where M), is the £th measurement, and ¢, is the
G 7

nodal value of the optical parameter at jth node of the
coarse-grid):
Ny P
ot St g
qu- i=1 qf ; qu

For the two-step scheme, M could correspond to internal
AOED data, while for the one-step scheme, it could correspond
to the boundary PA measurement data. Using Eqs. (18) and
(19), we have

Y oM,
i=1 %4f,

where J¢ is the Jacobian matrix computed for the fine-grid.

]cka 51] :>]c=]fE‘) (21)

4. NUMERICAL EXPERIMENTS

We have considered a 2 cm x 2 cm domain for fluorescent-
light propagation modelling using Eq. (1). This domain is
embedded in a 3 cm x 3 cm domain for PA modelling, as in-
dicated in Fig. 3. This configuration is analogous to the physi-
cal situation, where tissue is immersed in a water tank, as is
common practice for laboratory PA measurements [13,20,24].
In the full data setting, a total of 160 ultrasonic detectors, sep-
arated by 1/16 cm (approximately the same as [26]), are ar-
ranged on all four sides of a rectangle encompassing the FOT
domain, and PA pressure fields were computed by solving the
coupled PA-optical Egs. (1)—(5) in finite element framework
for 100 equispaced frequencies between 9.6 and 960 kHz,
while, in the limited data setting, the PA signals were computed
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Detector

0 X B X
x (cm) % xem

(a) (b)

Fig. 3. Setup for computational experiments in (a) full and (b) lim-
ited data setting.

at 41 detectors placed on the same side as the excitation source
as indicated in Fig. 3.

Algorithm 1. Two-step dual-grid FPAT algorithm

1 procedure TWO-STEP DUAL-GRID FPAT RECONSTRUCTION
2 By = zeroes(N, x 1)

3: Compute &

4: ’iaxff < .:‘/_laxﬁ

5

Predict synthetic absorbed optical energy density on fine-grid

by

6: Compute PAT measurement matrix J,
7: Predict boundary PA data p}

8: Compute 4 using L-curve

9: Compute the update Aj

10: PA reconstruction: /;7/7‘ + Ab

11: Compute € « ||bf v, ||2

12: while ¢ < o/ or the resldual is unchanging do
13: L, /4 .,

14: 'u_axf <& _axf

15: Compute FOT Jacobian on fine-grid ],
16: Ju, =/, B S

17: Compute the GN update Ay ok

18: Compute step-length @ using line search
19: Hop :axf—l—aAyaf

20: H,. £ < By, of

21: Predlct AOED on fine- grld h’f

22: Compute € « ||/7f V4 H2

23: end while

24: return f,.

25: end procedure

We note that our Algorithms 1 and 2 are frequency-domain
model-based ones, and the choice of frequencies depends upon
frequency content in the pressure measurements being consid-
ered. In the test cases considered by us, we chose phantom
parameters as in [30]; effectively, the maximum frequency
present in the photoacoustic measured signal from the phan-
toms considered was found to be around 1 MHz. Hence,
we chose frequencies dill around that figure.

We would like to point out that earlier works carried out by
the group of Dr. Huabei Jiang utilize 50 frequencies from 50 up
to 540 kHz to carry out QPAT reconstructions [38—40]. More
recent works by this group [41,42] utilize a transducer with
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Fig. 4. True maps of 4, ¢ (a) phantom 1 and (b) phantom 2.

1 MHz central frequency and bandwidth range from 0.65
to 1.18 MHz in multispectral QPAT reconstructions.

The background optical parameters inside the FOT domain
were chosen to be u,; = 0.023 cm™, p,,; = 1.2565 - U
ﬂ;x =9.84 Cmil’ /’t;m = ﬂ;x’ ¢ = 04’ Rx,m = 04317 /’taxf =
0.005 cm™!, and Hamp = 0.1012 -y, r [30,31]. The two
numerical phantoms used in this work are: (i) phantom 1: a
circular fluorescent target (Maer = 0.05 cm™!) [Fig. 4(2)] and
(ii) phantom 2: two fluorescent targets; one concave shaped
(Haxy = 0.04 cm™!) and one circular (Hary = 0.05 cm™)
[Fig. 4(b)]. The homogeneous acoustic properties were chosen
to be f=4x10* K! and C, = 4000 JKg' K-! [24]. In
the present work, we only focus on reconstruction of i, s,
assuming other parameters to be known.

The synthetic experimental PA data have been generated
using a finite element mesh resolution of 1/128 c¢m. In order
not to commit an inverse crime, the iterative forward data have
been predicted using a coarser mesh with 1/64 c¢m resolution.
The single- and dual-grid reconstructions have been performed
on a mesh with 1/64 and 1/32 cm resolutions, respectively.

Algorithm 2. One-step dual-grid FPAT algorithm

1 procedure ONE STEP DUAL-GRID FPAT RECONSTRUCTION
2 Ko = zeroes(IN . x 1)

3 Compute &

4 _axf/ c=p Zaxf,

5: Predict absorbed optical energy density on fine-grid 4
6:

7

8

Compute PAT measurement matrix J,
Predict boundary PA data p’

Compute € « [’ E 13 =
9: while € < to/ or the residual is unchanging do
10: rzxf “H Haxf
11: L f Eax f
12: Compute FOT Jacobian on fine-grid J, .
13: J =Ty
14: J.=J]E
15: Compute a using L-curve
16: Compute the LM update %xf
17: Compute step-length @ using line search
18: Hop < Poes + aA,u of
19: o, < Ep, y
20: Predict absorbed optical energy density on fine- gnd
21: Predict boundary PA data p’

=f

22: Compute € « [|p’ Pf”z
23: end while
24: retarn f,, o

25: end procedure
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5. RESULTS AND DISCUSSION

The initial guess for 1, s has been chosen to be uniformly zero
in the domain of interest, and the corresponding AOED map
was taken to be the initial guess for 4. The reconstructions have
been carried out as proposed in Section 3. The single- and dual-
grid reconstructions were carried out at resolutions of 1/64 cm
(at 16641 nodes) and 1/32 cm (4225 nodes), respectively,
for both full and limited-data settings. The results thus ob-
tained have been shown in terms of reconstructed object images
(Figs. 5 and 6 display reconstructions corresponding to
single-grid with full data, and dual-grid with limited-data, re-
spectively) as well as error measures obtained (Tables 2 and 3).
Laplacian regularized reconstruction results are tabulated in
Table 2.

For noiseless data, we observe that both the two-step as
well as the one-step algorithms are able to reconstruct the

Phantom-1

Fig. 5.

Two step One step
Paxs (cm'1) Paxs (cm'1)
1 0.07 1 0.07
0.06 0.06
-~ 005 0.05
£ 0 004 E 0 0.04
= 003 = 0.03
0.02 0.02
0.01 0.01
1 0 1 0
1 0 1 1 0 1
x (cm) x (cm)
() (b)
Haxg (€M) Haxg (€M)
1 0.07 1 0.07
0.06 0.06
—_ 005 0.05
E 0 0.04 E . 0.04
= 003 = 0.03
0.02 0.02
0.01 0.01
1 0 1 0
1 0 1 1 0 1
x (cm) X (cm)
(e ®
-1 -1
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1 0.07 1 0.07
0.06 0.06
— 005 0.05
g 0 0.04 E 0 0.04
P 003 = 0.03
0.02 0.02
0.01 0.01
1 0 El 0
1 0 1 - 0 1
x (cm) x (cm)
@ @
g (€M)
1 0.07
i 0.0
—_ 0.05
£ 0.04
o
= 0 0.03
0.02
0.01
1 0
1 0 1
X (cm) x (cm)
(m) (m)

y (cm)

y (cm)

y (cm)

y (cm)

inhomogeneities well, in all cases (i.e., single- and dual-grid
as well as full and limited-data settings). Both the algorithms
provide equally good reconstructions with minimal artifacts in
the full data setting. However, in the limited data setting, while
the two-step algorithm yields spurious-reconstructions (arti-
facts) in the domain, such artifacts are much fewer in the
one-step reconstructions. When the forward data are noisy,
the artifacts present in the two-step reconstructions become
even more discernible, while the one-step algorithm still pro-
vides superior reconstructions. We have observed that single-
and dual-grid schemes yield comparable results in both full
and limited data settings, thus making it computationally ad-
vantageous to use the dual-grid framework.

Accuracy of the reconstructions has been quantified on the
basis of the correlation coefficient (p) and the deviation factor (6)
defined as [33]

Phantom-2

Two step One step
Pyt (cm'1) Pyt (cm'1)
1 0.07 1
I 0.06 0.06
| 005 0.05
| £
of 004 E 0.04
| 003 = e » 0.03
| 0.02 0.02
| 0.01 0.01
1 0 1 0
1 0 1 1 0 1
x (cm) x (cm)
(© (@)
gy o) Ly
1 0.07 1 0.07
i 0.06 0.06
‘ 005 0.05
004 E 0.04
o] 0.03 ~°; B 0.03
I 0.02 0.02
0.01 0.01
1 0
1 0 1
x (cm)
(h)
A
Hgg (€M)
1 0.07
0.06
o 0.05
£ 0.04
i 0 0.03
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-1 0
- 0 1
x (cm)

Hgg (em™)
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0.05
0.04

0.02
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0

x (cm)

(p)

Single-grid reconstructions under full data setting. The first and second columns depict the reconstructions obtained from two- and one-

step algorithms, respectively, carried out with (a) and (b) noiseless, (e) and (f) 15 dB SNR, (i) and (j) 10 dB SNR, and (m) and (n) 5 dB SNR PA
measurements. The third and fourth columns depict the two- and one-step reconstructions of phantom-2, respectively, carried out with (c) and

(d) noiseless, (g) and (h) 15 dB SNR, (k) and (I) 10 dB SNR, (o) and (p) 5 dB SNR PA measurements.
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Phantom-1

Two step One step

4 -1
Hayg (€M) Hayg (€M)
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|0.06 10.06
005 10.05
0.04 g 0 0.04
003 = 0.03
0.02 0.02
0.01 0.01
0 K 0
1 0 1
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Phantom-2

Two step

One step

(em™) B (em™)

0.07
10.06
10.05
0.04
0.03
0.02
0.01

X (cm)

(0)

Fig. 6. Dual-grid reconstructions under limited data setting. The first and second columns depict the reconstructions obtained from two- and
one-step algorithms, respectively, carried out with (a) and (b) noiseless, (e) and (f) 30 dB SNR, (i) and (j) 20 dB SNR, and (m) and (n) 10 dB SNR
PA measurements. The third and fourth columns depict the two- and one-step reconstructions of phantom-2, respectively, carried out with (c) and

(d) noiseless, (g) and (h) 30 dB SNR, (k) and () 20 dB SNR, and (o) and (p) 10 dB SNR PA measurements.

-G,
V-DAFAF

5= \/Zfil (P; _PE)Z/N’
Ap*

where N is the total number of nodes, Ap" and Ap” are the
standard deviations, and p* and p" are the mean values of
the true and reconstructed values of the parameter, respectively.
The values of these accuracy parameters p and 6 for the

reconstruction carried out are tabulated in Tables 2 and 3.
The artifacts in the two-step reconstructions lead to lower
correlation coefficients (p) and higher deviation factors (6) as
compared with the one-step reconstructions. For noisy data,
the reconstructed values of the artifacts become significantly
higher as compared with the background; as a result, low p
and high & values are obtained. The observed (p, 6) values

(22)

justify the claim that the one-step FPAT algorithm is more ben-
eficial as compared with the two-step algorithm. It can also be
noticed that the single- and dual-grid one-step reconstructions
yield similar p and & values in both full as well as limited data
settings. These observations emphasize the utility of going for
the dual-grid reconstructions.

The one-step algorithm is able to accurately reconstruct the
inhomogeneities for noiseless PA measurements acquired under
full as well as limited data settings; hence, corresponding p, 6
values are also similar. For noisy data, the one-step algorithm
accurately reconstructs the inhomogeneities for the full data set-
tings; therefore, the p, d values for data sets with SNRs even up
to 10 dB are close to their noiseless counterparts.

Under limited data settings, the one- and two-step algo-
rithms are able to recover the location of the inhomogeneities;
the shapes and the reconstructed values are recovered accurately
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Table 2. Correlation Coefficients p and Deviation
Factors 6 for the Reconstruction Obtained from Full Data
Setting

One-Step

Mesh Scheme Phantom SNR p o p o

Noiseless 0.82 0.74 0.83 0.59
15 dB 0.78 0.87 0.43 1.58

Two-Step

Phantom-1 16 4 074 090 018 3.96
5 dB 0.67 0.97 0.15 4.21

Single-grid
Noiseless 0.87 0.57 0.84 0.55
Phantom-2 15 dB 0.85 0.63 0.38 1.77
10 dB 0.81 0.68 0.27 2.48
5 dB 0.77 0.74 0.17 3.40
Noiseless 0.82 0.65 0.80 0.61
Phantom-1 15 dB 0.78 0.81 0.32 2.12
10 dB 0.74 0.89 0.17 3.84
5 dB 0.68 0.95 0.14 4.32

Dual-grid
Noiseless 0.87 0.54 0.83 0.58
15 dB 0.85 0.62 0.33 2.23

Phantom-2

10dB  0.79 0.68 0.25 2.63
5 dB 0.67 0.87 0.09 6.73

enough for data with noise levels up to typically 30 dB in our
studies. While the artifacts in the two-step background recon-
structions are significantly higher than those in the one-step
ones in both full- and limited-data settings, the shapes and op-
tical parameter values are much better reconstructed with
full data.

Further, in order to investigate the results with an alternate
regularization scheme, dual-grid reconstructions under limited
data settings have also been carried out by regularizing the LM
scheme [43,44]. At each iterate, the update is computed by

solving

Table 3. Correlation Coefficients p and Deviation
Factors 6 for the Reconstruction Obtained from Limited
Data Setting

One-Step Two-Step

Mesh Scheme Phantom SNR p o p o

Noiseless 0.80 0.63 0.37 1.85
30 dB 0.70 0.78 0.31 1.74

Phantom-1 55 4p 057 102 025 179
10 dB 0.49 1.18 0.11 3.15

Single-grid
Noiseless 0.85 0.54 0.50 1.37
Phantom-2 30 dB 0.82 0.61 0.38 1.62
20 dB 0.75 0.74 0.30 1.79
10 dB 0.71 0.87 0.14 3.14
Noiseless 0.79 0.64 0.33 1.97
Phantom-1 30 dB 0.68 0.81 0.27 1.88
20 dB 0.53 1.02 0.22 1.84
10 dB 0.54 1.14 0.10 3.23

Dual-grid
Noiseless 0.85 0.55 0.46 1.55
30 dB 0.81 0.62 0.34 1.85

Phantom-2

20dB  0.76 0.74 0.29 191
10dB  0.71 0.86 0.14 3.34

J'J+ 4L L)Ag = -J'f, (23)

where J, #, Ag, and f denote the Jacobian matrix, regularization
parameter, update, and the residual of the problem. L7 L de-
notes the Laplacian matrix, as defined in [35]. The p and ¢
parameters for the Laplacian regularized reconstructions are
tabulated in Table 4, and the quality of one-step reconstruc-
tions is superior to that of the two-step reconstructions. The
Laplacian regularized LM scheme also shows artifacts in the
two-step reconstructions. For the one-step FPAT algorithm,
the Laplacian regularized LM scheme yielded similar results,
as compared with the basic LM scheme for noiseless data.

Thus, we have observed that the one-step method is found
to yield superior reconstructions to the two-step one across a
wide range of test scenarios. This might be explained by the
need of the two-step scheme for an accurate PA reconstruction
of the absorbed optical energy density (AOED) from the pres-
sure measurements in order to yield accurate results in the sec-
ond step (as also mentioned in [20]); the errors of the first step
thus cascade into the second. The PA reconstruction problem is
an ill-posed one; in addition, under limited data settings PA
reconstructions carry more artifacts. In addition, we note that
the optical excitation in our work is at the center of the y =
-1 cm face (Fig. 3). Deeper inside the domain (with respect to
the optical source), where the artifacts in the final two-step
reconstruction are seen, we see that the (intermediate) heat
source  values are fundamentally lower, thus being susceptible
to reconstruction errors and hence increasing the sensitivity of
the subsequent second-step reconstruction to noisy effects.

Consequently, the ,, ¢ reconstructions thus obtained from
the two-step algorithm are more erroneous than the one-step
ones. We have observed that, while the one- and two-step
schemes yield similar reconstruction quality for noiseless data
in full-data settings, as the noise levels increase, as well as in
limited-data cases, the one-step scheme outperforms the
two-step one.

We have also performed second-step FPAT p,,, ¢ reconstruc-
tions with synthetic internal AOED data perturbed with ran-
dom noise in the manner of Ren and Zhao [10]. The
reconstructions obtained were good in those cases; we obtained
(p, 6) as (0.99,0.07) and (0.98,0.17) for data sets with 2%

and 8% noise levels, respectively. This further underlines the

Table 4. Correlation Coefficients p and Deviation
Factors ¢ for the Laplacian Regularized Reconstructions
Obtained from Limited Data Setting

One-Step

Mesh Scheme Phantom SNR p o p o

Noiseless 0.83 0.57 0.36 1.82
30 dB 0.74 0.67 0.31 1.64

Two-Step

Phantom-1 50 48 069 072 019 213
10 dB 0.47 1.01 0.09 3.52
Dual-grid
Noiseless 0.87 0.49 0.50 1.40
30 dB 0.80 0.61 0.41 1.51
Phantom-2

20dB  0.74 0.70 0.31 1.81
10dB  0.63 0.82 0.12 3.29
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necessity of incorporation of the first PA step’s reconstruction
noise (errors) while analyzing the two-step algorithm.

6. CONCLUSION

In QPAT reconstructions, it has been reported in the literature
that one-step reconstructions of optical properties from boun-
dary PA data perform better than two-step ones that obtain
optical properties from the mezzanine reconstruction of the
AQOED in the entire domain. The utility of a one-step scheme
importantly extends to an effective use of dual-representations
of field (optical and pressure) variables and optical parameters,
which are especially useful in the limited data settings and
which effectively helps in constraining optimization search
space. To the best of our knowledge, until now there are no
comparative reconstruction studies in FPAT with respect to
the one- and two-step schemes.

We have demonstrated one- and two-step reconstructions of
the fluorophore absorption coefficient in an FPAT framework.
We observe that the efficacy of a one-step algorithm is superior
to the two-step algorithm in full as well as in limited data set-
tings. The quality of the computationally efficient dual-grid re-
constructions is similar to the single-grid reconstructions as also
indicated by the correlation and deviation errors, thus making
use of dual-grid schemes computationally advantageous. It is
also observed that, for the full data setting, the one- and
two-step schemes are able to quantitatively recover the inhomo-
geneities for PA data with SNR as low as 10 dB; in the limited
data setting, the shapes and quantitative values are accurately
reconstructed from PA data of typically up to 30 dB SNR.

APPENDIX A: FINITE ELEMENT FORMULATION
OF COUPLED DIFFUSION EQUATIONS

In this section, for the sake of clarity, we have briefly outlined
the formulation of the CDE in Eq. (1) as given in [25]. The
field variables approximated using linear basis functions are
expressed as

D, ~ D, =Ng ; o, ~d,=Np . (A1)

Weighted residual forms of the governing Eq. (1) using the
Galerkin finite element method are

/ IN"(-V - (D,V®,) + k) = / INI”S,
Q Q

/[N]T( V. (D, V®,) + k,® /[N]Tﬂ<1> (A2)

In order to model the 2D domain, linear triangular elements
have been used, and the nodal basis for an element is
[N] = [N, N, N;]. The point source of strength Q is S, :=
Q - 8(7 -7,), where 7, is located at a depth of 1/(u,,; + p..)
(one mean free path) [45]. Define the following kernels:

- M (V[N])TV[N]}, = Mz [N]T[N]],

K, = [ / [N]T[N]}. (A3)

e

For one element, the matrix form of Eq. (A2) is written as
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Ad =s;  Andp =M, (A4)
where, 5, = [o[N]'S, = QIN:(F)N,(F)N5(F)]", A, =

A(Dx’ kx’ éx)’ Am = A(Dm’ /em’ bm)’ Mﬂ = M(ﬂ)’ and
A, kb)) =KD+ Kpk + Kpbs  M(P) = K,
(A5)

[A.], [A,,], and [My] are the assembled matrices of [A,], [4,,],
and [M ], respectively, for all elements. The block form of the
matrix equations, which need to be solved to obtain the forward

solution, is
A, 0 Qx s
RV | P S T

The discretized heat source for a nominal distribution of the
fluorophore absorption coefficient y Hop 1S given by

h H(”axf) (/iaxz + Mo )O¢ + (/iami + /iﬂmf)oém’
(A7)
where H denotes the heat source operator, © represents the

pointwise multiplication, and ¢, and ¢,, are obtained by
solving Eq. (A0).

APPENDIX B: FINITE ELEMENT FORMULATION
OF PHOTOACOUSTIC EQUATION

In this section, we briefly review the finite element formulation
of the PA Eq. (4) as detailed in [27,46]. The complex PA
field variables approximated using linear basis functions are
expressed as

p~p=Np  h~h=Nh (B1)

The weighted residual forms of Eq. (4) using Galerkin formu-

lation are
T (2 2NA T; ﬁA
A[N] (V +/e)p—/g[N] kCP/a. (B2)

The matrix form of the equations for jth frequency is given

by [27]

where,

A= K+ By kK B =ik K, (84

P
The kernels K, Ky, and Ky, are defined in Eq. (A3), and %;

denotes the wavenumber corresponding to the jth frequency.

APPENDIX C: PAT MEASUREMENT MATRIX
The complex PA measurement p7
be expressed as

2

comp

, on M detector nodes can

= Dp = D) "B = (C1)

where D is the binary detection matrix operator of size M x N,
and J is the complex measurement operator for the jth fre-
quency. Each row of D is constructed of N elements, where all
but one element corresponding to the detector node number
are zero.
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The measurement operator J, is written as
Ty = [Re{T}]", [Im{T}"]", (C2)
where J = [[J17, [J?]7, ...[J*]7]" and the complete PA mea-

surement equation can be expressed as the linear system

Dy =i (c3)

Combining Eqgs. (A7) and (C3), the discrete FPAT measure-

ment equation can be written as
Do ST, ) =600, ),

—meas
where G = J,’H is the discrete measurement operator, with H

being defined in Eq. (A7).

(C4)
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