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Abstract— In this work, we set up the use of a Tensor-Newton scheme for solving the non-
linear reconstruction problem for the fluorophore absorption coefficient, µx

af in SPN modeled
fluorescence optical tomography. We present numerical reconstruction studies for differential up-
take of fluorophore with noiseless and noisy data in test cases with varying contrast between the
object and background µx

af value. Comparisons are presented between a first order regularising
Levenberg-Marquardt scheme and two variants of the Tensor-Newton scheme. The Tensor New-
ton scheme is found to be more robust and performs mostly better than and at at least at par
with the first order scheme in the test cases considered.

1. INTRODUCTION

Fluorescence optical tomography (FOT) is a structural and functional imaging modality which
uses fluorescent markers to tag certain proteins to enable mapping of fluorophore properties in
tissue that are indicative of physiological changes associated with pre-cancer [1]. The fluorophore
is optically characterized in terms of its absorption coefficient, quantum yield and fluorescence
lifetime. The inverse problem in FOT is to reconstruct the fluorophore distribution either in terms
of its fluorescent yield or the flurophore absorption coefficient leading to linear and non-linear
variants of the problem respectively.

Derivative based schemes are a popular choice for solving the inverse problem in tomography
when set up as a residual least squares minimisation problem. To reconstruct an arbitrary optical
property ‘p’, a cost function ζ(p) is defined through the data residual r(p) as

ζ(p) =
1
2
||r(p)||2 (1)

In iterative schemes for minimising this cost function, at the kth iterate, the cost function is ap-
proximated by a model mk(s) either directly by expanding ζ(pk + s) or indirectly by expanding
r(pk + s) about the current estimate pk using the Taylor series [2, 11]. The kth update sk is then
computed as the model minimiser

sk = arg min
s

mk(s) (2)

Schemes based on first order (FO) expansion of the residual are commonly used to solve the
residual minimisation problem. For a detailed discussion on various FO reconstruction schemes for
the linear and non-linear problems in FOT, the reader is referred to [3, 4] and references therein.
Few works in literature discuss the use of quadratic or higher order expansion based schemes for
solving the tomographic inverse problem. In [5], Hettlich and Rundell have developed a second
order scheme to solve the inverse problem as a non-linear system of equations, referred to as the
second degree scheme, using a predictor-corrector approach which shows faster convergence in test
cases considered by them. This scheme is used to solve the diffuse optical tomography problem in
a non-linear conjugate gradient framework by Kanmani and Vasu in [6] and seen to provide better
contrast recovery. In [7], Roy and Muraca demonstrate a truncated Newton scheme for solving the
non-linear FOT problem using the diffusion approximation.

These studies indicate that the use of second order (SO) expansion based schemes in general
affords better contrast recovery, noise tolerance and in some cases a faster convergence than their
FO counterparts.

However the use of SO reconstruction schemes for FOT has remain largely unexplored. The
main impediment to the use of SO schemes is the computational effort required to evaluate the
second order derivatives. The development of a computationally efficient adjoint based scheme for
evaluating the second order derivative (Hessian) for SPN modeled FOT by us in [8] makes it feasible
to investigate the use of SO schemes to solve the FOT inverse problem. In the same work [8], we
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also demonstrate the use of the second degree scheme of Hettlich and Rundell [5] in a regularising
Levenberg-Marquardt framework to solve the non-linear inverse problem in FOT.

In the optimisation related literature, higher order schemes for solving the least squares problem
have been discussed in [2, 9–11]. In [2] and [9] the higher order terms are approximated using
function and derivative values, while in [10] and [11] the exact higher order derivatives are used.
For the nonlinear least squares minimisation problem, Transtrum and Sethna [10] have proposed a
second order correction to the FO update evaluated using the Levenberg-Marquardt scheme which
resulted in improvements in fit quality and success rate in numerical studies on test problems. In a
recent work, Gould et al. [11] describe a Tensor-Newton scheme that uses second order derivatives,
which results in a quartic model to the cost function and is more robust than other schemes for
solving non-linear least squares problems considered in the study.

In the Tensor-Newton scheme the ith component of the residual ri(p+ s) is approximated about
the current estimate of ‘p’ by its second order Taylor series approximation ti(p, s). (The ‘p’ depen-
dence of ti(p, s) is suppressed in the rest of the text for notational simplicity.) The cost function
ζ(p) is then modeled as the resulting quartic function in ‘s’ and the kth update step sk is evaluated
by solving the non-linear sub-problem in Eq. (2) using any least squares minimisation scheme. The
Tensor-Newton scheme minimises the number of function and derivative evaluations with respect
to ‘p’ since evaluating and updating the gradient of ti(s) while minimising mk(s), does not require
re-evaluating the Jacobian and Hessian with respect to ‘p’.

In the present work, we set up the use of a Tensor-Newton scheme for solving the nonlinear
reconstruction problem for the fluorophore absorption coefficient at excitation wavelength µx

af . We
use the SPN approximation, which is known to be more accurate than the diffusion approxima-
tion [12], to model light transport through the medium. The exact Jacobian and Hessian required
are evaluated using adjoint-based schemes detailed by us in [4] and [8] respectively. We present nu-
merical reconstruction studies considering differential uptake of fluorophore for noiseless and noisy
data in test cases with varying contrast between the object(s) and the background.

In Section 2 we describe the forward problem of modeling fluorescent light transport using the
SP3 approximation. The non-linear inverse problem is described in Section 3, and the Tensor-
Newton reconstruction algorithm with its two variants is detailed in Section 4. Numerical studies
are presented in Section 5 and the conclusions in Section 6.

2. THE FORWARD PROBLEM

Consider a closed domain V , optically characterized by its intrinsic absorption coefficient, µ
x/m
ai [cm−1],

scattering coefficient µ
x/m
s [cm−1], anisotropy factor g[−] and refractive index nmed[−], with ‘x/m’

denoting quantities at excitation and emission wavelength respectively. The intrinsic/extrinsic
fluorophore distributed in the medium is characterized by the fluorophore absorption coefficient
µ

x/m
af [cm−1], quantum yield η[−] and fluorescence lifetime τ [ns]. The domain is illuminated with

an isotropic source S(r) located on the boundary and modulated at a frequency of f [MHz]. The
coupled set of equations modeling the generation and propagation of fluorescent radiation through
this domain, using the SP3 approximation, is given by [4, 12]:

−∇ · C5x∇ϕx + Cxϕx = 0 (3a)

−∇ · C5m∇ϕm + Cmϕm = Cβϕx (3b)

with partially reflecting boundary conditions,

C5bx(n.∇ϕx) + Cbxϕx = CSx (3c)

C5bm(n.∇ϕm) + Cbmϕm = 0 (3d)
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where

C5x/m =

(
1

3µ
x/m
a1

I 0

0 1
7µ

x/m
a3

I

)
Cβ =

(
β −2

3β
−2

3β 4
9β

)
Cx/m =
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µ

x/m
a0 −2

3µ
x/m
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−2
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Cbx/m =
(
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−(1
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(
ϕ
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)

CSx =
( ´

Ω·n<0 S(r)2|Ω · n|dΩ´
Ω·n<0 S(r)(5|Ω · n|3 − 3|Ω · n|)dΩ

)
∇ =

( ∂
∂x
∂
∂y

)
, ∇ =

(∇ 0
0 ∇

)
, I =

(
1 0
0 1

)

n =
(

nx

ny

)
, n · ∇ϕ(x/m) =

(
n · ∇ϕ

x/m
1

n · ∇ϕ
x/m
2

)
β =

ηµx
af

1− jωτ
, ω = 2πf

Here ‘Ω’ is the direction vector and ‘n’ is the normal to the boundary ∂V . ϕ
x/m
1,2 are the composite

moments of fluence as defined in [12] and the absorption moments are defined as

µ
x/m
al = µ

x/m
ai + µ

x/m
af +

(
1− gl

)
µx/m

s +
jω

c
, l = 0, 1, 2 (4)

The measurement considered is the exiting partial current j+, evaluated at detector locations
rj ∈ ∂V . For the FOT problem we only consider measurements at the emission wavelength, given
by

j+m(rj) = CJmϕm − C∇Jmn · ∇ϕm (5)

where

CJm =

(
(

1
4 + J0

) [(−2
3

) (
1
4 + J0

)
+ 1

3

(
5
16 + J2

)]
)

δ(r − rj), C∇Jm =

(
(0.5+J1)

3µm
a1

J3
7µm

a3

)
δ(r − rj).

The coefficients An, Bn, Cn, Dn and Jn are evaluated in [12].

3. THE INVERSE PROBLEM

In the non-linear least squares minimisation approach to solve the FOT inverse problem of recon-
structing the optical property p = µx

af , the cost function ζ(p) is defined as

ζ(p) , 1
2
||r(p)||2 =

1
2
||F(p)− j+

meas||2 (6)

where F(·) is an operator that denotes the tomographic process and j+
meas denotes experimental

measurements. Beginning at an initial estimate p0, the kth update sk is evaluated as

sk = arg min
s

m(s) (7)

where m(s) is a model for ζ(p + s).
In Gauss-Newton type schemes, mGN (s) is defined through a first order Taylor series expansion

of the residual r(p + s) as [2, 11]

mGN (s) , 1
2
||r(p) + J(p)s||2 (8)

where the Jacobian J(p) , ∇pr = F ′. In the regularising Levenberg-Marquadt [4, 13] implementa-
tion of this scheme, the kth update sk, is evaluated by solving

((
Jk

)T
Jk + λkLT L

)
sk = −

(
Jk

)T
rk (9)

where λk is the Levenberg-Marquardt parameter and the matrix ‘L’ is the graph Laplacian corre-
sponding to the spatial basis used for reconstruction [14]. Since this scheme uses only the first order
(FO) derivatives, in the rest of the text, we refer to this scheme as the first order (FO) scheme.
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The Tensor Newton scheme makes use of a second order expansion of the residual r(p + s), to
define the model mTN (s) as

mTN (s) , 1
2
||t(s)||2 =

1
2

N∑

i=1

t2i (10)

ti(s) , ri(p + s) = ri(p) + Ji(p)s +
1
2
sT Hi(p)s (11)

with ri, Ji and Hi , ∇ppri = F ′′ being the residual, Jacobian and Hessian respectively correspond-
ing to the ith measurement. The vector t(s) and the tensor H(p) are formed by stacking ti and Hi

respectively. We denote by ((sT · H(p))s) the vector formed such that ((sT · H(p))s)i = sT Hi(p)s.
It is easy to see that the subproblem in Eq. (2) (with mTN (s) as given above in Eq. 10) is itself a
non-linear least squares problem and can be solved by using any least squares minimisation routine.
In the present work, we use a first order scheme to solve this sub-problem. Thus in each iteration
of the Tensor Newton scheme, the parameter p is updated as pk+1 = pk + sk, where sk is obtained
by solving the subproblem in Eq. (2) using a first order iterative scheme. Denoting the gradient of
t(s) as,

∇st = J(p) + (sT · H(p)) (12)

the mth update to s, denoted as qm, is evaluated by solving

(
(∇st

m)T (∇st
m) + λmLT L

)
qm = −(∇st

m)T tm (13)

and s̃, the current estimate of sk, is updated as s̃m+1 = s̃m + qm. In the next section, we present
the algorithm for the implementation of the Tensor Newton scheme.

4. THE TENSOR-NEWTON RECONSTRUCTION ALGORITHM

Algorithm 1 describes the basic Tensor-Newton scheme in the regularising Levenberg-Marquardt
framework. The Levenberg-Marquardt parameter λ can be updated using any of the strategies
described in [15]. In our work, λ is decreased by a factor of 3 for very successful updates, increased
by a factor of 2 for very poor updates and left unchanged otherwise.

Algorithm 1 The tensor newton reconstruction algorithm.

We solve the subproblem in Eq. (2) using two different schemes described in Algorithms 2 and
3. In the first scheme, referred to as TN1 (Algorithm 2), in each iterate, t(s + q) is expanded
about the current estimate s̃m, using a first order Taylor series and a sequence of updates {qm} is
generated, by solving the system of equations so obtained. The current value of the estimate s̃m of
sk, is updated as s̃m+1 = s̃m + qm.
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Algorithm 2 The TN1 scheme for solving the Tensor-Newton sub-problem.

In the second scheme, referred to as TN2 (Algorithm 3), we make use of a predictor-corrector
approach to obtain sk. Beginning with a prediction of sk, denoted as s̃ = 0, we obtain its corrected
estimate s̃ = αqm by solving

(
(∇st)T (∇st) + λm

inLT L
)
qm = −(∇st)T t0 (14)

a maximum of M times. Here α is determined using a line search routine. This makes it similar to
the second order scheme described in [5] and used by us in its frozen Hessian variant in [8], with the
corrector step iterated a maximum of M times. However instead of heuristically fixing the number
iterations of the corrector step, by using a model minimisation criteria for mTN (s), the present
scheme allows to adaptively vary the number of iterations over the corrector.

Algorithm 3 The TN2 scheme for solving the Tensor-Newton sub-problem.

When starting with an initial estimate, s̃ = 0 in each iterate, both the schemes for solving the
sub-problem exhibit a built in flexibility of choosing the first order step if it is found to be optimal
over the second order step.
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5. NUMERICAL STUDIES

The computational domain is taken to be a square of size 2 × 2 cm. Ten detectors are located
along each edge of the square and the excitation source of strength 1 mW, modulated at 100 MHz
is placed sequentially at the center of each edge. Measurements are taken on all sides, and a total
of 160 complex measurements are used in each dataset. The data is logarithmically scaled prior to
its use in the reconstruction algorithm. The optical properties of the medium and the fluorophore
are taken as that of Phantom 1 in [4] and are listed in Table 1.

Table 1. Optical properties of the medium and fluorophore. The subscripts i/f denote quantities related to
the background/fluorophore and the superscripts x/m indicate quantities at excitation/emission wavelength
respectively. Quantities without superscripts are taken to be indepndent of wavelength in this study.

µx
ai µx

af µm
ai µm

af µx
s µm

s g nmed ηf τf (ns)
Phantom 0.031 0.006 0.7987µx

ai 0.0846µx
af 54.75 0.732µx

s 0.8 1.37 0.016 0.56

The Galerkin’s finite element method [16] is used to solve the forward problem on a structured
mesh with mesh spacing of 0.05 cm (3200 elements). The simulated data is generated on a finer
mesh with spacing of 0.025 cm (12800 elements).

We present reconstruction studies for four test phantoms, each with 2 circular inhomogeneities
centered at (−0.5, 0) and (0.5, 0) having varying values of µx

af , for both noiseless and noisy datasets
described in Table 2 using (a) the first order regularising Levenberg Marquardt scheme [4] (FO)
(b) the Tensor Newton scheme using Algorithm 2 (TN1) and (c) the Tensor Newton scheme using
Algorithm 3 (TN2). The different datasets differ in terms of the contrast ratio between the µx

af

values of the object and the background. We consider test cases with low contrast (LC-N0, LC-N1),
moderate contrast (MC-N0, MC-N1) and high contrast (HC-N0, HC-N1) for objects of same size
with varying µx

af values. We also present reconstructions for a test case (LS-N0, LS-N1) with two
objects of unequal radii having the same µx

af value. In each case the reconstructions are initialised
with a homogeneous value of 0.006 cm−1. The reconstructed parameter values are thresholded at
0.2max(µx,rec

af ) prior to plotting and analysis.

Table 2. Description of datasets used in the study.

Dataset
center of inhomogeneity radius (in cm) of µx,act

af cm−1 SNR
Object 1 Object 2 Object 1 Object 2 Object 1 Object 2 N0 N1

LC (−0.5, 0) (0.5,0) 0.20 0.20 0.03 0.09 inf 25
MC (−0.5, 0) (0.5,0) 0.20 0.20 0.24 0.30 inf 30
HC (−0.5, 0) (0.5,0) 0.20 0.20 0.48 0.12 inf 25
LS (−0.5, 0) (0.5,0) 0.32 0.20 0.30 0.30 inf 25

We compare the reconstructions obtained using the three schemes with respect to (a) the cor-
relation coefficient and the (b) deviation factor defined as [17]

ρc =

∑Ne

i=1(µ
x,rec
af,i − µ̄x,rec

af )(µx,act
af,i − µ̄x,act

af )

(Ne − 1)∆µx,rec
af ∆µx,act

af

ρd =

√
(1/Ne)

∑Ne

i=1(µ
x,rec
af,i − µx,act

af,i )2

∆µx,act
af

(15)

Here ‘Ne’ is the total number of elements, µ̄x,rec
af , µ̄x,act

af are the mean values and ∆µx,rec
af ,∆µx,act

af

are the standard deviations of the reconstructed and original spatial parameter distributions. The
error measures evaluated over a region of interest, defined in this study as a rectangle of 2× 1 cm
centered at the origin, are listed in Table 3. A good match between the actual and reconstructed
values is indicated by a higher correlation coefficient and a lower deviation factor.

5.1. Low Contrast Test Case
Reconstructions for the low contrast data sets LC-N0 and LC-N1 are plotted in Figure 1. For
both datasets, the reconstructed values and the error metrics (ref. Table 3) obtained are similar
using all the three schemes, and the parameter value is substantially underestimated. The TN1
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Table 3. Error measures for the First order (FO) and Tensor Newton reconstruction schemes using Algorithm
2 (TN1) and Algorithm 3 (TN2) with noiseless (N0) and noisy data (N1).

ρc ρd max µx,rec
af cm−1 (Object 1, Object 2)

Dataset FO TN1 TN2 FO TN1 TN2 FO TN1 TN2

LC-N0 0.69 0.81 0.66 0.76 0.65 0.78 (.0145,.0381) (.0183,.0485) (.0134,.0369)
LC-N1 0.68 0.65 0.72 0.76 0.78 0.72 (.0150,.0404) (.0213,.0466) (.0149,.0447)

MC-N0 0.79 0.94 0.88 0.67 0.36 0.53 (.1203,.1494) (.2294,.2904) (.1631,.2052)
MC-N1 0.68 0.79 0.81 0.79 0.66 0.64 (.0739,.1153) (.1011,.1846) (.1089,.1798)

HC-N0 0.77 0.83 0.88 0.69 0.62 0.52 (.2102,.0584) (.2574,.0706) (.3320,.0839)
HC-N1 0.81 0.86 0.91 0.65 0.46 0.57 (.2355,.0711) (.2882,.0781) (.4011,.1011)

LS-N0 0.90 0.91 0.89 0.43 0.42 0.47 (.3927,.1722) (.5259,.1453) (0.3798,.1453)
LS-N1 0.80 0.81 0.81 0.61 0.58 0.62 (.4399,.1485) (.4145,.1325) (0.5323,.1652)

scheme shows a clear split between the two objects for LC-N0 which is not seen with the other
schemes. With noisy data (LC-N1), the TN1 and TN2 schemes can clearly distinguish between
the two objects while the FO scheme cannot; however many artifacts are observed in the TN1
reconstruction.
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Figure 1. Reconstructions for datasets LC-N0 (top row) and LC-N1 (bottom row) using the first order
(FO) scheme (left column), the Tensor Newton scheme with Algorithm 3 (TN1, central column) and with
Algorithm 3 (TN2, right column). The dashed red circles indicate the actual inhomogeneities. Plots (d) and
(h) show the cross sectional values of µx

af along y = 0 for noise levels N0 and N1 respectively.

5.2. Moderate Contrast Test Case
It can be seen from Figure 2 and Table 3 that, the TN1 and TN2 reconstruction schemes demon-
strate better localisation and provide more accurate parameter estimates as compared to the FO
scheme for both datasets. While the TN1 scheme performs distinctly better than the other two
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schemes for the noiseless case, it’s performance is comparable to the TN2 scheme for the noisy case.
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Figure 2. Reconstructions for datasets MC-N0 (top row) and MC-N1 (bottom row) using the first order
(FO) scheme (left column), the Tensor Newton scheme with Algorithm 3 (TN1, central column) and with
Algorithm 3 (TN2, right column). The dashed red circles indicate the actual inhomogeneities.Plots (d) and
(h) show the cross sectional values of µx

af along y = 0 for noise levels N0 and N1 respectively.
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Figure 3. Reconstructions for datasets HC-N0 (top row) and HC-N1 (bottom row) using the first order
(FO) scheme (left column), the Tensor Newton scheme with Algorithm 3 (TN1, central column) and with
Algorithm 3 (TN2, right column). The dashed red circles indicate the actual inhomogeneities. Plots (d) and
(h) show the cross sectional values of µx

af along y = 0 for noise levels N0 and N1 respectively.
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5.3. High Contrast Test Case
Consistent with the observations in the previous case, one can note from Figure 3 that better
parameter estimates and localisation is obtained with the TN1 and TN2 schemes. While the TN1
scheme performs marginally better, the TN2 scheme distinctly outperforms the other two schemes
in terms of the recovered parameter value.
5.4. Test Case with Inhomogeneities of Different Size
In this case (Figure 4), all three schemes perform at par in that they overestimate the parameter
value in the larger inhomogeneity and underestimate it in the smaller inhomogeneity.
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Figure 4. Reconstructions for datasets LS-N0 (top row) and LS-N1 (bottom row) using the first order
(FO) scheme (left column), the Tensor Newton scheme with Algorithm 3 (TN1, central column) and with
Algorithm 3 (TN2, right column). The dashed red circles indicate the actual inhomogeneities.Plots (d) and
(h) show the cross sectional values of µx

af along y = 0 for noise levels N0 and N1 respectively.

6. CONCLUSION

In this manuscript we have presented two variants of a Tensor Newton reconstruction scheme for
SPN approximation based FOT. The scheme allows for an efficient reuse of the Jacobian and
Hessian evaluated at each iterate. Another feature of this scheme is the built-in flexibility to use
the first order step if it is found to be optimal with respect to the model mTN (s). Numerical
reconstruction studies are presented for phantoms with varying contrast ratios between the object
and the background as well for objects of different sizes.

Our study shows that the both the variants of the Tensor Newton scheme exhibit performance
which is at least at par with if not better than the first order scheme. For test cases with moderate
to high contrast between the object and the background, the Tensor Newton scheme provides
better parameter estimates. These observations are consistent with other works in literature that
use second-order derivative based reconstruction schemes. Between the two variants of the scheme,
the TN2 scheme using algorithm 3 is more robust in presence of noise.

However due to the need to evaluate the second order derivatives in each iterate, the Tensor
Newton scheme is computationally expensive. More efficient approaches can possibly be developed
by exploiting the built-in hybrid nature of the scheme or by implementing variants of the scheme
with frozen second derivatives.
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