
Research Article Vol. 38, No. 11 / November 2021 / Journal of the Optical Society of America A 1681

δ-SPN approximation for numerical modeling of
directional sources and scattering
Nishigandha Patil1,3 AND Naren Naik1,2,4

1Department of Electrical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
2Center for Lasers and Photonics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
3e-mail: nipat@iitk.ac.in
4e-mail: nnaik@iitk.ac.in

Received 8 July 2021; revised 20 September 2021; accepted 26 September 2021; posted 1 October 2021 (Doc. ID 436141);
published 28 October 2021

We propose the δ-S PN approximation for the frequency domain coupled radiative transfer equations modeling
fluorescence with collimated incident beams and present its numerical implementation using the finite element
method. The performance of the proposed model is investigated with respect to Monte Carlo simulations and the
standard S PN approximation over sub-centimeter domains for various optical properties. We find that the δ-S PN

approximation is more accurate than the S PN in the near-source region, and provides improved estimates of phase
and partial currents, at both excitation and emission wavelengths, over a wider range of optical properties. The
accuracy of the δ-S PN model improves with increase in approximation order for normally incident beams. ©2021

Optical Society of America
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1. INTRODUCTION

Carcinomas originating in the epithelial linings of organs are
one of the most commonly occurring cancers. Early detection
of carcinomas hinges on the ability of the screening modality
to investigate such superficial tissues for chemical signatures of
pre-cancerous changes. The non-ionizing nature of optical radi-
ation and the potential of optical imaging modalities to detect
early physiological changes in tissue, which are manifested as
variations in the optical properties [1], places them favorably for
such applications.

Typical epithelial tissues have a thickness of a few hundred
microns. Probing such shallow depths for early photon–tissue
interactions requires source–detector spacings of a similar order
[2,3]. For visible and near-IR radiation, these length scales are
of the order of a transport mean free path (MFP) or less, and
commonly used low order approximations to the radiative
transfer equation (RTE), such as the diffusion approximation
(DA), cannot be used there. Accurate models of light transport
in the vicinity of the source that can capture the features of
interest of the optical field, while retaining the simplicity of low
order schemes, thus become essential in the development of
sub-surface imaging and endoscopic applications.

Low order approximations to the RTE have had consider-
able success in optical tomographic applications [4–9]. Their
popularity stems from their computational efficiency, in terms
of simplicity and storage, when compared to solving the full
RTE. However, owing to the low order angular approximation,
they fail to adequately model the highly anisotropic nature of

the incident radiation, especially with collimated beams, in the
near-source region.

One approach to the problem of improving optical field
descriptions in the near-source region is to modify the opti-
cal field by numerically placing a predetermined number of
isotropic point sources inside the medium, representative of
the collimated beam. The most basic scheme of this type is the
popularly used isotropic point source scheme [10], wherein the
collimated beam is replaced by an isotropic point source, at a
distance of 1 MFP inside the medium. While this scheme leads
to fairly accurate representations of the diffuse flux, it remains
inaccurate in the near field [11,12]. A promising scheme that
builds on this idea and has shown some success with analytical
models is the virtual source diffusion approximation (VSDA)
proposed by Jia et al. in [13]. In the VSDA approach, the colli-
mated beam is replaced by a series of isotropic point sources. An
optimization procedure is used to determine the location and
strength of these virtual sources based on the optical properties
of the medium under investigation, which makes the implemen-
tation of this scheme complex. Increasing the number of virtual
sources results in progressively better fits, even for low albedos.
However, for optical properties typical of biological tissue, the
improvements in reflectance in the near field are marginal when
compared to other schemes, such as the δ-P1 approximation.
Although preliminary reconstruction studies in laminar optical
tomography using this scheme have been reported in [14], as
with other analytical models, the use of the VSDA is restricted
to symmetric/layered media. Another analogous model is the
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master–slave dual configuration scheme proposed by Piao and
Patel [15], where the collimated beam is replaced by two iso-
tropic point sources: the master, which is placed at a distance
of 1/µ′s , where µ′s is the reduced scattering coefficient; and the
slave, referred to as such, since its position is decided based on
the master and the anisotropy factor, through an open parameter
n. In numerical studies with homogeneous media, the authors
report accurate fits with Monte Carlo (MC) for source detector
separations greater than 1/µ′s . The performance of the scheme
is sensitive to the parameter n, which is set heuristically. Besides,
its performance for heterogeneous media has not as yet been
investigated to the best of our knowledge.

The other approach to modeling collimated sources is
to directly address the cause of the anisotropy that leads to
the inaccuracies when using low order approximations. The
anisotropy in the total radiant flux stems from (i) the directivity
of the incident flux, which is lost over a few MFPs [12,16] and
(ii) anisotropic scattering due to the peaked forward scattering
nature of biological tissue [17]. For low order approximations,
both these effects are compounded in the near-field, when imag-
ing with collimated sources due to early truncation of angular
expansions of both the scattering phase function as well as the
radiant flux. A direct-diffuse split of the total intensity was first
proposed by Ishimaru [18] to separate the collimated (direct)
flux that propagates unscattered through the medium from the
diffuse flux that is generated within the medium via scattering.
By removing the sharp angular variation in the direction of
incidence, such a split opens up the possibility to approximate
the diffuse flux with a low order approximation. This also
naturally leads to the development of the first collision source
(FCS), which is generated from the unscattered flux through the
scattering operator. The FCS approach is popularly used in the
neutron transport community [19]. For biological media, it has
been used with the full RTE for an isotropic source in [20] and
with collimated sources in [21]. The use of the FCS approach
with the S PN approximation for an isotropic source has been
reported by Domínguez et al. [22] in conjunction with the
time-dependent parabolic S PN . In a neutron transport problem
with applications in dosimetry, the FCS approach is used with
the S PN approximation for a collimated source in [23].

However, the diffuse-direct split by itself does not concep-
tually address the anisotropy that arises out of scattering. This
is where the delta-Eddington (δ-E ) phase function finds its
use. The δ-E phase function was proposed by Joseph et al.
[24], where the scattering phase function, commonly required
in solutions of the RTE, is approximated with a Dirac delta
function in the direction of peaked scattering, and a first
order angular expansion of the phase function. This was then
extended to arbitrary order M, resulting in the δ-M approxima-
tion [25]. (In literature, the usage δ-E is still loosely used with
orders M > 1. In this paper, we use δ-E for order M = 1, and
δ-M for M > 1). The δ-E/δ-M phase function was adapted for
use with planar sources in the PN approximation for applica-
tions in biological media by Star [17], which resulted in the δ-Pn

approximation. A generalized diffusion theory using the δ-P1

approximation, applicable at small source-detector separations
and low scattering albedos, was derived for a spherical source
in a semi-infinite medium by Venugopalan et al. [11]. This was
further extended by them to planar and Gaussian sources in

[12] and for frequency domain modeling in [2]. These studies
highlight the significant improvements in the representations
of internal fluence and diffuse reflectance obtained by the use of
the δ-P1 approximation over a wide range of optical properties.
Particularly important is the enhanced representation in the
near-field where the standard DA is inapplicable. In [16], Spott
and Svaasand analyze several analytical schemes to model planar
collimated sources in the PN approximation. They demonstrate
that in comparisons to MC, the δ-P1/δ-P3 approximations
provide improved estimates of diffuse reflectance by reducing
the error by more than half, at the cost of a slight overestimation
of the internal fluence when compared to the corresponding
P1/P3 approximation. They also observe that merely using the
P1 and P3 approximations with the FCS scheme leads to an
underestimation of reflectance, and sometimes even physically
impossible negative values at low albedos.

In a similar vein, an analytical model for the phase func-
tion corrected DA using the delta-isotropic phase function
has been proposed for normally incident beams in [26], and
extended for oblique incidence in [27]. The phase function
corrected DA provides further improvements in internal fluence
and reflectance estimates over the δ-P1 approximation. The
correction, though promising, cannot be extended to orders
N > 1, since the derivation is conditional to the use of the
delta-isotropic phase function. The approximation also does
not consider mismatched boundary conditions, which limits its
use [13].

The reviewed literature highlights three main advantages
of the δ-P1 approximation over the standard DA: more accu-
rate modeling of internal fluence and surface reflectance at
a lower computational cost, extended validity over a wider
range of optical properties, and extended applicability over
smaller geometries with shorter source–detector separations.
Improvements in forward modeling can considerably enhance
parameter recovery in applications of the inverse problem.
This is demonstrated by Hayakawa et al. [28], where the δ-P1

approximation has been used to recover the bulk optical prop-
erties of turbid media over a wider range of optical properties
than the standard DA. In [29], Saratoon et al. propose the use of
the δ-P1 model to solve the inverse problem in 3D quantitative
photoacoustic tomography to make the solution scheme com-
putationally efficient without compromising the accuracy of the
model. For a bioluminiscence tomography application in [30],
Cong and Wang compare solutions of the inverse-source prob-
lem obtained using the δ-E approximation and the standard
DA. They document significant improvements in localization
and the reconstructed strength of the biolumniscent source with
the δ-P1 based scheme. Specifically, they report errors of about
5% in source strength and around 0.15 mm in localization with
the δ-P1 scheme compared to respective errors of about 20–25%
and 0.25 mm with the standard DA.

The δ-P1 scheme has been extensively explored with the DA;
however, few works discuss its use for approximation orders
N > 1. For homogeneous media with planar sources, it has
been demonstrated independently by both Star [17] and Spott
and Svaasand [16] that the δ-P3 approximation further reduces
the error in the modeled diffuse reflectance. In [12], Carp et al.
observe that, in the near field, the performance of the δ-P1

approximation degrades with an increase in µ′s /µa . This is
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due to the increased contribution of backscattering that is not
correctly modeled by the P1 approximation. They also observe a
further degradation in the performance of the δ-P1 approxima-
tion near the boundaries, with a refractive index mismatch. This
is not a feature exclusive to the δ-P1, but comes from the limi-
tation of the P1 approximation itself in regions proximal to the
boundary. While the P3 approximation is more accurate than
the P1, it is computationally expensive, requiring the solution
of O(N2) coupled partial differential equations. The simplified
spherical harmonics (S PN) approximation derived by Klose
and Larsen [31] for biological tissue is asymptotically equivalent
to the planar geometry PN approximation, and requires the
solution of only an O(N) coupled system of equations. It comes
across as an attractive choice to explore the use of the δ-M phase
function with orders M > 1 at little additional computational
cost. The S PN approximation has been shown to be more
accurate than the DA [31,32], especially in regions proximal
to the boundary, and is applicable over a wider range of optical
properties [33].

In this work, we propose the δ-S PN approximation for
the frequency domain coupled RTE modeling fluorescence
generation and propagation, which makes use of the δ-M
approximation to the phase function. While prior studies with
the δ-P1 approximation have qualified its effectiveness to evalu-
ate diffuse reflectance [2,11,17,30], to the best of our knowledge
the δ-E/δ-M approximation has not been investigated for
fluorescence settings or with the S PN modeled ones. We are
addressing the fluorescence propagation problem in the present
work because of the necessity in coupled systems such as fluo-
rescence for better estimates of 8x obtained using the δ-S PN

approximation with orders N > 1. While the δ-E approxima-
tion is commonly used with analytical models [2,11,30], in
this work we develop a numerical evaluation of the proposed
model based on the finite element method (FEM) with the
uncollided flux spatially represented through the semi-analytical
representation of Hanuš et al. [34]. We undertake a detailed
investigation of the performance the δ-S PN approximation
with respect to MC simulations and contrast it with the stand-
ard S PN approximation where the collimated source is replaced
with an isotropic point source 1 MFP inside the domain. We
assess the model fit, for both internal fluence and partial current
measurements across a range of optical properties and report on
the utility of the proposed δ-S PN scheme for modeling without
and with fluorescence. A further justification of the proposed
model is also observed in our preliminary reconstruction studies
in such settings reported in [35], which demonstrate reduced
artifacts and better parameter estimation.

This paper has a total of five sections. In Section 2 we begin
with the coupled RTE for modeling fluorescent transport and
derive the corresponding δ-S PN equations. In Section 3, we
develop the FEM-based numerical solution scheme for this
problem. A comparative analysis of the accuracy of the devel-
oped scheme with regard to MC as well as the standard S PN

approximation is presented in Section 4 for four test cases with
scenarios covering a broad range of optical parameters. The con-
clusions are presented in Section 5. In Supplement 1, we provide
detailed plots of fluence and partial currents at emission and also
tabulate the error metrics for various test cases considered.

2. THEORY

The generation and propagation of fluorescent radiation in
the frequency domain, is described by the coupled RTE [6]
that evaluates the radiant flux 8x ,m(r , �, ω) [W/cm−2

− sr],
propagating in a direction � in a domain V , at a spatial point
r ∈ V , through

� · ∇8x ,m(r , �, ω)+
jω
c
8x ,m(r , �, ω)+µx ,m

t 8x ,m(r , �)

=µx ,m
s

∫
4π

p(�, �′)8x ,m(r , �′, ω)d�′ + Qx ,m(r , �, ω),

(1)

Qx
= 0, Qm

=

∫
4π

ηµx
af

1+ jωτ
8x (r , �, ω)d�,

and boundary conditions for r ∈ ∂V :

8x ,m(r , �)= S x ,m(r , �)+ R(�′ · n̄)8(r , �) (2)

� · n̄ < 0, �′ =�− 2(� · n̄)n̄.

Here, the superscripts x , m denote quantities at excitation
and emission wavelengths, respectively. The total attenuation
coefficient µx ,m

t [cm−1] is a sum of the scattering coefficient
µx ,m

s , the intrinsic absorption coefficient µx ,m
ai , and the fluo-

rophore absorption coefficientµx ,m
af . p(�, �′) is the scattering

phase function that describes the probability of scattering from
a direction�′ into the direction of propagation�. The external
source is characterized by its strength S0, and the modulation
frequency fmod [Hz] (ω= 2π fmod). c [cm/s] is the speed of
light in the medium, n̄ is the outward normal at the boundary,
and R(θ) is the Fresnel reflection coefficient. The dependence
of the quantities onω is suppressed in the rest of the text.

The measurement at a detector rd ∈ ∂V is given by the exiting
partial current defined by

j+x ,m(rd )=

∫
�d

(� · n̄)8(rd , �)d�, (3)

where�d is the numerical aperture of the detector.
In the rest of the paper, for notational simplicity, the spatial

and angular dependence of the quantities is dropped unless
required.

Relative to the position of the source, the propagation of light
through a medium transitions from an unscattered/ballistic
flux in the vicinity of the source to a diffuse flux in the far field.
As shown in Fig. 1(a), the medium can be classified into: (i) a
ballistic regime in the immediate vicinity of the source (up to 1
MFP from the source), where propagation is governed by the
unscattered flux; (ii) the diffusive regime (beyond 5 MFPs),
where propagation is driven by multiply scattered (diffuse) flux;
and (iii) the intermediate region (1–5 MFPs), where the light
transitions from ballistic to diffuse, known as the transport
regime, where the propagation is governed by low order scat-
tering. The present work focuses on the propagation of light
in the transport regime; hence, the fluorophore lies within the
transport regime. The exiting partial current at excitation and
emission wavelengths, measured at detectors located on the

https://doi.org/10.6084/m9.figshare.16722778
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Fig. 1. (a) Different regimes of light propagation. (b) Graphical
representation of propagation models used for modeling directional
sources and scattering with low-order approximations.

boundary in the ballistic and transport regimes primarily cap-
tures photon–tissue interactions in these regions. In Fig. 1(b),
we highlight the difference between the proposed δ-S PN model
and the S PN approximation with a FCS (as in [36]) and the
standard S PN approximation (with an isotropic point source at
1 MFP). The δ-S PN approximation improves the description
of light propagation in the transport regime in two ways: (i) by
evaluating the FCS using an extended direct flux that accounts
for the true direct flux as well as the low order scattered flux in
the direction of propagation and (ii) by using equivalent scat-
terers with a less anisotropic scattering phase function that is
accurately modeled with low order approximations.

A. δ-M Approximation to the Phase Function

Most biological tissues have strongly peaked scattering phase
functions, with an anisotropy factor of 0.8 or 0.9. Such high
anisotropy cannot be accurately represented through low order
angular expansions of the phase function, which are often
required when evaluating low order approximations to the RTE.
The δ-M approximation to the phase function separates out
the leading scattering anisotropy in the direction of propaga-
tion, and allows the rest of the phase function to be represented
through low order Legendre basis expansions. It is given by [25]

pδ−M(�, �
′)= (1− f ) p̃(�, �′)+ f δ(1−� ·�′), (4)

where f is the δ-M parameter, and the low order phase function
p̃(�, �′) is defined as

p̃(�, �′)=
M∑

m=0

2m + 1

2
b̃m Pm(�, �

′), (5)

with b̃m =
bm − f
1− f

, and f = bM+1.

Thus, a scatterer with forward-peaked scattering is replaced
by an equivalent scatterer with a less anisotropic scattering phase
function, as shown in Fig. 1(b).

Replacing the phase function p(�, �′)with pδ-M(�, �
′) in

Eq. (1) and using Eq. (4), we get

� · ∇8x ,m
+µx ,m

t 8x ,m
+

jω
c
8x ,m

=µx ,m
s

∫
4π
(1− f ) p̃(�, �′)8x ,m(r , �′)d�′

+µx ,m
s

∫
4π

f δ(1−� ·�′)8x ,m(r , �′)d�+ Qx ,m(r , �).

(6)

Let µ̃x ,m
s = (1− f )µx ,m

s and µ̃
x ,m
t =µ

x ,m
ai +µ

x ,m
af +

µ̃x ,m
s +

jω
c . Rearranging the terms in the Eq. (6), we can write

� · ∇8x ,m
+ µ̃x ,m

t 8x ,m
= µ̃x ,m

s

∫
4π

p̃(�, �′)8x ,m(r , �′)d�′

+ Qx ,m(r , �).
(7)

B. First Collision Source

Using the diffuse-direct split [18], we can decompose the total
radiant flux at excitation into its unscattered (direct) and diffuse
components8u and8d , respectively; i.e.,

8x
=8u

+8d . (8)

Making use of this split in Eq. (7), we get the following cou-
pled system with three equations:

� · ∇8u
+ µ̃x

t 8
u
= 0 in V , (9)

8u
= S x (r s , �) on ∂V , (10)

� · ∇8d
+ µ̃x

t 8
d
= µ̃x

s

∫
4π

p̃(�, �′)8d (r , �′)d�′

+ µ̃x
s

∫
4π

p̃(� ·�′)8u(r , �′)d�′︸ ︷︷ ︸
Qu

in V ,

(11)

8d
= R(�′ · n̄)8d on ∂V , (12)

� · ∇8m
+ µ̃m

t 8
m

= µ̃m
s

∫
4π

p̃(�, �′)8m(r , �′)d�′

+

∫
4π

ηµx
af

1+ jωτ
(8u
+8d )(r , �′)d�′︸ ︷︷ ︸

Qm

in V , (13)
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8m
= R(�′ · n̄)8m on ∂V . (14)

The first collision source Qu generated from 8u through
the scattering operator serves as the source for the scattered flux
8d . The directed source on the boundary is thus replaced by a
distributed internal source along the direction of propagation
with an angular distribution governed by the scattering phase
function shown in Fig. 1(b). Note here that while we replace
the scattering phase function by its δ-M equivalent, we do not
split the emission flux since fluorescence is isotropic in nature.
Although such a split for the emission source can be modeled
as implemented in [22] for point sources or spherical sources,
when arbitrary distributions of fluorophore are considered, this
can lead to a substantial increase in the computational cost.

When the incident source is modeled as a unidirectional
beam of strength S0, incident at r s , directed in�s , an analytical
solution for the unscattered flux in Eq. (9) is obtained using
Beer–Lambert’s law [20] as

8u(r , �)= S0 exp

(
−

∫ l

0
µ̃x

t (r
′)dr ′

)
δ(�−�s ). (15)

Then, l = ‖r − r s ‖2 and is measured along�s . Note that�s

is the direction of propagation of the beam inside the medium
after refraction (if any) at the boundary. The direct flux 8u

evaluated here attenuates at a rate µ̃x
t , which is lower than the

true attenuation coefficient µx
t . This extended counterpart of

the true direct flux potentially accounts for some of the scattered
flux in the direction of propagation, as shown in Fig. 1.

With the leading anisotropy in both the radiant flux and
the phase function taken care of, we can now attempt to solve
for the scattered flux at excitation and emission using the S PN

approximation to the RTE. We first derive the δ-S PN equations
for the scattered flux at excitation in the manner of Klose and
Larsen [31], from which the equations for emission flux can be
easily inferred.

C. Excitation

The planar geometry counterpart of the RTE for the scattered
flux in Eq. (11), is given by

v
d8d (z, v)

dz
+ µ̃x

t 8
d (z, v)

= µ̃x
s

∫ 1

−1
p̃(v, v′)8d (z, v′)dv′ + Qu(r , v), (16)

where Qu(r , v)= µ̃x
s

∫ 1
−1 p̃(v, v′)8u(z, v′)dv′ and v = cos θ ,

with θ being the angle with regard to the vertical (+z) axis and
r = (x , z)denotes the spatial position.

For the approximation of order N, we write the flux8d using
the Legendre polynomials Pn(v) as

8d (r , v)≈
N∑

n=0

2n + 1

2
φd

n (r )Pn(v),

φd
n (r )=

∫ 1

−1
8d (r , v)Pn(v)dv. (17)

Operating on Eq. (16) with
∫ 1
−1(·)Pn(v)dv, we get∫ 1

−1
v

d8d

dz
Pn(v)dv +

∫ 1

−1
µ̃x

t 8
d Pn(v)dv

=

∫ 1

−1
µ̃x

s

∫ 1

−1
p̃(v, v′)8d (r , v′)dv′Pn(v)dv

+

∫ 1

−1
Qu(r , v)Pn(v)dv. (18)

For a mono-directional beam, directed in vs , the integral
involving the first collision source Qu can be evaluated as∫ 1

−1
Qu(r , v)Pn(v)dv

=

∫ 1

−1
µ̃x

s

∫ 1

−1
p̃(v, v′)8u(z, v′)dv′Pn(v)dv, (19)

= µ̃x
s 8

u(z, vs )

∫ 1

−1

M∑
m=1

2m + 1

2
b̃m Pm(v)Pm(vs )Pn(v)dv,

(20)

= µ̃x
s b̃n Pn(vs )8

u(z, vs )= Qn . (21)

Using Eq. (21) in Eq. (18) and substituting for the phase
function in terms of its Legendre basis expansion, we can
simplify Eq. (18) as

n + 1

2n + 1

dφd
n+1

dz
+

n
2n + 1

dφd
n−1

dz
+ µ̃x

t φ
d
n = µ̃

x
s b̃nφ

d
n + Qn .

(22)
If we let µ̃x

an = µ̃
x
t − µ̃

x
s b̃n , we can rewrite Eq. (22) as

n + 1

2n + 1

dφd
n+1

dz
+

n
2n + 1

dφd
n−1

dz
+ µ̃x

anφ
d
n = Qn . (23)

We make a few remarks about the internal source Qn here. In
the work of Klose and Larsen [31], the internal source is taken as
an isotropic source and thus only its zeroth order moment Q0

is considered. While Domínquez et al. [22] also use a distrib-
uted internal source generated through the FCS approach, the
incident source modeled by them is isotropic; hence, the FCS
generated through it also is isotropic. In our work, the internal
source Qn is anisotropic. Its angular dependence is dictated by
the component of the scattering phase function in the direction
of propagation b̃n Pn(vs ). This is where the subsequent deriva-
tion of the δ-S PN approximation departs from the standard
S PN approximation as derived in [31].

The odd order moments can be expressed in terms of the even
order moments as

φd
n =

1

µ̃x
an

(
Qn −

1

(2n + 1)

(
n

dφd
n−1

dz
+ (n + 1)

dφd
n+1

dz

))
.

(24)
Using Eq. (24), we can eliminate the odd order moments

from Eq. (23) to obtain
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−
n + 1

2n + 1

d
dz

1

µ̃x
an+1

d
dz

(
n + 2

2n + 3
φd

n+2 +
n + 1

2n + 3
φd

n

)
n

2n + 1

d
dz

1

µ̃x
an−1

d
dz

(
n

2n − 1
φd

n +
n − 1

2n − 1
φd

n−2

)
+ µ̃anφ

d
n

= Qn . (25)

The 3D equivalent of Eq. (25) is formally obtained by replac-
ing the diffusion operator d

dz (·)
d
dz by its 3D counterpart∇(·)∇

[31] to yield

−
n + 1

2n + 1
∇

1

µ̃x
an+1

∇

(
n + 2

2n + 3
φd

n+2 +
n + 1

2n + 3
φd

n

)
n

2n + 1
∇

1

µ̃x
an−1

∇

(
n

2n − 1
φd

n +
n − 1

2n − 1
φd

n−2

)
+ µ̃anφ

d
n

= Qn . (26)

To further simplify the form of the resultant set of equations,
we use the composite moments of flux as defined in [31]

ϕd
k = (2k − 1)φd

2k−2 + 2kφd
2k k = 1, 2, . . . (N + 1)/2.

(27)
Substituting Eq. (27) for the even orders in Eq. (26) and

rearranging the terms, we get the following system of coupled
equations, for order N = 7, written in matrix form for brevity as

−∇ ·C∇x
∇ϕx
+Cxϕx

=CQQ+C∇QQ∇ in V , (28)

where ϕx
= [ϕx

k ]
T , k = 1, 2, . . . (N + 1)/2, C∇x is a

diagonal matrix defined by C∇x
= [1/((4i − 1)µ̃x

a ,2i−1)],
i = 1, 2, . . . N, and Cx is a square symmetric matrix of size
(N + 1)/2, with the leading diagonal (indexed by 0) and
subsequent upper diagonals (indexed by 1, 2 . . . (N + 1)/2)
given by

diag0(C
x)=

{
µ̃x

a0,
5

9
µ̃x

a2 +
4

9
µ̃x

a0,
64

225
µ̃a0x +

16

45
µ̃x

a2 +
9

25
µ̃x

a4,

256

1225
µ̃x

a0 +
64

245
µ̃x

a2 +
324

1225
µ̃x

a4 +
13

49
µ̃x

a6

}

diag1(C
x)=

{
−2

3
µ̃x

a0,−

(
16

45
µ̃x

a0 +
20

45
µ̃x

a2

)
,

−

(
128

525
µ̃x

a0 +
32

105
µ̃x

a2 +
54

175
µ̃x

a4

)}

diag2(C
x)=

{
8

15
µ̃x

a0,
32

105
µ̃x

a0 +
40

105
µ̃x

a2

}
,

diag3(C
x)=

{
−16

35
µ̃x

a0

}
.

The source terms are Q= [Q2n]
T , Q∇ = [Q2n+1],

n = 0, 1, . . . N, C∇Q
= [1/(µ̃x

a ,2n−1)], and CQ is a lower

triangular matrix given by CQ
=


1 0 0 0
−

2
3

5
3 0 0

8
15 −

4
3

9
5 0

−
16
35

8
7 −

54
35

13
7

.

The expressions derived above are similar to those derived
by Kotiluoto et al. in [36]. In addition to the choice of the δ-M
phase function used in our work, our implementation differs
from theirs in two aspects. First, the nth moment of the FCS
in our work captures the anisotropy through both the phase
function coefficient b̃n as well as the Legendre basis Pn(v). In
[36], only the coefficient bn is considered. Second, we evaluate
the required first order derivatives of the form of ∇ · Q semi-
analytically using FEM to account for heterogeneous media.
In [36], an approximate form that uses the mean value of µx

t is
used.

Ideally, for finite domains one would have to consider the
contribution of the unscattered flux, 8u in the boundary
term, especially for measurements in the transmission mode.
However, since its contribution decays with distance, for all
practical purposes it can be neglected. Reflectance measure-
ments do not consider contributions from the collimated flux.
Thus, the boundary conditions and the measurement equations
remain the same, just like for the standard S PN approximation
with the moments of fluence and absorption replaced by their
δ-M equivalents [31].

The corresponding boundary conditions in matrix form
are [6]

C∇bxn̄ · ∇ϕx
+Cbxϕ = 0 on ∂V , (29)

where

C∇bx
=


1+B0
3µ̃x

a1
−

D0
µ̃x

a3
−

F0
µ̃x

a5
−

H0
µ̃x

a7

−
D1
µ̃x

a1

1+B1
7µ̃x

a3
−

F1
µ̃x

a5
−

H1
µ̃x

a7

−
D2
µ̃x

a1
−

F2
µ̃x

a3
−

1+B2
11µ̃x

a5
−

H2
µ̃x

a7

−
D3
µ̃x

a1
−

F3
µ̃x

a3
−

H3
µ̃x

a5
−

1+B3
11µ̃x

a7

 ,

Cbx
=


1
2 + A0

−1
8 −C0

1
16 − E0

−5
128 − G0

−1
8 −C1

7
24 + A1

−41
384 − E1

1
16 − G1

1
16 −C2

−41
384 − E2

407
1920 + A2

−233
2560 + G2

−5
128 −C3

1
16 − E3

−233
2560 − G3

3023
17920 + A3

 .

The coefficients Ai , Bi , . . . Hi are as defined in [31].

D. Emission

The emission equations are derived analogous to the excitation
case. We begin with the planar geometry version of Eq. (13):

v
d8m(z, v)

dz
+ µ̃x

t 8
m(z, v)

= µ̃m
s

∫ 1

−1
p̃(v, v′)8m(z, v′)dv′ + Qm(r , v), (30)
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where Qm
=
∫ 1
−1

ηµx
af

1+ jωτ (8
u
+8d )(r , v′)dv′. Since Qm is an

internal isotropic source, the derivation for the corresponding
δ-S PN approximation follows exactly the treatment of the S PN

approximation by Klose and Larsen in [31], with the optical
parameters replaced by their corresponding δ-M counter-
parts. In block matrix form, the δ-S PN approximation for the
emission equations is given by

−∇ ·C∇m
∇ϕm
+Cmϕm

=Cβ(Q+ ϕd ), (31a)

C∇bmn̄ · ∇ϕm
+Cbmϕm

= 0, (31b)

where C∇m,Cm,C∇bm,Cbm, ϕm are the emission counterparts
to C∇x,Cx,C∇bx,Cbx, ϕx and

Cβ
=


β −

2
3β

8
15β −

16
35β

−
2
3β

4
9β −

16
45β

32
105β

8
15β −

16
45β

64
225β −

128
525β

−
16
35β

32
105β −

128
525β

256
1225β

 , β =
ηµx

af

1+ jωτ
.

E. Measurements

The partial current measurements can be derived from Eq. (3),
as in [31]. The contribution of the direct flux to the mea-
surements is neglected and 8 is replaced by 8d . We begin
by substituting the Legendre expansion of the fluence 8d

[Eq. (17)] in Eq. (3) and eliminate the odd order moments using
Eq. (24) to obtain an expression for the exiting partial current in
terms of the composite moments (defined in Eq. (27)) as

j+x ,m(rd )= C̃
Jx,m
ϕx ,m, (32)

where

C̃
Jx,m
=CJ
+C∇Jx,m

(
C∇bx,m

)−1
Cbx,m

C∇Jx,m
=

[
0.5+ J1

3µ̃x ,m
a1

,
J3

7µ̃x ,m
a3
,

J5

11µ̃x ,m
a5
,

J7

15µ̃x ,m
a7

]

CJ
=

[(
1

4
+ J0

)
,

(
−

1

16
−

2

3
J0 +

1

3
J2

)
,

(
1

32
+

8

15
J0 −

4

15
J2 +

1

5
J4

)
,

(
−

5

256
−

16

35
J0 +

8

35
J2 −

6

35
J4 +

1

7
J6

)]
.

The coefficients J i are as derived in [31].
In the next section, we develop a FEM-based numerical

scheme to solve the δ-S PN equations.

3. FINITE ELEMENT FORMULATION

The computational domain V is decomposed into Te tetrahe-
dral elements defined overNv nodes. We use the standard linear
basis to define a field quantity ue as

ue =

4∑
i=1

Ne ,i (r )ue
i Ne ,i (r )= a e

i + be
i x + c e

i y + d e
i z.

(33)
We denote the nodal basis vector as Ne =

[Ne ,1, Ne ,2, Ne ,3, Ne ,4]. Thus we can write

ue (r )= [Ne (r )][ue
], ue

= [ue
i ], i = 1, . . . 4, (34)

where the quantities in [·] indicate nodal values.
We first derive a representation of the uncollided flux over the

finite element mesh analogous to the derivation in [34]. For a
unidirectional beam directed in�s , the uncollided flux over the
element e can be expressed as

8u
e (r )=

4∑
i=1

Ne ,i (r )8u
e ,i . (35)

The expansion coefficients 8u
e ,i are obtained by minimizing

the functional [34]∫
Ve

[
8u(r , �s )−

4∑
i=1

Ne ,i (r )8u
e ,i

]2

dVe , (36)

where Ve is the volume of the element. The minimizer is
obtained by solving the system of equations

[Ae ][8
u
e ,i ] = [ye ], (37)

where [Ae ] =

∫
Ve

Ne ,i (r )Ne , j (r )dVe

[ye ] =

∫
Ve

Ne ,i (r )8u(r , �s )dVe , i, j = 1, 2, 3, 4.

We assume the collimated source is spanned through k par-
allel rays originating on the boundary ∂V . Hence, the volume
integrals in Eq. (37) are replaced by 1D line integrals, along the
kth ray.

Thus, we can evaluate the mass matrix component along the
kth ray [Ak

e ] as

[Ak
e ] =

∫ s out

s in

Ni (r (s ))N j (r (s ))s 2ds . (38)

Here, s denotes the distance of the point r from the origin of
the ray along the direction�s ; i.e., s = ‖r k

s − r‖2. s in, s out cor-
respond to r in, rout, respectively, which denote the entry and exit
points of the kth ray with regard to the e th element, as shown in
Fig. 2.

The 1D integral in Eq. (38) is evaluated using a
Gauss–Legendre quadrature as

[Ak
e ] =

l k
e

2

∑
q

wq s 2
q Ni (rq )N j (rq ). (39)

Here, l k
e is the length of the kth ray that lies within the e th

element (ref. inset in Fig. 2), rq is the 3D coordinate of the q th
quadrature point, and wq is its associated quadrature weight.
The basis function at the quadrature point is given by
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Fig. 2. Graphical representation of the kth source ray (blue solid
line) originating at r k

s (red solid circle) entering the e th element at r in

and exiting it at rout. Black squares denote the points r in and rout. In the
inset, we highlight l k

e , the length of the kth source ray that lies within
the e th element.

Ni (rq )=
Ni (rout)+ Ni (r in)

2
+ ζq

Ni (rout)− Ni (r in)

2
, (40)

ζq =

[
−

1
√

3
,

1
√

3

]
, wq = 1.

In the work of Hanuš et al. [34], the uncollided flux repre-
sentation is derived for an internal isotropic source that resides
within a given spatial element. Thus, the source term [y k

e ] is
defined through a double integral that covers both spatial and
angular domains. However, for a mono-directional beam, this
integral is reduced to only the spatial domain. Hence, as with the
mass matrix Ak

e , the source term [y k
e ] can also be evaluated as a

1D integral along the kth ray as

[y k
e ] =

∫ s out

s in

Ne ,i (r (s ))8u(r (s ), �s )s 2ds

=
l k
e

2

∑
q

wq s 2
q Ni (rq )8

u,k(rq ). (41)

If the kth ray intersects E ′ elements prior to hitting the e th
element, then we can write the discretized version of Eq. (15),
evaluated at the q th quadrature point rq , as

8u,k(rq )= S0 exp

(
−

∑
E ′

[µ̃t ]e ′ l
k
e ′ − [µ̃t ]e l

k
e ,q

)
, (42)

= Sk
e exp

(
−[µ̃t ]e l

k
e ,q

)
, (43)

where Sk
e = S0 exp

(
−

∑
E ′

[µ̃t ]e ′ l
k
e ′

)
(44)

and l k
e ,q = ‖r in − rq‖2. Summing over all the rays, and assem-

bling the global finite element matrices as [Au
] =

∑
k[A

k
e ],

[y ] =
∑

k[y
k
e ], [8

u
] is then obtained by solving

[Au
][8u
] = [y ], (45)

and the FEM equivalent of the moments of the FCS, Qn is

[Qn] = µ̃
x
s b̃n Pn(vs )[8

u
]. (46)

To obtain the weighted residual form of the system of
Eqs. (28) and (31), we define the elemental integrals

Ax/m
e =

∫
Ve

(
[∇N]TC∇x/m [∇N]+ [N]TC x/m [N]

)
dVe

−

∫
∂V

[N]TC∇x/m(C∇bx/m)−1
C bx/m[N]Tdσ

Aβ
e =

∫
Ve

[N]TCβ [N] dVe AQ
e =

∫
Ve

[N]TC Q [N] dVe

A∇Q
e =

∫
Ve

[N]TC∇Q [N] dVe

and the corresponding globally assembled counterparts [A∗] =∑
Te

A∗e , where∗= x ,m, β, Q,∇Q.
The system of equations given by Eqs. (28) and (31) is thus

transformed to

[Ax
][ϕx
] = [AQ

][Q] + [A∇Q
][Q∇], (47a)

[Am
][ϕm
] = [Aβ][Q] + [Aβ][ϕx

]. (47b)

4. RESULTS

A. Solution Schemes and Evaluation Metrics

We compare the performance of the δ-S PN approximation
and the standard S PN approximation [with an isotropic point
source at 1 MFP, as shown in Fig. 1(b)] and validate the same
with regard to in-house MC codes. Our MC codes are based
on the voxel-based Monte Carlo program by Jacques et al. [37],
modified by us to simulate frequency domain fluorescence gen-
eration and propagation. In each case, 109

− 2× 109 excitation
photons are launched through the domain.

The δ-S P1 approximation is equivalent to the δ-P1 approxi-
mation, and the efficacy of the same with regard to standard
DA has been demonstrated in previous works [2,11,16]. In the
literature, several studies have demonstrated the higher accuracy
of the S PN approximation compared to the DA (S P1/P1) for
small geometries [31–33]. Hence, in our work, results are pri-
marily presented for N = 3, since it offers a convenient trade-off
between accuracy and computational complexity. In the later
part of the study, we also explore the effect of the approximation
order “N” on the accuracy of the approximation for normal and
oblique incidence scenarios. The numerical evaluations and
data analysis is carried out in Matlab, while the MC simulations
are run using a standalone program on a system powered by an
Intel Xeon CPU (E5 1650 v2 at 3.5 GHz) with six cores and
64 GB RAM.

To compare the different models, we first compute the nor-
malized internal fluence for each model as 8∗n =8

∗/8̄∗, with
∗= S PN, δ-S PN, MC , and (·̄) denoting the mean value of8.
The normalized amplitude ratio is then given by |8∗n|/|8

∗

MC|,
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∗= S PN, δ-S PN . Note that here, and in the rest of the paper,
the variable8 is used to denote the total fluence and not radiant
flux. Since the computed amplitudes are overestimated in the
vicinity of the source when the δ-M approximation is used [16]
and underestimated with the standard S PN approximation
[32], it was noted in [32] that normalizing with regard to values
beyond a few MFPs lowers the discrepancy in fluence. In our
work, the mean values are evaluated beyond 1 MFP. To compare
the phase, we evaluate the absolute phase difference between the
S PN/δ-S PN and MC, 1P = |∠u∗ −∠umc

|. To quantify the
model fit, we use two metrics, the correlation coefficient ρc and
Lin’s concordance coefficientρl [7,38]:

ρc =

Ne∑
i=1
(u∗ − ū∗)(umc

− ūmc)

(Ne − 1)1u∗1umc
, (48a)

ρl =
2ρc1u∗1umc

(ū∗ − ūMC)
2
+ (1u∗)2 + (1umc)2

. (48b)

Here, u is any field quantity and1u∗,1umc are the standard
deviations of u obtained from the S PN/δ-S PN approxima-
tion and MC, respectively. The coefficients ρc , ρl lie between
[−1, 1]. The concordance coefficient, ρl is a metric that is
sensitive to both the scale and location of the features of interest,
unlike the correlation coefficient ρc . A higher ρc indicates that
the model can faithfully capture the features of interest, while a
higher ρl indicates a better match with the absolute values of the
quantities being compared.

To assess the partial currents, we use a referencing scheme
where the measurements are referenced with regard to a des-
ignated detector (ref ) as j+∗norm = j+∗/ j+∗ref . (This scheme is
referred to as REF-1 in the rest of the text.) The reference detec-
tor is set to detector number 10/11 (ordered from xmin), since
it is located intermediate between the source and the computa-
tional boundary and has stable (less noisy) measurements from
the MC. In addition, for the emission case, we also present com-
parisons after referencing with the partial current at excitation;
i.e., j+∗norm = j+m

norm/ j+x
norm. (This scheme is referred to as REF-2

in the rest of the text.) The goodness of fit is quantified using the
same metrics as for the fluence; i.e., ρc , ρl and 1P , evaluated
as in Eqs. (48a) and (48b), with the corresponding normalized
fluence values replaced by the respective partial currents.

The error metrics ρc and ρl for the various test settings are
plotted in Figs. 10 and 7. Detailed metrics for all the test cases
have been tabulated in Tables S1–S6 in Supplement 1.

B. Description of Test Cases

To validate and demonstrate the performance of the δ-S PN

approximation, suitable test settings have been used in cases
denoted by C1, C2, C3, and C4, whose optical properties are
listed in Table 1. The test settings and corresponding optical
parameters have been chosen to cover a wide range of scenar-
ios to understand and justify the use of the proposed δ-S PN

approximation.
In this work, the scattering phase function p(�, �′) is set to

the Henyey–Greenstein phase function [6] with the anisotropy
factor, g = 0.9. The modulation frequency, fmod = 500 MHz,

Table 1. Description of Optical Properties of the
Medium for Various Test Settings Used

a

Test Setting Domain (l × b ×w) (µ
x,m
ai , µx,m

s ) µ
x,m
af

Setting [cm3] [cm−1] [cm−1]

C1 2.5× 2.5× 2.5 (0.05,50) 0.147
C2a 0.5× 0.5× 0.5 (0.1,100) 0.5
C2b 0.5× 0.5× 0.5 (0.1,50) 0.5
C2c 0.5× 0.5× 0.5 (0.1,20) 0.5
C3a 0.5× 0.5× 0.5 (2,100) 2
C3b 0.5× 0.5× 0.5 (2,50) 2
C4a 0.5× 0.5× 0.2 (0.1,100) 0.5
C4b 0.5× 0.5× 0.2 (0.1,100) 0.5

aThe subscripts i/ f denote quantities related to the back-
ground/fluorophore.

and the refractive index of the medium is set to nin = 1.37. The
fluorescence lifetime is τ = 0.56 ns. The top (z= 0) surface
has a refractive index mismatch (nout = 1). The quantum effi-
ciency is set to 1 for simplicity. In each case, we model a cuboidal
domain with a pencil beam at (0, 0, 0) cm, normally incident in
cases C1 through C4a, and obliquely incident in C4b. Only in
the setting C1, to simulate a scenario analogous to that used in
[32], we set nin = 1.33, fmod = 100 MHz, and τ = 1 ns. The
optical properties are taken to be the same at both excitation and
emission wavelengths.

Test-setting C1: a scattering dominant medium. We use
this case to validate the proposed δ-S PN approximation in a
domain of 2.5 cm3. This geometry is typical of the diffusive
regime where the S PN approximation is known to be fairly
accurate. The fluorescent source is a single spherical hetero-
geneity of radius 0.1 cm located at (0, 0, 0.625) cm. The exiting
partial current j+ is measured at 24 equally spaced detectors
located along (y = 0, z= 0) in x = [0.05, 1.2] cm.

Test-setting C2: a low absorption medium with low-
moderate scattering. In this case, we model a smaller domain
of 0.5 cm3. To study the effect of change in µs on the accuracy
of the approximation, we consider a low absorption medium
and take values of µs = 100, 50, 20 cm−1 in settings C2 a–c,
respectively. This scenario is classified as having low-moderate
scattering, since even for the highµs of 100 cm−1, the maximal
dimension of the computational domain does not exceed 5
MFPs, and few scattering events occur in this region. A spheri-
cal fluorescing inhomogeneity of radius 0.025 cm centered at
(−0.125, 0, 0.125) acts as the fluorescent source. The par-
tial current is measured at 48 equally spaced detectors along
(y = 0, z= 0) in x = [−0.24, 0.24] cm.

Test-setting C3: a high absorption medium with mod-
erate scattering. As in case C2, we model a smaller domain of
0.5 cm3. We consider a high absorption medium, with values
of µs = 100, 50 cm−1, in settings C3 a–b, respectively. The
location and size of the fluorescent source is the same as setting
C2. (The value of µs = 20 cm−1 is not considered here, since
the low scattering combined with the high absorption, leads
to very noisy data from the MC). The partial current is mea-
sured at 48 equally spaced detectors along (y = 0, z= 0) in
x = [−0.24, 0.24] cm.

Test-setting C4: a shallow medium with low scattering
and multiple fluorescent sources. Here, we explore a shallow
domain of size 0.5 cm× 0.5 cm× 0.2 cm with low µa , high

https://doi.org/10.6084/m9.figshare.16722778
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µs and three spherical fluorescent sources of radius 0.025 cm
each, centered at (−0.125,0,0.075) cm, (0,0,0.15) cm, and
(0.15,0,0.1) cm. Despite the high scattering coefficient, this is a
low scattering scenario, since the depth of the domain is 2 MFPs.
Here, we present a comparison between the S P3 and the δ-S P3

for both normal (C4a) and oblique (C4b) incidence settings.
The partial current is measured at 48 equally spaced detectors
along (y = 0, z= 0) in x = [−0.24, 0.24] cm. We also use this
setting to investigate the effect of the approximation order N on
the accuracy of the model.

C. Performance of the δ-SPN Approximation at
Excitation

1. Test-SettingC1

In Fig. 3, we plot the normalized amplitude ratios and absolute
phase difference for8x , along a line passing through the center
of the inhomogeneity (x = 0, y = 0) cm. Up to about 2 MFPs
into the domain, the S PN approximation considerably underes-
timates8x , while the δS PN overestimates it. The sharp spike in
the magnitude of8x with the S PN approximation corresponds
to the location of the isotropic point source. Beyond 2–3 MFPs,
similar amplitude ratios are obtained with either scheme, while
lower phase error is observed with the δ-S PN scheme. The
normalized amplitude ratios obtained by us for 8x (as well as
j+m) are similar to those reported by Lu et al. [32] for the S P3

approximation.
We see from Fig. 3(b) that the evaluated j+x demonstrates

similar fits with either scheme. As expected, for a domain that
spans several MFPs, the δ-S PN approximation performs at
par with the S PN approximation and does marginally better
at modeling the phase as indicated by the performance metrics
plotted in Fig. 7.

2. Test-SettingC2

In Figs. 4(a)–4(f ), we plot the normalized amplitude ratios of
8x (a,c,e) and the referenced partial currents (b,d,f ), j+x (right
column) for settings C2 a,b,c. Consistent with the previously
reported observations with the δ-P3 approximation [16], 8x

is overestimated with the δ − S P3 up to about 1 MFP, while
it is underestimated with the S P3 approximation. The extent

2 4 6 8 10 12
z/l'

0

1

2

3

4

5

6

7

N
or

m
. A

m
p.

 ra
tio

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

 P
 [d

eg
]

C1- x

Ax SP3

Ax -SP3

Px SP3

Px -SP3

0.2 0.4 0.6 0.8 1 1.2
X [cm]

-1

0

1

2

3

lo
g 

(N
or

m
. A

m
p.

)

-6

-4

-2

0

2

4

Ph
as

e 
[d

eg
]

C1 - j+x

Ax MC Ax SP3 Ax -SP3

Px MC Px SP3 Px -SP3

(a) (b)
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Fig. 4. (a), (c), (e), (g), (i) |8∗n|/|8
MC
n | (left axis) and 1P (right

axis) along (x =−0.125, y = 0) plotted against z/l ′ and (b), (d), (f ),
(h), (j) referenced partial currents at the detectors for test settings C2a
(top row), C2b (second row), C2c (third row), C3a (fourth row), and
C3b (fifth row). Other figure settings are the same as Fig. 3.

of overestimation, increases with a decrease in µs . This over-
estimation occurs because the δ-M transformation reduces the
value of the scattering coefficient used in the solution scheme;
i.e., µ̃s <µs , which translates to a lower rate of decay for the
unscattered flux 8u evaluated using Eq. (15), compared to the
actual unscattered flux as obtained via MC. From the metrics
plotted in Fig. 7, we see that the phase estimates correspond-
ing to 8x are well correlated across µs values when the δ-S P3

approximation is used with a< 10% change in ρl in contrast to
the> 35% change with the S P3 over the µs values considered.
The mean1P between MC and δ-S P3 scheme does not exceed
0.2 deg across all threeµs values considered.

In terms of the partial currents, the δ-S P3 clearly does better
at recovering the features of interest in the detected j+x , indi-
cated by a higher ρc and ρl [Fig. 7(c)], despite overestimating
the value in the immediate vicinity of the source. As with the
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internal fluence, we also observe a better fit with regard to the
phase of the measured partial currents with the δ-S P3. While
the quality of fit for j+x deteriorates with a decrease in µs , as
seen from Figs. 7(c) and 7(d), the loss of accuracy is less severe
with the δ-S P3 as compared to the S P3 approximation. We
observe around 1% (respectively, < 15%) variation in ρl for
magnitude (respectively, phase) with the δ-S P3 and correspond-
ing variation of 4–8% (respectively,> 20%) with the S P3. The
lower fit metrics are also in part due to the higher statistical noise
in the MC data in this case. In addition, the δ-S PN scheme
lends notably improved estimates of phase. For the C2c case
with µs = 20 cm−1, we see that despite deterioration in the fit
with regard to8x , usable estimates of j+x are obtained with the
δ-S P3 scheme, as indicated by the higherρl andρc in Figs. 7(c)–
7(f ). Note that for this case, only partial currents up to x = 0 are
considered for the comparisons since beyond this point there is
substantial noise in reflectance data obtained via MC.

3. Test-SettingC3

From the normalized amplitude ratios plotted in Figs. 4(g) and
4(i) and the corresponding ρc and ρl plotted in Figs. 7(a) and
7(b), we see that the change in µa largely affects estimates of
magnitude of the internal fluence and not the phase. As seen in
the low absorption case, we observe a deterioration in the model
fit with regard to8x with decrease inµs . However, the deterio-
ration in this case is less severe than that observed in setting C2,
possibly due to the reduced contribution of backscattering.
Similar behavior has been reported by Carp et al. [12] with the
δ-P1 approximation; i.e., for similar µs in moderate scattering
scenarios, the δ-S PN scheme performs better for media with a
lower ratio ofµ′s /µa .

The overall trends in 8x and j+x are as seen for setting C2.
The use of the δ-S P3 scheme provides improved estimates of
phase. It is less sensitive than standard S P3 approximation to
variations in the optical parameters, especially with regard to
partial currents. That the δ-S P3 scheme better represents the
optical field in the near-source region is evident from the higher
concordance between the proposed scheme and MC (see Fig. 7).
The improved fit of j+x in the vicinity of the source, as seen in
Fig. 4 (right column), motivate the use of the δ-S PN scheme for
shorter source-detector separations.

4. Test-SettingC4

The C4 setting is in a sense a zoomed-in version of the C2a case.
Hence, the trends in8x are consistent with the observations for
C2a; i.e., we see an overestimation in |8x

| up to around 1 MFP
with the δ-S P3 and an underestimation in the corresponding
region with the S P3.

In Figs. 5(a) and 5(b), we plot the partial currents at excitation
for normal incidence (C4a) and oblique incidence (C4b) cases,
respectively. In Fig. 5(a), we observe the considerably improved
fit of j+x with the δ-S P3 approx. for the normal incidence case.
For an obliquely incident beam (angle of incidence= 45 deg),
we see in Fig. 5(b) that the δ-S P3 approximation tracks the
features of interest more faithfully than the S P3 approximation.
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Fig. 5. Referenced partial currents at excitation for cases C4a (left)
and C4b (right). Other figure settings are the same as Fig. 3.

D. Performance of the δ-SPN Approximation at
Emission

Intuitively, it appears that improvements in descriptions of flu-
ence at8x should directly translate into improved descriptions
of 8m (and hence j+m); we observe that for larger domains
(on the order of 5 MFPs or higher as considered in this study
in cases C1–C3) similar values of ρc and ρl are obtained for
case C1 and mild improvements are observed for cases C2 and
C3 (reflected in the slight increase in ρl in Fig. 7), while we see
distinct improvements in performance of the δ-S P3 approx.
with regard to the standard S P3 approximation for the domain
C4, where we consider light propagation only up to 2 MFPs.
Hence, in this section for brevity, we focus on the improvements
in emission modeling for the C4 case. In terms of the partial cur-
rents, with the REF-2 scheme the δ-S P3 tracks the referenced
MC measurements more accurately, as is seen from the better
metrics obtained with the δ-S P3 approximation compared to
the S P3 approximation for all test cases considered. This is a
consequence of the improved fit obtained for j+x using the
δ-S P3 approximation. In some cases, we observe that model
inaccuracy is mitigated by the REF-2 referencing scheme. In our
studies, we have found the δ-S P3 to be more robust regarding
the choice of the referencing scheme than the standard S P3

approximation. For completeness, detailed plots of j+m and8m

for test cases C1–C3 have been provided in Figures S1–S3 of
Supplement 1 for the interested reader.

Improvements in magnitude and phase estimates of8m with
the δ-S P3 for the normal incidence case (C4a) are reflected in
the higher value of ρl plotted in Fig. 7. The better modeling of
8m with the proposed scheme for normally incident radiation
leads to a significantly improved fit of j+m over that of the
standard S P3 approximation with both referencing schemes, as
seen in Figs. 6(a) and 6(b). The presence of the isotropic point
source at the 1 MFP in the standard S P3 approximation leads to
an overestimation of the partial current near the source location
and thus alters the profile of the estimated j+m . The lower
ρc , ρl for this case, with both models considered relative to the
C2a case, is due to the different 8̄ values in both cases owing to
different sizes of the computational domains. In the C2a case, 8̄
is evaluated over 1–5 MFPs; for the C4a case, it is evaluated over
1–2 MFPs.

For the oblique incidence case (C4b), while similar met-
rics for magnitude are obtained using either scheme, distinct
improvements (lower 1P and higher ρc ) are observed for the
phase (see Fig. 7) with the δ-S P3. We see from Figs. 6(c) and
6(d) that. in terms of magnitude, the δ-S P3 approximation

https://doi.org/10.6084/m9.figshare.16722778
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Fig. 6. Plots of (a) amplitude (left), (b) phase (right) of the ref-
erenced partial currents at emission using the REF-1 (left axis) and
REF-2 (right axis) referencing schemes for C4a (top row) and C4b
(bottom row). The line plots correspond to MC, hollow symbols
correspond to S P3, and solid symbols correspond to δ-S P3.
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Fig. 7. Fitness metrics ρc (left) and ρl (right) for the δ-S P3 and the
S P3 approximation for estimates of (a), (b) the internal fluence 8x ,m

(top row), partial currents (c), (d) j+x ,m with REF-1 (middle row),
and (e), (f ) j+m with REF-2 (bottom row) for test cases C1–C4. Solid
symbols correspond to δ-S P3 and hollow symbols to standard S P3

approximation.

tracks the features of interest more faithfully than the S P3

approximation while the measured phase is underestimated
with both schemes for j+m , with δ-S P3 doing moderately better
than S P3. This difference is mitigated to some extent for the
δ-S P3 with the REF-2 scheme.

E. Effect of Approximation Order on the Accuracy of
the δ-SPN Approximation

Having already established the improvements in performance
with the δ-S P3 over the standard S P3 approximation, we now
probe the effect of the choice of the approximation order N on
the accuracy of the δ-S PN approximation for N = 1, 3, 7. For
brevity, the results are presented for test setting C4 and model
both normal and oblique incidence scenarios. Since similar
trends are observed for both magnitude and phase, for succinct-
ness only the plots corresponding to the magnitude of fluence
at excitation and emission have been presented here while the
corresponding phase plots have been included in Supplement
1 (Figure S4). Note that the δ-S P1 approximation is equivalent
to the δ-P1 approximation. In Fig. 10, we plot ρc and ρl corre-
sponding to the internal fluence and partial currents for both
scenarios C4a and C4b, for N = 1, 3, 7.

1. Normal Incidence

Excitation: In this case for 8x , we observe nearly identical
values ofρc with a small drop with increasing order N. However,
the value of ρl increases with increasing N, which suggests
that, as expected, the fidelity of the approximation improves
with order of approximation. The relative improvements in
the accuracy are higher between N = 1 to N = 3, and mod-
erate between N = 3 to N = 7. This is also evident from the
cross-sectional plots of |8x

| in Fig. 8(a) in the y = 0 plane for
N = 1, 3, 7. The contour lines correspond to MC data. Clear
visibility of the contour lines indicates a model mismatch. Low
value MC contours visible over the brighter δ-S PN colormap
indicate overestimation, while high value contours visible over
darker regions indicate underestimation. Similar trends also are
observed in the case of the phase. The plots corresponding to
the phase of8x (and8m) are included in Supplement 1, Figure
S4(a, b). The approximation order, does not significantly affect
the accuracy of the evaluated j+x .

Emission: In Fig. 8(b), we plot |8m
| in the y = 0 plane for

N = 1, 3, 7. For N = 1, 8m is underestimated in terms of
both magnitude and phase. The quality of fit with regard to
MC progressively increases with the order of approximation.
While the values ofρc are similar (ref. Fig. 10) for all three orders
considered, the improved emission profile is reflected in a mild
increase in ρl (upward and downward triangles in red) from
N = 1 to N = 7. As expected, the improvement in 8m is also
reflected in j+m , as seen in Figs. 8(c) and 8(d). The overall pro-
file of the measured partial currents is recovered faithfully with
both referencing schemes for orders N = 3, 7, while the object
in the path of the beam coupled with an overtly strong FCS in
this region for N = 1 leads to an altered reflectance profile. The
increased accuracy of the phase estimates, of both8m and j+m ,
with increasing order N is particularly significant. While there
is a 75% improvement in the concordance of phase of j+m with
REF-1, when the order is increased from N = 1 to N = 3, only
moderate improvement (around 28%) is observed from N = 3
to N = 7. As noted in the previous cases, the REF-2 scheme can
mitigate the effect of model errors to some extent, as indicated
by similar metrics in terms of magnitude for all three orders
considered. The noticeable improvement in phase estimates

https://doi.org/10.6084/m9.figshare.16722778
https://doi.org/10.6084/m9.figshare.16722778
https://doi.org/10.6084/m9.figshare.16722778
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Fig. 8. Magnitude of (a) 8x and (b) 8m in the (y = 0) plane for
N = 1, 3, 7 for test setting C4a (normal incidence). The contour lines
correspond to MC data. The black dashed lines correspond to the
fluorescent sources. The line plots in (c) and (d) correspond to j+m

using referencing schemes REF-1 and REF-2, respectively.

with an increase in order also persists here, as with the REF-1
scheme.

2. Oblique Incidence

Excitation: In Fig. 9(a), we plot |8x
| in the y = 0 plane. As in

the normal incidence case, the strength of the direct compo-
nent (8u) relative to the MC increases with an increase in the
approximation order. In the plots corresponding to N = 3, 7
in Fig. 9(a), we see an overestimation of both magnitude and
phase of8x in the lateral dimension in the vicinity of the source,
which is a consequence of this increase in 8u coupled with an
increased rate of decay (increase inµ′s with increasing N). This is
reflected in a mild decrease inρc with increase in N (see Fig. 10),
while ρl remains relatively unchanged, which suggests that the
overall features of the total fluence 8x are preserved. Identical
estimates of j+x are obtained for all three orders.

Emission: In Fig. 9(b), we plot |8m
| for N = 1, 3, 7 in the

y = 0 plane. We observe that while the value of 8m is better
estimated with the increasing order in the immediate neighbor-
hood of the fluorescent sources, it is overestimated elsewhere,
a consequence of the overestimation of8x , as seen in Fig. 9(a).
While this does not present an issue in the normal incidence
case since the relative variation is preserved axially owing to the
symmetry of the problem, the break from symmetry leads to a
deterioration in the performance of the δ-S PN scheme with an
increase in N when the oblique incidence is considered. One
possible reason for such a deterioration is a sub-optimal choice
of the δ-M parameter f . In our work, the δ-M parameter is
chosen as f = bM+1; however, other choices of f are possible
that alter the accuracy of the approximation. An empirical
formula for f based on the single scattering anisotropy g was
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Fig. 9. Magnitude of (a) 8x and (b) 8m in the (y = 0) plane for
N = 1, 3, 7 for test setting C4b (oblique incidence). The line plots in
(c) and (d) correspond to j+m with referencing schemes REF-1 and
REF-2, respectively. Other settings are the same as Fig. 8.

Fig. 10. Fitness metrics ρc and ρl with the δ-S PN approximation
for approximation orders N = 1, 3, 7, for (a) internal fluence 8x ,m

(left), (b) partial currents j+x ,m (right) for test setting C4a (yellow
shaded region on the left) and C4b (blue shaded region on the right).

derived in [39] and shown to provide further improvements in
the estimates of the optical field with the δ-P1 approximation. In
[40], a modified δ-E approximation for atmospheric radiative
transfer has been proposed by Qiu, where, in addition to the
optical properties, the angle of incidence (solar zenith angle) is
also used to arrive at an optimal choice of the δ-M parameter
f ∗ through a scaling factor X ∗, as f ∗ = X ∗ f . These works
suggest that further investigation into an optimal choice of f ,
for various orders of approximation, that also takes into account
the angle of incidence, is needed to assess the efficacy of using
the δ-S PN approximation with obliquely incident sources. This
aspect, of tuning the δ-S PN approximation, is left for future
work.

As seen in Fig. 9, mild improvements with regard to the phase
of j+m are observed with an increase in N. The overestimation
of 8x that leads to an altered ratio of relative strengths of the
fluorescent sources, as seen in Figs. 9(a) and 9(b) for N = 3, 7,
alters the overall profile of the measured partial current for these
orders, leading to a drop in ρl with increasing N. The model
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error is somewhat mitigated with the REF-2 scheme, as seen in
Fig. 9(d).

5. CONCLUSION

In this work, we proposed the δ-S PN approximation to the RTE
without and with fluorescence for modeling light propagation in
the neighborhood of collimated beams, and developed a FEM-
based numerical solution scheme for the same. We have assessed
the impact of the improved modeling of incident sources on the
coupled system through detailed numerical studies in various
test settings covering a wide range of optical properties as well as
scenarios such as normal/oblique incidence and single/multiple
fluorescing objects primarily in sub-centimeter computational
domains extending from 1–5 MFPs. The accuracy of the pro-
posed model for different choices of approximation orders N
also has been reported for normal/oblique incidence test cases.

The δ-S PN approximation provides a promising alternative
to higher order schemes for modeling light propagation in shal-
low domains. The fitness metrics demonstrate that the accuracy
of the proposed model is less sensitive to variations in optical
parameters than that of the corresponding S PN approximation,
thus extending the applicability of the low order approximations
to sub-centimeter domains. By accurately capturing the features
of light propagation in the vicinity of the source, the scheme
allows the potential use of short-source detector separations (a
few MFP), paving the way for high-resolution imaging, as well
as capturing early photon–tissue interactions. Even in scenar-
ios where the standard S PN approximation is fairly accurate,
the δ-S PN scheme provides better estimates of phase, which
is evident from the much lower phase error observed in both
internal fluence as well as partial current measurements. This
is particularly significant for frequency domain applications.
By addressing the fluorescence propagation problem in our
present work, we demonstrate the need in coupled systems such
as fluorescence, for better estimates of 8x obtained using the
δ-S PN approximation with orders N > 1, despite nearly identi-
cal estimates of j+x obtained for orders N = 1, 3, 7. The higher
correlation of the excitation measurements is particularly useful
when using referencing schemes such as REF-2. This makes the
δ-S PN approximation more robust to choice of data referencing
schemes.

For normally incident beams, the accuracy of the approxi-
mation increases with an increased approximation order. While
significant improvement is observed between N = 1 and
N = 3, the gains are moderate between N = 3 and N = 7. This
suggests that the δ-S P3 approximation can serve as an optimal
choice between increased accuracy and computational cost. For
the oblique incidence case, despite lower metrics for internal flu-
ence, the qualitative features of the measurements are retained
with the δ-S PN scheme, which is evident from the higher ρc

and ρl . While further tuning of the δ-M parameter is needed
to improve the accurcacy of the model for obliquely incident
beams, the present numerical study and preliminary recon-
struction results reported elsewhere [35] demonstrate that the
proposed δ-S PN approximation can serve as a computationally
efficient alternative to the use of higher order approximations
in the near-source region for tomographic applications. Further

studies corresponding to reconstruction schemes using the
δ-S PN approximation are presently being investigated.
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