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Abstract: Fiber-optic probes are imperative for in-vivo diagnosis of cancer. Depending on the access
to a diseased organ and the mutations one aims to sense, the probe designs vary. We carry out
a detailed numerical study of the efficacy of the common probe geometries for epithelial cancer
characterization based on spatially resolved reflectance data. As per the outcomes of this comparative
study, a probe has been manufactured and using Monte Carlo look up table based inversion scheme,
the absorption and scattering coefficients of the epithelium mimicking top layer have been recovered
from noisy synthetic as well as experimental data.

Keywords: optical parameters; beveled fiber; spatially resolved reflectance; epithelial pre-cancer;
look-up table

1. Introduction

About 80–90% of human cancers develop in the epithelium layer [1] where early signs of the
disease appear [2–4]. The early signs manifest in its optical properties, making it crucial to probe
the epithelium in order to diagnose pre-cancer. The epithelium layer is the outermost layer of skin
and typically 100–500 µm thick [2]. To optically probe the changes occurring in the epithelium layer,
one needs to collect the photons which have had interactions predominantly in the epithelium layer.
Therefore, it becomes important to understand the geometries of collection and delivery of light which
govern depth selection. Typical elements of probe geometry include source-detector separation (SDS),
and angular orientation of incidence and collection of light. In this context, a common technique for
probing various depths is spatially resolved reflectance (SRR). In SRR, light beam incident on the
tissue interacts with cellular components and is collected after absorption and scattering inside the
medium, at different spatial positions. This technique allows one to probe various depths inside the
tissue through the spatially collected light. SRR based technique was first proposed by Farell et al. [5]
in 1992 to non-invasively recover the optical parameters of the tissue. Similarly, spatially resolved
fluorescence has also been used to recover the optical properties of tissues [6,7].

For clinical applications, fiber-based SRR probes are desirable. One of the early developments
of SRR based fiber optic probe was by Bays et al. [8]. This probe consisted of six detector fibers with
the closest detector placed at 2.0 mm from the source. They implemented a diffusion approximated
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radiative transport equation (DA-RTE) based model to quantify the optical properties of the epithelial
tissue. For an epithelial tissue, diffusion approximation does not hold good close to the source.
Therefore, a large variance (∼30%) was observed in the recovered optical parameters reported by
them. In another study [9], a fiber optic probe was incorporated for SRR collection from a two-layered
phantom with a 6 mm thick upper layer. For such a phantom where the thickness of the top layer is
significantly larger than the optical mean free path [10], diffuse photons are observed in the superficial
layer itself due to large number of scattering events (greater than 100). Therefore, using DA-RTE-based
recovery, while 23% error in the optical parameters was obtained for a 2 mm thick superficial layer,
the error reduces to 8% for a 10 mm thick superficial layer.

In 2011, Tseng et al. [4] designed a probe consisting of a source fiber of diameter 200 µm and
7400 bundled plastic fibers of diameter 20 µm for SRR collection and extracted the optical parameters
of homogeneous phantoms with about 6% and 4.3% errors in absorption and scattering coefficients
respectively. Subsequently numerical studies were carried out on two layer models, and the optical
parameters of epithelium and stroma were extracted separately.

All the fiber optic probes discussed above were oriented perpendicular to the collection surface.
These studies are not suitable for recovering the optical properties of a thin epithelium layer
(200–500 µm) because the SRR collected in the perpendicular geometry has a low sensitivity [11,12]
to epithelial perturbations. Moreover, these studies utilized diffusion approximations (DA-RTE) for
recovery of the optical parameters which does not hold for epithelial tissue. It is thus crucial to evaluate
various feasible probe geometries as well as use the complete RTE as the photon transport model for
recovering optical parameters of the epithelial tissue. Several groups across the globe have carried out
Monte-Carlo (MC) simulations to evaluate geometries for optimal designing of a probe for epithelial
precancers. A detailed study of various fiber-optic probe geometries can be found in [13]. Liu et al. [3]
and Wang et al. [12] reported significant improvements by using oblique fibers, observing higher
sensitivity to changes in the epithelium layer during measurements. Liu et al. [3] used an inverse MC
scheme to obtain the optical properties of the top layer by a 45◦ angled probe, and bottom layer optical
properties with a flat tipped probe. However, the geometries for angled probes that they proposed
are not amenable for internal organs due to critical issues with fibers while bending to a smaller
radius [14].

Sung et al. [11] in 2012, carried out a MC based comparative numerical study for various probe
geometries. They reported that the perpendicular probe was more sensitive to the changes in stromal
optical properties. However, the changes in epithelial scattering were reflected more prominently by
the parallel-oblique fiber probe. Such a probe is suitable for epithelial precancer investigation and also
clinically amenable.

In 2014, Sung et al. [15] measured SRR spectra using perpendicular as well as a 45◦ beveled optical
fiber bundle. They used an inverse MC scheme to recover the reduced scattering coefficients of both
the layers and the total hemoglobin (Hb) concentration of the bottom layer. It was reported that the
data procured by the beveled probe recovered the reduced scattering coefficient of the top layer more
accurately as compared to the perpendicular probe. The spot size of incident light on the tissue was
350 µm, which limited the minimum SDS to 0.4 mm in the oblique probe. Reducing the minimum SDS
further can recover the properties of the superficial layer even more accurately.

There have been in-vivo studies to extract the optical properties of cervical tissue based on SRR
using fiber optic probes [16,17]. Chang et al. [16] and Hornung et al. [17] could not extract optical
properties of the superficial layer due to limitations of their probe geometries. To the best of our
knowledge, the existing probes for epithelial cancer diagnosis have not been able to provide accurate
optical properties of epithelium layer and its variation with the progression of pre-cancer. Hence,
there is a need to develop an SRR based probe to acquire signals majorly from epithelium, aiding
early-stage diagnosis of epithelium cancer. Choice of appropriate inverse scheme is crucial for accurate
recovery of the optical parameters. These schemes typically thrive on the accuracy of the forward
solver that generates the synthetic SRR at desired detector locations. The analytical solutions to
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diffusion approximated radiative transport equation (DA-RTE) have been used for estimation of
optical parameters of diffusive media [8,9,18], for large SDSs. However, for small SDSs as well as
for low-scattering media, photons get collected at the detectors before they are completely diffused,
and hence it is erroneous to employ DA-RTE to model reflectance for such cases [19]. An MC method
is a numerical equivalent to solve the RTE which is the analytical model for simulating accurate
light transport in tissue. Therefore a variety of MC based reconstruction schemes such as empirical
model [20,21], MC fast and flexible inverse model [22,23], perturbation MC model [24], scalable MC
model [4,22,23,25], MC look-up table (MC-LUT) based schemes [26–30], artificial neural network
method [31] have been extensively used for estimation of optical properties of turbid media. Based on
these studies, we have focused on: (1) a MC-based detailed comparative study of the efficacy of
common probe-geometries for epithelial precancer diagnosis, and (2) accurate recovery of optical
parameters of the top layer from SRR data collected by a novel fiber-optic probe using MC look-up
table (MC-LUT) based inversion.

This manuscript is organized as follows: Section 2 provides a brief theory of light propagation
in turbid media and discusses the basic inverse problems involved. In Section 3 we study the
efficacy of various probe geometries for epithelial precancer diagnosis. Section 4 provides the details
of the fabricated fiber-optic probe, experimental set-up for accurate SRR collection and MC-LUT
based extraction of optical parameters, and the results thus obtained are discussed in Section 5.
The concluding remarks are offered in Section 6.

2. Background Theory

During changes occurring in the development of epithelial precancer, physiological and structural
changes in tissue are primarily reflected in the optical parameters (absorption and scattering
coefficients) of the top (epithelial) layer. Typically the epithelium layer is very thin (∼200–500 µm),
and hence in order to probe signatures of epithelial perturbations collection of photons close to the
source is desirable. In order to recover the optical parameters of the epithelium layer, a mathematical
model to simulate photon propagation accurately in the vicinity of the source is imperative.

2.1. Radiative Transfer Equation

The radiative transport equation (RTE) [32,33] is the globally accepted analytical model to simulate
accurate photon propagation in biological tissues. In steady state, the RTE is given as,

(n̂ · ∇+ µa(~x) + µs(~x)) I(~x, n̂)− µs(~x)
∫

S2
I(~x, n̂′)P(n̂, n̂′)dω′ = q(~x, n̂), (1)

where ∇ is the gradient operator, µa and µs are absorption and scattering coefficients of the medium,
I(~x, n̂) is the radiance at a position ~x inside the medium in n̂ direction, and q(~x, n̂) represents the
source term. The phase function P(n̂, n̂′) is the probability density function governing the scattering
of a beam incident from n̂ into n̂′ direction. For this work, we have utilized the commonly used
“Henyey–Greenstein phase function” [33].

P(n̂, n̂′) =
1

2n−1π

1− g2

(1 + g2 − 2g(n̂, n̂′))d/2 (2)

where g is known as the anisotropy factor, mathematically defined as < n̂.n̂′ > and d takes the values
2 and 3 for 2D and 3D RTE respectively.

The RTE is an integro-differential equation and solving it numerically is mathematically
challenging as well as computationally expensive. Typically, the tissue is dominantly a scattering
medium where RTE reduces to the diffusion equation [33], a partial differential equation, much easier
to solve as compared to RTE. However, to investigate superficial regions such as the epithelium
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from where light captured does not go through large scattering events, RTE is more appropriate.
A numerical equivalent of solving the RTE is the MC simulation [33,34].

2.2. Recovery of Optical Parameters

Characteristic optical properties of tissue are encoded in the boundary optical measurements
(SRR data). A typical optical inverse problem is to reconstruct from a set of SRR measurements,
the spatial distributions of the underlying optical parameters such as µa, µs, g etc. that produced them,
i.e., the unknown parameters in the map:

Λµa ,µs ,g : Sx(~r) 7→ Rmeas(~rd)|{~rd1
...~rdM

} (3)

where Sx(~r) denotes the excitation source andRmeas(~rd)|{~rd1
...~rdM

} represents the SRR measurements
at M detectors. Over the past three decades, various optical inverse problems have been extensively
explored. These problems are non-linear in nature and typically solved using non-linear optimization
techniques. There is a plethora of research work involving the point-wise reconstruction of optical
parameters using RTE [35–40] as well as DA-RTE [41–46]. These techniques are computationally
expensive and need a lot of time to reconstruct the maps of desired optical parameters. Moreover,
such techniques also demand a huge amount of experimental data, which is impractical when probing
internal organs since the site available for observation would usually have a small area.

Optical parameters recovered from the epithelial and stromal layers have been known to
reflect changes due to carcinoma [4,15,25–27,47,48]. However, with point-wise reconstruction,
there is a high probability of missing valuable information from this layered structure. Instead,
their layer-wise extraction would be more efficient and accurate. This reduces the number of unknowns
tremendously and consequently the small number of measurements would yield accurate recovery of
the optical parameters.

For our work, we have utilized a MC-LUT based scheme [26–30] to extract the optical parameters
of the phantoms. Multilayered MC program [34] has been used to generate synthetic SRR data at
detectors. The synthetic SRR data obtained by varying an optical parameter are tabulated into a two
dimensional matrix (known as the MC-LUT). For recovery of a set of unknown optical parameters,
the experimental SRR values are compared with the MC look-up table and the minimizer of the
root-mean-square-error is the reconstructed set of optical parameters.

3. Potential of Various Probe Designs for Epithelial Precancer Diagnosis

A MC simulation based analysis has been performed to study the efficacy of various fiber-optic
configurations to capture changes occurring in the epithelium.

3.1. Modifications in MC Simulation

We modified the multilayer MC code developed by Wang et al. in 1995 [34], incorporating a
few changes in order to suit our requirements. Reflectance and internal fluence were stored in voxels
instead of annular rings or shells. While launching and collecting the photons, the numerical aperture
(NA) as well as the contact area of the optical fibers were taken under consideration due to the short
SDS used. The launching and collection of photons were also modeled for beveled tip fibers as per [49].

The medium was discretized into cubic voxels of sidelength 10 µm. The light was launched
randomly from positions inside the ellipse with major axis 50

√
2 µm and minor axis 50 µm with equal

probability. The axis of fiber was at β = 45◦ with respect to the normal of the surface. If the refractive
index of the fiber core and tissue were n1 = 1.47 and n2 = 1.35 respectively, the light exiting the
fiber would be refracted by an angle γ ≈ 5◦ [49]. So, direction cosines of the incident photons were
randomized uniformly within the cone of NA of the fiber along the refraction angle. The weights
of photons emitted from the surface within the NA of detection fibers were stored in corresponding
square surface bins of side length 10 µm.
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We also computed the quantity “Epithelial Sensitivity” (E ) at a detector position, which is defined
as the ratio of the integrated weights of photons, which ejected out of the phantom surface at the
detector location without entering the stromal layer to the total weight of photons collected at that
detector. It serves as an indicator of the ability of a detector location to reveal subtle changes in the
epithelium layer and hence the potential to diagnose epithelial pre-cancer.

3.2. Effect of Orientation of Fibers

In this section, we study the effect of the orientation of optical fibers on the epithelium sensitivity.
Using the Monte Carlo simulations it has been established [12] that change in the bevel angle of
the source as well as collection fibers not only affects the amount of the collected photons but also
governs the depth selection. To verify the effect of the bevel angle of the collection fiber on the
depth sensitivity, MC simulations have been performed for a two layered phantom irradiated by a
fiber oriented normal to the phantom. The spatially resolved epithelial sensitivity for multiple bevel
angles (10, 30, 50, 70◦) of the collection fibers (Figure 1a) were obtained from the simulations and
demonstrated in Figure 1b. As expected, increased bevel angle of the collection fibers was observed
to yield better epithelial sensitivity. We further evaluated three probe geometries, commonly found
in the literature [11,15]: Probe geometry-I: unbeveled source and detector fibers placed normal to
the phantom surface (Figure 2a). Probe geometry-II: beveled source and detector fibers (bevel angle
β = 45◦) on the phantom surface (Figure 2b). Probe geometry-III: beveled source and detector fibers
(bevel angle β = 45◦) with the source and detector fibers oriented in opposite directions as shown in
Figure 2c. While the probe geometry-I has already been thoroughly studied in [4,6,8,9,16], we have
included it in our analysis for completeness.
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Figure 1. (a) Source-detector geometry in which detector fibers are at 10◦, 30◦, 50◦, 70◦ bevel angles,
(b) variation of epithelium sensitivity with bevel angles and source-detector distances, plot with
red curve shows spatially resolved epithelium sensitivity at a 10◦ bevel angle and similarly, blue,
black and magenta curves represent epithelium sensitivity at 30◦, 50◦, and 70◦ bevel angles respectively
(color online only).

Figure 2d–f depicts the 2-d spatial distribution of reflectance obtained from the MC simulations
for the three probe geometries. The asymmetry in the collected SRR as observed in Figure 2e,f is due
to asymmetry in the source-detector configurations in probe geometry-II and III respectively. The plot
of E along the x- and y- axes are depicted in Figure 2g–i.

The most commonly used probe geometry (I) has a sharp drop in E along both axes (Figure 2g).
The probe geometry-II, with the beveled source and detection fibers, shows substantially improved
E along x-axis (Figure 2h). The best epithelial the sensitivity is obtained with probe geometry-III
(Figure 2i), where significant values of E are observed upto 1 mm. The numerical analysis shows that
the probe-geometry III is the most suitable for epithelial pre-cancer detection. While for internal organs
it is not feasible to employ such a geometry, it can be used for early detection of cancer in the external
organs such as skin and oral cavity. Hence, in our study we have utilized probe geometry-II.
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Figure 2. probe geometry-(a) I, (b) II, and (c) III. In each of the three geometries, the blue arrow shows
the launching direction of photon and orange arrows indicates the axis of collection of photons for
SRR measurement. (d–f) show the 2-dimensional collection of SRR, and (g–i) show the epithelial
sensitivities along the x-axis and y-axis for probe geometries-I, II, and III respectively. Width of the
green region at the center of each of the plots (g–i) indicates the size of the source (color online only).

3.3. Effect of Diameter of Launching Optical Fibers

In this section we describe the effects of source fiber diameter on sensitivity of the probe to
diagnose epithelial precancer. We varied the diameter of the source fiber (50, 100 and 200 µm) in the
probe geometry-II and Figure 3 demonstrates the corresponding SRR and E . Increase in diameter
of the launching fiber not only limits the minimum SDS, but also leads to decrements in E values.
Therefore a fiber optic probe with thin source fiber is desirable for early diagnosis of the disease.

3.4. Effect of Bevel Angle of Optical Fibers

Figure 4 depicts the variation of SRR and E for three bevel angles (30◦, 45◦, 60◦) of the fibers in the
endoscopic probe geometry-II. While the increasing bevel angle was found to improve the epithelial
sensitivity (Figure 4d–f), the SRR strength was better at a lower bevel angle. Therefore, 45◦ can be
chosen as the optimal bevel angle for an endoscopic probe aiming at epithelial precancer diagnosis.
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Figure 3. For probe geometry-II and bevel angle β = 45◦, the collected SRR along x- and y- axes for
source fiber diameters (a) 50 µm, (b) 100 µm, and (c) 200 µm. Corresponding epithelial sensitivity plots
for source fiber diameters (d) 50 µm, (e) 100 µm, and (f) 200 µm. Width of the green region at the center
of each of the plots indicates the size of the source (color online only).
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Figure 4. For probe geometry-II and source fiber diameter 50 µm, the collected SRR along x- and y- axes
for bevel angles (a) β = 30◦, (b) β = 45◦, and (c) β = 60◦,. Corresponding epithelial sensitivity plots
for bevel angles (d) β = 30◦, (e) β = 45◦, and (f) β = 60◦. Width of the green region at the center of
each of the plots indicates the size of the source (color online only).

4. Materials and Methods

4.1. Preparation of Two Layered Phantoms

An epithelial tissue-mimicking phantom was prepared with scatterers, absorbers and a medium
to hold these optically interactive agents homogeneously. Nigrosin dye was chosen as the absorber,
and Intralipid-20 (IL-20) was used as the scatterer which is commonly used for UV-visible region
of light. The concentrations of the absorber and scatterer can be chosen to prepare phantoms with
desired optical properties. An epithelial tissue-mimicking phantom was prepared with a 300 µm thin
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superficial layer mimicking the epithelium, and the bottom layer mimicking stroma was chosen to be
1.97 cm thick.

Two optical phantoms were with optical properties: (1) µa (top) = 2 cm−1, µs (top) = 40 cm−1,
µa (bottom) = 4.3 cm−1, µs (bottom) = 250 cm−1, (2) µa(top) = 2.5 cm−1, µs (top) = 55 cm−1,
µa (bottom) = 4.3 cm−1, µs (bottom)= 250 cm−1 mimicking normal and precancerous cervical tissue,
respectively [50].

4.2. Instrumentation

4.2.1. Proposed Design of Probe and Fabricated Prototype

Based on the simulation results presented in the previous Sections 3.2–3.4, a probe as depicted in
Figure 5a was designed for the diagnosis of cervical precancer. Figure 5b displays the design of the tip
of the probe which consists of two concentric stainless steel tubes. Inner tube with inner and outer
diameters of 340 and 410 µm respectively contains 19 fibers of diameter 50/65 µm. The outer tube
has 1.16 mm inner and 5 mm outer diameter and it contains the first tube at the center and 58 fibers
of diameter 100/125 µm between the vacant space. The proximal end of the probe is a stainless steel
cylindrical body (diameter 5 mm and length 15 cm) containing fibers. All the fibers at the proximal
end of the probe are polished at 45◦ (the bevel angle) with respect to the axis of the cylinder. At the
distal end, these fibers are bifurcated and can be connected to the detectors or the source individually.

Figure 5. (a) Schematic diagram of designed probe, (b) perpendicular cross section of probe near
proximal end as per the proposed design, (c) fabricated prototype of the probe, (d) beveled tip of the
probe at proximal end, (e) arrangement of fibers on the tip of probe at proximal end (after fabrication)

The proposed probe was fabricated at FiberTechOptica, Ontario, Canada and is shown in Figure 5c.
The beveled proximal end and the tip of the probe are depicted in Figure 5d,e respectively. Because of
manufacturing limitations, the fabricated prototype of the probe does not have the symmetric
arrangement of the inner ring fibers as proposed in the design (Figure 5b).

4.2.2. Experimental Set-up

The schematic diagram and photograph of the steady-state SRR measurement set-up is
demonstrated in Figure 6.
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Figure 6. (a) Schematic diagram, and (b) photograph of experimental set-up used to collect steady
state spatially resolved reflectance; LS—Light Source, P—Probe, D—Detector, CDCS—Constant DC
current supply, TC—temperature controller, P1—Proximal end of probe, P2—Distal end of probe, M1
and M2 are stepper motors connected for x-axis and y-axis translation, CPS—Chopper power supply,
F74—fiber number 74 in Figure 5e used as source fiber.

The set-up consists of three major parts: a light source (LS), a probe (P) and a light detection
system (D). Here the light source (LS) provides a laser light of center wavelength 450 nm. This light
source includes a PL450B (THORLABS) laser diode on a mount connected to a constant DC current
supply to drive the diode and a temperature controller. The laser diode emits constant power output
which is chopped at 200 Hz by a chopper. The probe (P) is used to deliver the light from the light
source to the surface of the sample and transmit the collected backscattered light at different spatial
locations on the surface of the sample to the detector (D). The design and arrangement of fibers in
the probe is explained in Section 4.2.1. The proximal end (P1) of the probe is kept onto the surface
of the sample. One of the fibers (Fiber number 74 in Figure 5e), approximately at the center of the
proximal end (P1) is coupled to the chopped the light source to irradiate the sample. Distal ends (P2)
of remaining fibers are connected to a brass plate, which is mounted on an x-axis translation stage
connected to a stepper motor (M1). Light coming out from the distal end of each fiber (except fiber
number 74) is collected by a photomultiplier tube (PMT) (Hamamatsu R928), which is also mounted
on a y-axis translation stage through another stepper motor M2. The relative motions of the x-axis
and y-axis translation stages couple light sequentially from each of the fibers to PMT. The signal from
PMT is fed to a lock in-amplifier (Model no: SRS-830). A reference signal obtained from the chopper
power supply is also fed to the lock-in amplifier. The stepper motors (M1 and M2), as well as the
lock-in amplifier are interfaced to the computer and a LABVIEW based program has been developed
to automate the entire system and collect signal from each of the output fibers.

4.3. Validation of Measured Reflectance and Epithelial Sensitivity with Simulated Results

The probe was calibrated for uniform illumination by storing the intensity value of each
fiber. Inverse of this intensity value was saved as a correction factor of each fiber of the probe.
A homogenous intralipid solution of scattering coefficient µs = 100 cm−1 was irradiated using
source fiber (fiber number 74 in Figure 5e) and reflectance was measured from each of the fibers.
The reflectance measured from each fiber was multiplied by the calibration factor to obtain a corrected
spatially resolved reflectance pattern. The measured corrected spatially resolved reflectance was
compared with the modified MC (Section 3.1) simulated data and shown in Figure 7a,b for fiber
numbers 1 to 58 except 24, 25, 26 and 40 (these fibers were not connected to light detection system due
to lack of collection efficiency).
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Figure 7. Comparison of simulated data and experimental data (a) for 53 outer ring fibers from 1 to 58
(measurement was not taken for fibers 24, 25, 26, 40 and 46) and (b) for all fibers of inner ring from 59
to 77, and (c) epithelial sensitivity measurement for inner ring fibers.

For epithelial sensitivity measurement, SRR was measured from a two-layered phantom prepared
with a highly absorbing (µa = 100 cm−1) and minimally scattering (µs = 0.001 cm−1) bottom layer,
and the optical properties of the top layer were chosen as µa = 2.5 cm−1, µs = 40 cm−1 and thickness
of top layer = 300 µm. The reflectance from each fiber was experimentally measured and corrected.
The highly absorbing and minimally scattering bottom layer ensures that the photons which once enter
the bottom layer have a negligible probability of exiting to the top layer and contribute to the SRR.
Therefore, the measured SRR for such a phantom is an indicator of the epithelial sensitivity. Numerical
SRR data was generated for a phantom with the same optical properties as the aforementioned
two-layer phantom using the modified MC code. The experimentally measured and numerically
computed epithelial sensitivity for fibers 59 to 77 are plotted in Figure 7c indicating good agreement
between the experiment and the simulation. The other fibers collect photons traveling majorly in
bottom layer which were absorbed and so the reflectance values on fiber numbers 1 to 58 were very
low. These did not match with the simulated data primarily due to low SNR.

4.4. Schemes for Recovery of Optical Parameters

4.4.1. Generation of MC Look-Up Table

Modified MCML (Section 3.1) program was executed to simulate the SRR as well as the epithelial
sensitivity at each of the 76 detector fibers for a set of fixed (known) and free (unknown) optical
parameter values. The term ’free’ refers to the parameters which we aim to reconstruct. In this study
the goal is to extract the optical parameters of the epithelium layer and hence the scattering and
absorption coefficients of the top layer are considered as the free optical parameters. The values of free
parameters for which the simulations are executed are chosen a priori, based on our knowledge of the
range of the optical parameters for the tissue to be probed.

We tabulated the synthetic SRR data for top layer absorption coefficients: µt
a = 1, 3, 5, 7 and

9 cm−1 and scattering coefficients: µt
s = 20, 40, 60, 80, and 100 cm−1. We further generated SRR data

for absorption coefficients: 1–9 cm−1 in steps of 0.05 cm−1 and scattering coefficient: 20–100 cm−1 in
steps of 1 cm−1 using cubic interpolation. This process builds the three-dimensional MC-LUT of size
(76× 161× 81).

4.4.2. Extraction of Free Optical Parameters

The inversion scheme minimizes the error between the synthetic SRR tabulated in MC-LUT and
the measured SRR from the unknown sample, and the minimizer thus obtained is the extracted optical
parameter of interest.
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Problem-I: The first minimization problem we solve is to recover the absorption coefficient of the
top layer µt

a, if the top layer scattering coefficient µ̃t
s, and both the optical parameters of the bottom

layer (µ̃b
a, µ̃b

s ) are known, that is

µ̂t
a = arg min

µt
a

ε(µt
a) = ||Rmeas − Rpred(µt

a, µ̃t
s, µ̃b

a, µ̃b
s )||22 (4)

where Rmeas = (Rmeas
1 , Rmeas

2 , ...Rmeas
N ), and Rpred = (Rpred

1 , Rpred
2 , ...Rpred

N ) represent the measured and
predicted SRR values, respectively, at N detection fibers. While carrying out numerical validations
(Section 5.1), Rmeas refers to synthetic SRR measurements from the sample with unknown optical
properties and in case of experimental studies (Section 5.2) it refers to the experimentally measured SRR.

Problem-II: Next, we aim to recover the scattering coefficient of the top layer µt
s, given the top

layer absorption coefficient µ̃t
a and both the optical parameters of the bottom layer (µ̃b

a, µ̃b
s ), by solving

the minimization problem:

µ̂t
s = arg min

µt
s

ε(µt
s) = ||Rmeas − Rpred(µ̃t

a, µt
s, µ̃b

a, µ̃b
s )||22 (5)

Problem-III: In order to recover both the optical parameters of the top layer (µt
a, µt

s) for known
optical parameters of the bottom layer (µ̃b

a, µ̃b
s ), the following minimization problem needs to be solved:

µ̂t
a, µ̂t

s = arg min
µt

a ,µt
s

ε(µt
a, µt

s) = ||Rmeas − Rpred(µt
a, µt

s, µ̃b
a, µ̃b

s )||22 (6)

5. Results and Discussion

We carried out a detailed step-by-step analysis to study the potential of the fabricated probe
to recover the optical parameters of a two-layered numerical phantom from numerical as well as
experimental data.

5.1. Numerical Studies

The modified MC simulations (Section 3.1) were executed for two-layered numerical media for
the desired optical parameters and SRR was extracted from the locations which mimic the positions of
detection fibers of the probe. The synthetic SRR data was then contaminated with 5% Gaussian noise.
The data thus procured, mimics the experimental SRR measurement collected by the fabricated probe.

5.1.1. Recovery of the Absorption Coefficient of the Top Layer

We first considered Problem-I mentioned in Section 4.4.2. The absorption and scattering
coefficients of the bottom layer were fixed at 4.3 cm−1 and 250 cm−1. The scattering coefficient
of the top layer was chosen to be 40 cm−1, and the values of true and extracted absorption coefficients,
obtained by solving Equation (4) are tabulated in Table 1.

Table 1. Reconstruction of absorption coefficient of the top layer from simulated data with prior
knowledge of scattering coefficient of top layer and both optical properties of bottom layer (Problem-I).

Phantom ID
True Value

µa (cm−1)
Extracted Value

µa (cm−1)
Std. Deviation

(cm−1)

1 2.0 1.9 0.1
2 2.5 2.4 0.1
3 4.0 4.0 0.2
4 6.0 6.0 0.2
5 8.0 8.0 0.2
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5.1.2. Reconstruction of Only Scattering Coefficient of Top Layer

We now solved Problem-II mentioned in Section 4.4.2. The absorption and scattering coefficients
of the bottom layer were fixed at 4.3 cm−1 and 250 cm−1. The absorption coefficient of the top layer
was chosen to be 3 cm−1, and the values of true and extracted scattering coefficients, obtained by
solving Equation (5) are tabulated in Table 2.

Table 2. Reconstruction of scattering coefficient of top layer from simulated data with prior knowledge
of absorption coefficient of top layer and both optical properties of bottom layer (Problem-II).

Phantom ID
True Value

µs (cm−1)
Extracted Value

µs (cm−1)
Std. Deviation

(cm−1)

1 30 31 3
2 50 51 2
3 70 69 2
4 90 91 2

5.1.3. Simultaneous Reconstruction of Absorption and Scattering Coefficient of Top Layer

We then implemented the MC-LUT based optimization to solve Problem-III mentioned in
Section 4.4.2. Synthetic SRR data were generated using MC simulation for two-layered numerical
phantoms. The absorption and scattering coefficients of the bottom layer were fixed at 4.3 cm−1 and
250 cm−1. The true and recovered values of the optical parameters of the top layer, obtained by solving
Equation (6) are tabulated in Table 3.

Table 3. Simultaneous reconstruction of absorption and scattering coefficients of the top layer from
simulated data with prior knowledge of both the optical properties of bottom layer.

Phantom
True Value

(cm−1)
Extracted Value

(cm−1)
Std. Deviation

(cm−1)

µa µs µa µs δµa δµs

1 5.2 72 5.4 74 0.1 2
2 1.7 72 1.6 69 0.2 3
3 5.2 32 5.4 36 0.1 4

It is well established that the optical parameters of the bottom layer can be recovered with little
error [4,15,25–27,31,47,48]. Therefore, we carried out the recovery of the top layer optical parameters,
when the optical parameters of the bottom layer are known with ∼10% error and the results thus
obtained are tabulated in Table 4. The first two columns of Table 4 consist of the true values of the
optical parameters of the numerical phantoms. However, the MC-LUT used for extraction of top
layer optical parameters correspond to the bottom layer optical parameters µa = 4.3 cm−1 and
µs = 250 cm−1. We observed that the inaccuracy in the optical properties of the bottom layer affects
the accuracy of the recovered top layer absorption coefficient (∼20% error). However, the top layer
scattering coefficient is still recovered accurately (<6% error).
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Table 4. Simultaneous recovery of absorption and scattering coefficients of the top layer from simulated
data, when the bottom layer optical parameters are known with ∼10% error.

Phantom

True Value
(Top Layer)

(cm−1)

True Value
(Bottom Layer)

(cm−1)

Extracted Value
(Top Layer)

(cm−1)

Std. Deviation
(cm−1)

µa µs µa µs µa µs δµa δµs

1 5.2 72 3.8 225 6.0 73 0.3 2
2 5.2 72 3.8 275 6.2 74 0.2 2
3 5.2 72 4.8 225 6.1 74 0.3 2
4 5.2 72 4.8 275 5.9 73 0.3 2

5.2. Experimental Studies

We prepared two phantoms; one mimicking a normal and the other mimicking a pre-cancerous
cervical tissue. The fiber optic probe (probe-geometry II) was employed to measure the SRR.
We performed the simultaneous recovery of optical parameters of the top layer from the experimental
SRR data procured using the probe. Details of the probe, phantom preparation, and the experimental
setup have already been described in Section 4. The choice of optical parameters of the cervical
tissue-mimicking phantoms was based on [12,50]. The algorithm proposed to solve Equation (6) was
numerically validated in Section 5.1.3 and was implemented on the experimental data to recover the
absorption and scattering coefficients of the top layer simultaneously. The results thus obtained are
tabulated in Table 5. The algorithm was able to extract the absorption and scattering coefficients of the
top layer with a maximum of 6.7% and 3.3% errors Error = TrueValue−RecoveredValue

TrueValue × 100), respectively,
as compared to their true values.

Table 5. Simultaneous reconstruction of absorption and scattering coefficients of the top layer from
experimental SRR data with prior knowledge of both the optical properties of bottom layer.

Phantom
True Value

(cm−1)
Extracted Value

(cm−1)
Std. Deviation

(cm−1)
Error
(%)

µa µs µa µs δµa δµs εµa εµs

1 3.0 60 3.2 58 0.2 2 6.7 3.3
2 2.5 80 2.4 82 0.3 3 4 2.5

6. Conclusions

In the early stages of epithelial cancer, changes occur in the structure and biochemistry of
200–500 µm thick epithelium layer. In this paper, we carry out a detailed numerical evaluation
of various probe geometries for early diagnosis of epithelial pre-cancer based on spatially resolved
reflectance. It was concluded that a parallel-oblique fiber-optic probe, beveled at β = 45◦, and with
minimal source detector distance is an appropriate choice. The fiber-optic probe was accordingly
fabricated. The experimental SRR and epithelial sensitivity measurements for test phantoms were
performed and were found in good agreement with computational data. Synthetic SRR data was
generated by MC code for two-layered epithelial tissue phantoms, and contaminated with 5% Gaussian
noise. Optical parameters of the top layer were accurately recovered using a MC-look up table based
inversion scheme. To further check the efficacy of the algorithm, the top layer optical parameters
were extracted from the SRR data, using the MC-LUT, when there was ∼10% error in the recovered
optical parameters of the bottom layer. The top layer absorption coefficient thus recovered was found
to be off by ∼20% of its true value, while the scattering coefficient was recovered quite accurately
with a <6% error (Table 4). After the scheme of simultaneous recovery of absorption and scattering
coefficients of top layer was numerically validated, it was further employed on experimental SRR
measurements obtained using the fabricated probe from epithelial tissue-mimicking two-layered
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phantoms. The top layer optical parameters were accurately recovered with absorption and scattering
coefficients extracted within 6.7% and 3.3% of their respective true values.

The top layer optical properties were reconstructed by measuring only spatially resolved
reflectance measurements at a single wavelength (450 nm). The other methods, reported in [15,50] use
white-light source and spectrometer to collect spectral reflectance to extract optical properties of the
superficial layer of the phantom. In comparison to other methods the proposed probe in combination
with the laser source and light detector renders to be more accurate and sensitive for the epithelial
layer’s discriminative signatures, and hence, has the potential to be a competent tool for the diagnosis
of cervical cancer at early stages. The developed system can be further improved for fast reconstruction
by using only some fibers with higher epithelial sensitivity. The spectral measurements with this probe
can extract more features related to superficial layer to enhance the discrimination among various
pre-cancerous and normal stages of cervical cancer and make the foundations for our future efforts to
focus on in-vitro samples.
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