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Use of second order sensitivity information has been shown in the literature to yield faster convergence,
better noise tolerance and localisation besides enhanced post-reconstruction analysis capabilities. In this
paper we derive adjoint based second-order derivatives for SPN approximation modeled fluorescence
optical tomography. We modify the regularizing Levenberg-Marquardt method to use the second-order
sensitivity information through a predictor-corrector framework. Reconstruction studies presented for
the fluorophore absorption coefficient in low as well as high scattering tissue-mimicking phantoms in
both, ideal and differential fluorophore-uptake settings show consistently superior noise tolerance and
contrast recovery with the second order scheme as compared to its first-order counterpart. © 2019 Optical

Society of America
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1. INTRODUCTION

The inverse problem in optical tomography, to recover an optical
parameter ‘p’, is often cast as a residual minimisation problem,
or a model-fitting problem involving a non-linear system of
equations. The central idea in derivative based approaches to
solve this problem is to model the residual (or the cost function)
in terms of its first order (FO) or second order (SO) Taylor series
approximation about the current iterate p(k). Several works in
the literature make use of the FO derivative [1–3] or at most
approximations to the SO derivative [4]. Two reasons are often
cited in support of the general reluctance in using SO deriva-
tives. The first is that close to the solution, the small residual
approximation [5] or the assumption of mild non-linearity [3, 6]
can be used which renders the contribution of the higher order
terms negligible. The second is that the evaluation of the SO
derivatives is computationally expensive.

However, studies in the literature [7–9] suggest that there
may be more to gain by dropping the mild non-linearity and
small residual assumptions. Convergence issues related to the
use of FO derivative based schemes in such scenarios are well es-
tablished in the literature [3, 7, 10]. When the initial guess is not
too close to the actual solution, the contributions from the sec-
ond order terms are significant, especially in the initial iterates
when the residual is large [8]. Previous works have shown that
the use of the SO derivative or approximations to it, offers sev-
eral advantages in the solution of the inverse problem, namely,
faster convergence [4, 9, 11], better contrast recovery [8], and

in some cases better reconstructions [4, 9, 12]. In [4], Klose and
Hielscher demonstrate that the Quasi Newton (QN) schemes ex-
hibit early convergence as compared to the Conjugate Gradient
(CG) method using FO derivatives. For the fluorescence diffuse
optical tomography problem, Roy and Muraca [7] demonstrate
the use of a truncated Newton scheme. They directly compute
the required Hessian-vector products using a finite difference
scheme over the gradient. A second order scheme for solving
the inverse problem using a predictor-corrector approach, de-
veloped by Hettlich and Rundell [9] (referred to as the second
degree method by the authors, and also by us in the rest of the
text), has been used by Kanmani and Vasu [8] in a non-linear
CG framework, which afforded better contrast recovery of the
absorption coefficient in the diffusion optical tomography prob-
lem. In [11], Kress and Lee observe that this second degree
method allows flexibility in choice of initial guess as well as
the regularisation parameter in an inverse obstacle scattering
problem.

The second degree method of Hettlich and Rundell in essence
attempts to improve on the FO predicted update by making use
of the SO information in the corrector. A similar idea has been
proposed by Transtrum and Setna in [5] to improve the perfor-
mance of the Levenberg-Marquardt scheme in certain situations.
They prescribe a SO correction for the FO update which signif-
icantly improves the success rate and fit quality in the broad
class of optimisation problems studied by them. In a more recent
work, Gould et al [13] describe a higher order method which
makes use of SO derivatives of the residual for solving non-
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linear least squares problems. They observe that the higher
order scheme is more robust in terms of the choice of initial
guess and requires fewer function evaluations on average in the
test cases considered by them. While these studies suggest that
considerable gains may be afforded by use of SO schemes in
the reconstruction problem, the chief impediment to their use is
the computational effort required to evaluate the SO derivatives.
The development of a computationally efficient scheme for eval-
uation of the exact SO derivatives, thus, has potential to improve
the quality of reconstructions in optical tomography through
facilitating the use of full Newton type schemes. In addition, the
availability of the SO sensitivities, makes it feasible to perform
numerical post-reconstruction analysis to check the iterates for
convergence [14].

The main contributions of the present paper are (i) the ex-
plicit evaluation of the SO adjoint sensitivities of exiting partial
current for the SPN approximation modeling fluorescent radi-
ation transfer, and (ii) demonstration of the efficacy of using a
regularizing Levenberg-Marquardt method modified to use SO
sensitivity information through a predictor-corrector framework,
to solve the fully non-linear fluorescence optical tomography
(FOT) inverse problem.

For a tomographic problem with Nd detectors, Ns sources
and Np parameters, the evaluation of the FO and SO sensitivity
requires O(Np Ns) and O((Np Ns)2/2) large scale computations
(forward solves) respectively using a finite difference scheme.
The FO sensitivity can be efficiently computed by using adjoints
with only O(Nd + Ns) large scale computations (forward + ad-
joint solves) [15, 16]. This is useful when Np is much larger than
the total number of measurements Nd Ns. One approach to evalu-
ate the SO sensitivity is to compute it as the first difference of the
FO adjoint sensitivity at the additional cost of O(Np(Nd + Ns))
computations. This scheme is particularly amenable to eval-
uation of Hessian-vector products [7]. An alternate approach
amenable to parallelization is to evaluate the SO sensitivity di-
rectly using an adjoint based scheme; this is the focus of the
present work.

Adjoint based schemes have been popularly used in the eval-
uation of the FO sensitivities ([1, 15, 16] and references therein).
In the field of reactor physics a framework for the SO adjoint
perturbation theory has been developed by Greenspan [17] for
time-independent and by Gilli et al [18] for time-dependent
problems. Using a scheme similar to [18], SO adjoint sensitivi-
ties have also been presented by Kanmani and Vasu [8] for the
elastic scattering problem under the diffusion approximation
(DA). A general theory for development of SO adjoint sensitvity
for large-scale linear systems with mixed boundary conditions is
presented by Cacuci in [19]. In this scheme, the SO sensitivity is
defined as the first variation of the FO sensitivity. Two additional
adjoints are then defined that allow the efficient computation
of the SO sensitivity at the cost of O(Np(Nd + Ns)) large scale
computations.

We use the scheme developed by Cacuci [19] to derive an
explicit expression for the SO adjoint sensitivities. While SO ad-
joint sensitivites have been derived in earlier works relevant to
the elastic scattering problem under the DA [8, 20], to the best of
our knowledge, no such works exist for the FOT problem under
the SPN approximation. Besides the forward model employed,
our scheme differs from that of Kanmani and Vasu [8] in the
nature of the adjoints employed, since the parameter variations
on the boundary are accounted for in our work, while they are
neglected in [8]. The SP3 approximation has wider applicability

[16] than the more popular DA and requires minimal increase
in computation over it [21]. It is also computationally less de-
manding than solving the full radiative transfer equation and its
higher order approximations while being more accurate than the
DA [21]. In [22], Lu et al have demonstrated that the SPN approx-
imation is better suited than the DA for the linearised problem
in FOT. Considerable reduction in the computational time has
been demonstrated with a vectorized implementation of the
adjoint scheme for evaluating the FO sensitivities in [15, 16].
Vectorization in MATLAB refers to the process of modifying
loops in the code to use matrix and vector operations efficiently.
Since MATLAB is optimised for using matrices, an appropriate
vectorization strategy can lead to considerable speedup in im-
plementation time. In our work, vectorized implementations for
global FEM matrix assembly as well as FO adjoint sensitivity
computations as proposed in [15], are used to speed up the SO
adjoint sensitivity computations wherever possible; albeit at the
cost of memory.

To exhibit the feasibility of using the evaluated sensitivities,
we consider the FOT inverse problem to reconstruct the fluo-
rophore absorption coefficient in the medium. We use a regular-
izing Levenberg-Marquardt (LM) method [23], [24], [16] modi-
fied to make use of the second derivative information through
the predictor-corrector approach of Hettlich and Rundell [9]. We
contrast the reconstructions so obtained with a scheme using
a conventional first-derivative based regularizing LM method.
Numerical results are presented for phantoms in low scattering
and high scattering settings for noiseless and noisy data sets with
both ideal (no background fluorescence) and differential (with
background fluorescence) uptake of fluorophore. Validation of
the adjoint-based SO sensitivities with respect to finite differ-
ences for the elastic scattering problem in optical tomography
has been reported by us earlier in [25].

This manuscript is structured as follows, in section 2 we de-
scribe the forward model used. A detailed derivation of the
SO adjoint sensitivity for the FOT Problem is presented in sec-
tion 3. The finite element method calculations and vectorized
implementation are given in section 4. We briefly describe the
inverse problem and discuss the numerical studies in section 5
and section 6 has the conclusions. The appendix contains the
details of the FEM calculations for the additional adjoint sources
used in our formulation.

2. THE SP3 APPROXIMATION

The SP3 approximation to the coupled radiative transfer equa-
tion modeling the generation and propagation of fluorescent
radiation is given in matrix form as [16]:

−∇ · C∇∇φ + Cφ = 0 (1)

C∇b(n · ∇ϕ) + Cbφ = CS (2)

where

C∇ =

C∇x 0

0 C∇m

 C =

 Cx 0

−Cβ Cm

 Cb =

Cbx 0

0 Cbm


C∇b =

C∇bx 0

0 C∇bm

 n · ∇φ =

n · ∇φx

n · ∇φm

 ∇ =

∇ 0

0 ∇


CS =

[
CSx , 0

]T
φ = [φx , φm]T n = diag ([n, n])
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Here ‘x, m’ denote quantities at excitation and emission wave-
length respectively. φx/m = [φx/m

1 , φx/m
2 ]T denotes the compos-

ite moments of radiance [21]. The 2× 2 coefficient matrices de-
pend on the modulation frequency of the source ω (Hz) as well
as the optical properties of the medium and fluorophore namely
the intrinsic absorption coefficient µx/m

ai (cm−1), the scattering
coefficient µx/m

s (cm−1), the fluorophore absorption coefficient
µx/m

a f (cm−1), the fluorescent yield η, the fluorescence lifetime
τ(ns), the anisotropy factor g and the refractive index of the
medium nm and are defined as,

C5x/m =

 1
3µx/m

a1
I 0

0 1
7µx/m

a3
I

C5bx/m =

 1+B1

3µx/m
a1

− D1

µx/m
a3

− D2

µx/m
a1

1+B2

7µx/m
a3


Cx/m =

 µx/m
a0 − 2

3 µx/m
a0

− 2
3 µx/m

a0 ( 4
9 µx/m

a0 + 5
9 µx/m

a2 )

 I = diag ([1, 1])

Cbx/m =

 ( 1
2 + A1) −( 1

8 + C1)

−( 1
8 + C2) ( 7

24 + A2)

 Cβ =

 β − 2
3 β

− 2
3 β 4

9 β


with µx/m

an = µx/m
ai + µx/m

a f + (1− gn)µx/m
s +

iω
c

β =
ηµx

a f

1− iωτ
, n · ∇ϕ(x/m) =

n · ∇ϕx/m
1

n · ∇ϕx/m
2


n =

[
nx, ny

]T , ∇ = diag
([
∇,∇

])
, ∇ =

(
∂

∂x
,

∂

∂y

)T

For a source distribution S(r, Ω), with Ω denoting the direction
vector, r the spatial coordinate and n the unit normal, the source

vector at excitation is evaluated as

CSx =

 ∫
Ω·n<0 S(r, Ω)2|Ω · n|dΩ∫

Ω·n<0 S(r, Ω)(5|Ω · n|3 − 3|Ω · n|)dΩ


The measurement at the jth detector is defined as the exiting

partial current on the boundary, and is expressed in terms of the
composite moments as

j+(rj) = C Jφ− C∇J(n · ∇φ) = C̃ J(rj)φ|rj (3)

with C̃ J = C J + C∇J(C∇b)−1Cb. Here j+ =
(

j+x, j+m)T , C J =

diag
([

C Jx, C Jm]) and C∇J = diag
([

C∇Jx, C∇Jm
])

with

C Jx/m =

(
( 1

4 + J0) [(− 2
3 )(

1
4 + J0) +

1
3 (

5
16 + J2)]

)
δ(r− rj),

C∇Jx/m =

(
(0.5+J1)

3µx/m
a1

J3

7µx/m
a3

)
δ(r− rj) and the terms {Ji} are

evaluated as in [21]. In our notation the explicit dependence of
the various quantities involved on the spatial coordinate ‘r’ is
suppressed for brevity.

3. EVALUATION OF THE SECOND ORDER ADJOINT
SENSITIVITY

In the present work we use the method described by Cacuci [19]
to derive the SO adjoint sensitivities. We begin by briefly sum-
marising the derivation of the analytical FO sensitivity from our
earlier work [16]. The SO sensitivity is defined as a perturbation

of the FO adjoint sensitivity. Adjoint variables Θ and Λ are then
appropriately defined to obtain an analytical expression for the
SO adjoint sensitivity.

A. The first order adjoint sensitivity
Let pi denote an optical property such as (µx

ai, µx
a f , µx

s , g, ...).
From 3, we see that the exiting partial current j+ is a function of
(pi, φ). Therefore, the first variation of the measurement when
the optical parameter pi is perturbed is given by

δj+ =
∂
(
C̃ Jφ

)
∂pi

δpi +
∂
(
C̃ Jφ

)
∂φ

δφ = C̃ Jδφ (4)

where δφ ≡ δφ [pi, δpi]. Here, we neglect the variation of the
parameter value at the detector location.

The relationship between the variation in parameter value
δpi and the variation in fluence δφ is obtained from 1 and 2 as
the first order perturbation equation [16],

−∇ · C∇∇δφ + Cδφ = ∇ · ∂C∇

∂pi
δpiφ−

∂C
∂pi

δpiφ (5)

and the perturbed boundary condition,

C∇b (n · ∇δφ) + Cbδφ = − ∂C∇b

∂pi
δpi(n · ∇φ) (6)

We now define an adjoint Ψ ≡

Ψxx Ψxm

Ψmx Ψmm

 with Ψαγ =Ψαγ
1 ,

Ψαγ
2

 , (α, γ = x/m), through the adjoint equation,

−∇ · (C∇)T∇Ψ + CTΨ = CR
int (7)

with adjoint boundary conditions

(C∇)T(n · ∇Ψ) + (Cba)TΨ = CR
bnd (8)

where Cba = diag
([

Cbax, Cbam
])

and Cbax/m =

C∇x/m(C∇bx/m)−1Cbx/m and Ψαγ
1,2 are the composite mo-

ments of the adjoint field analagous to φx,m
1,2 . As pointed by

Fedele et al [15], since the radiance at emission does not affect
that at excitation, the component Ψmx = 0. CR

int and CR
bnd are

as yet undefined adjoint sources in the interior and on the
boundary respectively.

We now operate on the perturbation equation 5 with∫
V ΨT(·)dV,∫

V
ΨT
(
−∇ · C∇∇δφ + Cδφ

)
dV

=
∫

V
ΨT

(
∇ · ∂C∇

∂pi
∇φ− ∂C

∂pi
φ

)
δpidV (9)

Using integration by parts twice, we get∫
V

(
−∇ ·

(
C∇
)T
∇Ψ + CTΨ

)T
δφdV

−
∫

∂V

(
ΨTC∇(n · ∇δφ) +

(
(C∇)T(n · ∇Ψ)

)T
δφ

)
dσ

=
∫

V
ΨT
(
∇ · ∂C∇

∂pi
∇φ− ∂C

∂pi
φ

)
δpidV (10)
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We use the forward (eq. 2) and perturbed boundary conditions
(eq. 6) to simplify the above expression to,

∫
V

(
−∇ ·

(
C∇
)T
∇Ψ + CTΨ

)T
δφdV

−
∫

∂V

(
(C∇)T(n · ∇Ψ) + (Cba)TΨ

)T
δφdσ

=
∫

V
ΨT

(
∇ · ∂C∇

∂pi
∇φ− ∂C

∂pi
φ

)
δpidV

+
∫

∂V
ΨTC∇bp

i φδpidσ (11)

with C∇bp
i = diag(

[
C∇bpx

i , C∇bpm
i

]
) and

C∇bpx/m
i = C∇x/m(C∇bx/m)−1 ∂C∇bx/m

∂pi
(C∇bx/m)−1Cbx/m.

In order to obtain the adjoint sensitivity w.r.t the exiting par-
tial current, we set in 7 and 8

CR
int = 0 and CR

bnd =
(

C̃ J(rj)
)T

δ(r− rj) (12)

Using 7 and 8, with the adjoint sources as defined above in 12,
we can now write an expression for FO partial sensitivity as,

δj+i =
∫

V
ΨT

(
∇ · ∂C∇

∂pi
∇φ− ∂C

∂pi
φ

)
δpidV

+
∫

∂V
ΨTC∇bp

i φδpidσ (13)

≡ Jiδpi =

 Jx
i

Jm
i

 δpi (14)

where

Jx/m
i =

∫
V
(Ψx/m)T∇ · ∂C∇

∂pi
∇φdV

−
∫

V
(Ψx/m)T ∂C

∂pi
φdV +

∫
∂V

(Ψx/m)TC∇bp
i φdσ (15)

with Ψx =

Ψxx

0

 and Ψm =

Ψxm

Ψmm

.

Since the adjoint Ψ depends on the nominal value pi but not
on the perturbation δpi, the set of equations 7 and 8 need to be
solved only once to evaluate all the partial sensitivities, Ji.

B. Second order adjoint sensitivity
We will now proceed to apply the method of adjoints to derive

the (i, j)th component, ∂j+
∂pi∂pj

, of the SO sensitivity. The analytical

FO sensitivity Jx/m
i can be viewed as a functional of (φ, pi, Ψx/m).

We can write the first variation of Jx/m
i w.r.t perturbation of the

optical parameter pj as

δJx/m
i =

∂Jx/m
i

∂pj
δpj +

∂Jx/m
i

∂φx δφx +
∂Jx/m

i
∂φm δφm

+
(

δΨx/m
)T ∂Jx/m

i
∂(Ψx/m)T (16)

≡ Hx/m
ij δpj (17)

where δφ ≡ δφ
[

pj, δpj

]
, δΨ ≡ δΨ

[
pj, δpj

]
. The first term in the

summation can be directly obtained by taking the derivatives of
the relevant coefficient matrices in eq. 15, as

∂Jx/m
i

∂pj
=
∫

V

(
Ψx/m

)T
∇ · ∂2C∇

∂pj∂pi
∇φdV

+
∫

∂V

(
Ψx/m

)T ∂C∇bp
i

∂pj
φdσ (18)

We discuss the evaluation of the partial variations w.r.t φx/m

and Ψx/m below.

B.1. Variation with respect to φ

We define adjoint Θ = [Θx, Θm], with Θx ≡

Θxx

0

, Θm ≡Θxm

Θmm

, and Θαγ =

Θαγ
1 ,

Θαγ
2

, (α, γ = x/m), through the ad-

joint equations

−∇ · (C∇)T∇Θi + CTΘi = Sθ (19)

with adjoint boundary conditions

(C∇)T(n · ∇Θi) + (Cba)TΘi = 0 (20)

We set the source Sθ = diag
([

∂(Jx
i )

T

∂φ , ∂(Jm
i )T

∂φ

])
δ(r − ru).

This enables us to pick out the variation of Jx/m
i w.r.t φ at a

point ru in the domain.

To obtain the source strengths ∂Jx/m
i
∂φ , we use integration by

parts on the first term in 15, and rearrange the terms to obtain
Jx/m
i in an alternate form as,

Jx/m
i =

∫
V

(
∇ ·

(
∂C∇

∂pi

)T

∇Ψx/m − ∂CT

∂pi
Ψx/m

)T

φdV

−
∫

∂V

((
∂C∇

∂pi

)T

(n · ∇Ψx/m)

)T

φdσ

+
∫

∂V

((
C∇bpx

i − ∂C∇

∂pi
(C∇b)−1Cb

)T

Ψx/m

)T

φdσ (21)

We can now write,

∂
(

Jx/m
i

)T

∂φ
=
∫

V
∇ ·

(
∂C∇

∂pi

)T

∇Ψx/mdV

−
∫

V

∂CT

∂pi
Ψx/mdV −

∫
∂V

(
∂C∇

∂pi

)T

(n · ∇Ψx/m)dσ

+
∫

∂V

(
C∇bpx

i − ∂C∇

∂pi
(C∇b)−1Cb

)T

Ψx/mdσ (22)

We now operate on the perturbation eq. 5 corresponding to
parameter pj, with

∫
V
(
Θx

i
)T

(·)dV,∫
V
(Θx

i )
T
(
−∇ · C∇∇δφ + Cδφ

)
dV

=
∫

V
(Θx

i )
T

(
∇ · ∂C∇

∂pj
φ− ∂C

∂pj
φ

)
δpjdV (23)

As with the evaluation of δj+i , we work through this equation
using integration by parts and use the definition of the adjoint
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(eq. 19 and eq. 20) along with the perturbed boundary condition
(eq. 6), to obtain(

∂Jx
i

∂φx δφx
)

j
=
∫

V
(Θx

i )
T ∇ · ∂C∇

∂pj
δpj∇φdV

−
∫

V
(Θx

i )
T ∂C

∂pj
δpjφdV +

∫
∂V

(Θx
i )

T C∇bp
j φdσ (24)

Note: ∂Jx
i

∂φm = 0

Similarly by operating on 5 with
∫

V
(
Θm

i
)T

(·)dV and simpli-
fying we can write(

∂Jm
i

∂φx δφx +
∂Jm

i
∂φm δφm

)
j
=
∫

∂V
(Θm

i )
T C∇bp

j φδpjdσ

+
∫

V
(Θm

i )
T

(
∇ · ∂C∇

∂pj
∇φ− ∂C

∂pj
φ

)
δpjdV (25)

B.2. Variation with respect to Ψ

As with the forward problem, we can map the change in param-
eter value, δpj, to the change in the adjoint field, δΨx/m, through
the perturbation of the adjoint system of equations 7, 8

−∇(C∇)T · ∇δΨx/m + CTδΨx/m

= ∇ ·
(

∂C∇

∂pj

)T

δpj∇Ψx/m − ∂CT

∂pj
δpjΨ

x/m (26)

and the corresponding perturbed boundary conditions

(C∇)Tn · ∇δΨx/m + (Cba)TδΨx/m

= −
(

∂C∇

∂pj

)T

δpj(n · ∇Ψx/m)−
(

∂Cba

∂pj

)T

δpjΨx/m (27)

We now define another set of adjoints Λ =

Λx

Λm

, satisfying

−∇ · C∇∇Λi + CΛi = SΛ (28)

with boundary conditions

C∇b (n · ∇Λi) + CbΛi = 0 (29)

Analagous to the adjoint source Sθ , we define the adjoint source

SΛ = diag
([

∂Jx
i

∂Ψx , ∂Jm
i

∂Ψm

])
δ(r− ru), with the source strength

∂Jx/m
i

∂(Ψx/m)T =
∫

V

(
∇ · ∂C∇

∂pj
∇φ− ∂C

∂pj
φ

)
dV +

∫
∂V

C∇bp
j φdσ (30)

We note that, operating on the adjoint perturbation equation
26 with

∫
V(·)

T (Λi) dV instead of
∫

V
(
Λi(·)T) dV, as in the pre-

vious cases, allows us to directly obtain the partial sensitivity
in the form of

∫
V ΨT(· · · )ΛidV as opposed to

∫
V Λi(· · · )ΨTdV.

We thus obtain,∫
V

(
−∇ ·

(
C∇
)T
∇δΨx/m + CTδΨx/m

)T
ΛidV

=
∫

V

∇ ·( ∂C∇

∂pj

)T

∇Ψx/m − ∂CT

∂pj
Ψx/m

T

δpjΛidV (31)

As in the previous cases, this can be simplified by using inte-
gration by parts and the perturbed boundary condition (eq. 27)

along with the definition of the adjoints in eq. 28 and eq. 29 to
obtain (

δΨx/m
)T ∂Jx

i
∂(Ψx/m)T =

∫
V

(
Ψx/m

)T
∇ · ∂C∇

∂pj
δpjΛidV

−
∫

V

(
Ψx/m

)T ∂C
∂pj

δpjΛidV

−
∫

∂V

(
Ψx/m

)T
(

∂C∇

∂pj
(C∇)−1Cba +

∂Cba

∂pj

)
δpjΛidσ (32)

B.3. An expression for the second order adjoint sensitivity

Using the partial variations derived in B.1 and B.2 along with
the direct term evaluated in eq. 18, we can now write the (i, j)th

component of the SO sensitivity as

Hx/m
ij =

∫
V

(
Ψx/m

)T
(
∇ · ∂2C∇

∂pi∂pj
∇φ

)
dV

+
∫

∂V

(
Ψx/m

)T ∂C∇bp
i

∂pj
φdσ

+
∫

V

(
Θx/m

i

)T
∇ · ∂C∇

∂pj
∇φdV

−
∫

V

(
Θx/m

i

)T ∂C
∂pj

φdV +
∫

∂V

(
Θx/m

i

)T
C∇bp

j φdσ

+
∫

V

(
Ψx/m

)T
(
∇ · ∂C∇

∂pj
∇Λi −

∂C
∂pj

Λi

)
dV

−
∫

∂V

(
Ψx/m

)T
(

∂C∇x

∂pj
(C∇)−1Cba +

∂Cba

∂pj

)
Λidσ (33)

4. FINITE ELEMENT FORMULATION

The domain of interest V, with boundary ∂V, is discretised into a
structured grid with Nn nodes and Ne triangular elements with
the local basis function NT ≡ [N1, N2, N3] where Ni denote the
standard 2D linear shape functions. The Galerkin finite element
method (GFEM), which employs the trial function NT , is then
used to solve the forward and adjoint problems. The forward
and adjoint composite quantities are approximated as

u ≈ ũ =

NT 0

0 NT


︸ ︷︷ ︸

NT

[u1]

[u2]

 (34)

where u = φx/m, Ψx/m, Θx/m, Λx/m and [·] denote nodal quanti-
ties. The optical parameters, and hence the coefficient matrices,
are considered piece-wise constant over the elements.

The weighted residual form of the system of equations 1 and
2 can be written in block format as [16],

 [Ax] 0

−[Aβ] [Am]


︸ ︷︷ ︸

[A]

 [φx]

[φm]


︸ ︷︷ ︸

[φ]

=

[Sx
F]

0


︸ ︷︷ ︸

S

(35)
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where

Ax/m =
∫

V

([
∇NT

]
C∇x/m [∇N] +

[
NT
]

Cx/m [N]
)

dV

−
∫

∂V
[N]T C∇x/m

(
C∇bx/m

)−1
Cbx/m [N]T dσ (36)

Aβ =
∫

V

[
NT
]

Cβ [N] dV (37)

Sx
F = Q [N(rs)]

T C∇x
(

C∇bx
)−1

CSx (38)

The excitation source is modeled as a point source at rs with
strength Q.

As with the forward problem, we can write the block matrix
form for the weighted residual of the adjoint system of equations
7 and 8 as [16],

[A]T [Ψ] = [SΨ] (39)

with [SΨ] = diag
([
[Sx

Ψ], [S
m
Ψ ]
])

and

[Sx/m
Ψ ] =

[
N(rj)

]T (
C̃ Jx/m

)T
(40)

The finite element form for the sensitivity Jx/m
i can then be

written as [16][Jx
i
][

Jm
i
]
 =

[Ψxx] [Ψxm]

0 [Ψmm]

T

︸ ︷︷ ︸
[Ψ]

 [δAx] 0

−[δAβ] [δAm]


︸ ︷︷ ︸

[δA]

 [φx]

[φm]


︸ ︷︷ ︸

[φ]

(41)
where

δAx/m = −
∫

V

(
∇[N]T

∂C∇x/m

∂pi
∇[N]dV + [N]T

∂Cx/m

∂pi
[N]

)
dV

+
∫

∂V
[N]T

(
C∇bpx/m

i − ∂C∇x/m

∂pi

(
C∇bx/m

)−1
Cbx/m

)
︸ ︷︷ ︸

C̃bx/m

[N]dσ (42)

δAβ =
∫

V
[N]T

∂Cβ

∂pi
[N]dV (43)

We note that the adjoint operator defining Θ (resp. Λ) is the
same as that defining Ψ (resp. φ). Thus, we can write

[A]T [Θi] = [SΘ] (44)

and
[A][Λi] = [SΛ] (45)

where [Θ] = [[Θx], [Θm]], [Λ] = [[Λx]T , [Λm]T ] and [SΘ] =
diag

([
[Sx

Θ], [S
m
Θ]
])

with

[Sx/m
Θ ] = [δA]T [Ψx/m] (46)

and

[SΛ] = [δA] [φ] (47)

A detailed derivation of these adjoint sources is presented in
the appendix.

For the SP3 approximation the uth column of the sources
[Sx/m

Θ ] and [Sx/m
Λ ] is of length 2Nn, with non-zero entries only

at rows corresponding to the uth element. Since [Sx/m
Θ ], [Sx/m

Λ ]
depend on Ψ and φ respectively in addition to the perturbed
quantities, to obtain the elemental SO sensitivity they are defined
as 3D matrices of size 2Nn × Ne × Nd and 2Nn × Ne × Ns respec-
tively. The adjoints [Θi] and [Λi] need to be solved only once
to compute SO sensitivity w.r.t pi. The computational solution

of the system of equations 44 and 45 can be easily parallelised
over the adjoint source vectors by simultaneously computing
[Θi] (resp.[Λi]) either for all the detectors (resp. sources) or el-
ements depending on the computational resources available.
This allows for a faster implementation of the SO sensitivities
as compared to that using a finite difference scheme over the
FO adjoint Jacobians, since the total overhead associated with
distributing the task over multiple processors is lower with the
SO adjoint scheme.

Applying the GFEM to eq. 33, we can write,

[Hij] = [Ψ]T [δ2A][φ] + [Θ]T [δA][φ] + [Ψ]T [δAT ][Λ] (48)

where

δ2A = −
∫

V
∇[N]T

∂2C∇

∂pj∂pi
∇[N]dV

−
∫

∂V
[N]T

(
∂2C∇

∂pj∂pi

(
C∇b

)−1
Cb −

∂C∇bp
i

∂pj

)
[N]dσ (49)

and

δAT = −
∫

V
(∇[N])T ∂C∇

∂pj
∇[N]dV −

∫
V
[N]T

∂C
∂pj

[N]dV

−
∫

∂V
[N]T

∂Cba

∂pj
[N]dσ (50)

Vectorized global FEM matrix assembly
In the SP3 approximation, a generic global FEM matrix G (con-
tributing to formation of Ax/β/m) of size 2Nn × 2Nn can be de-
composed into four global FEM sub-matrices Gij of size Nn×Nn

( corresponding to the (i, j)th component-block of the C-type co-
efficient matrices ). Each of these sub-matrices can be assembled
using the following pseudo-code:

L = repmat(C∗(i, j, :), 3, 3). ∗ K; (51)

Gij = sparse(Iv, Jv, L(:), Nn, Nn); (52)

Note: We use MATLAB’s notation for matrix repetition (‘rep-
mat’), creation of sparse matrix (‘sparse’), elementwise product
(‘.*’) and matrix slicing (‘:’).
‘C∗’ denotes any of the 2× 2× Ne C-type coefficient matrices
and ‘K’ denotes the 3× 3× Ne 2-D counterpart of the K-type
kernel matrices defined in [15]. The index vectors Iv, Jv are 2-D
analogues of those described in [15]. For example, each global
FEM sub-matrix corresponding to Ax can be generated using
the pseudo-code in Code-box 1. The index vectors Is, Js are 2-D
analogues of those described in [15].

Vectorization of global FEM matrix-field products
In the course of evaluating the SO adjoint sensitivity, we come
across products of analytical derivatives with field vectors ‘u′(=
φ, Ψ, Λi, Θi) at several instances of the type

T = [δG] [u] (53)

The matrix δG is built from terms of the type ∂C∗
∂p , and evaluating

the product ‘T’ in a conventional loop-based implementation
would require looping over all the elements (or all the nodes
for a nodal basis implementation). This computation is sped
up by a vectorized implementation. For example, we can com-
pute the matrix-field product [δAx][u] using the pseudo-code
in Code-box 2. Here D = 3(resp.4) for 2-dimensional (resp. 3-
dimensional) and ue = [ue

1, ue
2]

T with ue
i , a D× Ne matrix with
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Code-box 1. Pseudo-code for global FEM matrix assembly

for i = 1 : 2

for j = 1 : 2

Lv = repmat(C∇x(i, j, :), 3, 3). ∗ Ksti f f ness

+ repmat(Cx(i, j, :), 3, 3). ∗ Kmass;

Lb = repmat((C∇x
(

C∇bx
)−1

Cbx)(i, j, :), 3, 3). ∗ Kboundary

Aij = sparse(Iv, Jv, Lv(:), Nn, Nn)

+ sparse(Is, Js, Lb(:), Nn, Nn);

end

end

Code-box 2. Pseudo-code for vectorization of global FEM matrix-
field products

for i = 1 : D
for j = 1 : D

dGv(2i− 1 : 2i, 2j− 1 : 2j, :) = repmat(Ksti f f ness(i, j, :), 2, 2). ∗ ∂C∇x

∂p

+ repmat(Kmass(i, j, :), 2, 2). ∗ ∂Cx

∂p
;

end

Tv(2i− 1 : 2i, :) =
D

∑
j=1

dGv(2i− 1 : 2i, 2j− 1 : 2j, :). ∗ ue(2j− 1 : 2j, :);

end
for i = 1 : D− 1

for j = 1 : D− 1

dGb(2i− 1 : 2i, 2j− 1 : 2j, :) = repmat(Kboundary(i, j, :), 2, 2). ∗ C̃bx ;

end

Tb(2i− 1 : 2i, :) =
(D−1)

∑
j=1

(dGb(2i− 1 : 2i, 2j− 1 : 2j, :). ∗ ue(2j− 1 : 2j, :));

end
T = Tv + Tb;

the jth row containing nodal values of the ui for the jth element.
This code is then looped over the number of sources / detectors
depending on the field vector u.

Vectorization of sensitivity computations
From 41 and 48, we see that the expression for adjoint sensitivity
consists of terms of the type dG = [v]T [δG][u] ≡ [v]T [T]. The
products of any field quantity v with the matrix ‘T’ can be easily
computed as

dG =
D̃

∑
i=1

ve(2i− 1 : 2i, :). ∗ T(2i− 1 : 2i, :) (54)

where ve is defined similar to ue, D̃ = D, D − 1. While it is
feasible to use this approach to evaluate the terms of the type
[Ψ]T [δG][φ], it cannot be used for terms involving [Θ] and [Λ]
since their large size makes prohibitive memory demands
for such an implementation. Instead, vectorization of FEM
matrix-field products as described earlier is used to compute the

products of type T ≡ [δG][u], u = φ, Ψ and a conventional loop
based implementation is used to compute the product [v]T [T]
with [v] = [Θ], [Λ] as described in the pseudo-code in Code-box
3: where Nei is the vector of nodes corresponding to element ei.

Code-box 3. Pseudo-code for vectorization of sensitivity
computations

for e1 = 1 : Ne

for e2 = 1 : Ne

dG(e1, e2, :) = v1(Ne2 , e1, :). ∗ T(1 : 2 : 2D, e1, :)

+ v2(Ne2 , e1, :). ∗ T(2 : 2 : 2D, e1, :);

end
end

This code is then looped over the sources (resp. detectors) for
v = Λ(resp. Θ).
We summarize the numerical evaluation of the SO sensitivities
(48) as:

Evaluation of SO adjoint sensitivity

• Step 1: Assemble Ax/m/β as in pseudo-code in Code-
box 1.

• Step 2: Solve for φ, Ψ using eqs. 35 and 39 resp.

• Step 3: Evaluate Sx/m
Θ , Sx

Λ as in eqs. 46 and 47 resp.
using pseudo-code in Code-box 2.

• Step 4: For each detector (resp. source) evaluate Θi (resp.
Λi) using eq 44 (resp. 45)

• Step 5: For each source-detector pair,

– Step 5a: Use vectorization of sensitivity computa-
tions as in 54 to evaluate dG1 = [Ψ]T [δ2A][φ]

– Step 5b: Compute dG2 = [Θ]T [δA][φ] and dG3 =
[Ψ]T [δAT ][Λ] using pseudo-code in Code-box 3.

– Step 5c: Put together [Hij] = diag[dG1] + dG2 +
dG3

5. NUMERICAL STUDIES

A. Phantom description

We present numerical investigations on a square domain of size
2× 2 cm with 10 detectors located along each edge at a spacing
of 0.2 cm. Measurements are taken on all sides for each source
of strength 1mW modulated at 100MHz located at the centre of
each edge. Each dataset consists of 160 complex measurements.
We scale the data using a logarithmic transformation, which
separates the amplitude and the phase component to give 320
real measurements. For the reconstruction studies, a structured
mesh with spacing h = 0.05 cm (3200 elements) is used for the
reconstruction, while the simulated data is generated on a finer
mesh with spacing h = 0.025 cm (12800 elements). The sim-
ulations are performed on MATLAB with a system powered
by a 6-core Intel Xeon(R) processor with 64 GB RAM. The opti-
cal properties of the medium and the fluorophore for the high
scattering (µa << µ′s) and low scattering (µa ≈ µ′s) phantoms
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considered are listed in Table 1. In each case, the phantom con-
sists of two circular inhomogeneities embedded in the medium,
of radius 0.2cm each, centered at (−0.5, 0) cm and (0.5, 0) cm
with different values of µx

a f . We present numerical results for
ideal ( i.e. no background fluorescence) and differential uptake
of fluorophore wherein the background µx

a f is taken to be (1/50)
times the value of the inhomogeneity with higher µx

a f .

B. Validation of the second order sensitvity
To demonstrate the accuracy and efficacy of the current scheme,

we present comparisons for the SO sensitvity, ∂2 j+

∂(µx
a f )

2 evaluated

using the adjoint scheme with that evaluated using the finite
difference scheme (with perturbation δµx

a f ) over the adjoint Ja-
cobians,

HFD =

(
∂j+
∂µx

a f
(µx

a f + δµx
a f )−

∂j+
∂µx

a f
(µx

a f )

)
δµx

a f
(55)

For the validation study, the optical parameters are taken as that
of Phantom 1 described in Table 1. Two circular inhomogeneities
of radius 0.2 cm are embedded in the medium at (0.5,0) and
(-0.5,0) with µx

a f = 0.006cm−1. We use a single excitation source
located at (−1, 0) modulated at 100 MHz and consider 10 detec-
tors on the same edge as the source. In figure 1, we plot the real
(left) and imaginary (right) components of the SO sensitivity us-
ing both the schemes for variation in parameter values at the lo-
cations p1 = (0, 0), p2 = (−0.5, 0.1), p3 = (0.5, 0), p4 = (1, 0.6).
The points p2, p3 lie within the circular inclusions. The plot pipj

corresponds to ∂2 j+

∂µx
a f (pj)∂µx

a f (pi) . The evaluated SO sensitivities
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Fig. 1. The real(left) and imaginary (right) component of the
SO sensitivity for adjoint based (’A’) and finite difference ’F’
schemes.

with both the schemes are in close agreement with a mean dif-
ference of the O(10−15) between both evaluations. For a single
source-detector pair, the adjoint scheme takes 160 seconds to
compute the Ne × Ne SO sensitvity matrix while the finite differ-
ence scheme takes 2000 seconds. This substantial speedup in
the computation time makes it feasible to use the SO sensitvities
in the solution of tomographic inverse problems. A similar com-
parison has been presented for the elastic scattering problem for

the evaluation of the SO sensitivities ∂2 j+

∂(µa)2 in our earlier work
[25].

C. Reconstruction studies
We consider the non-linear inverse problem, to reconstruct the
fluorophore absoprtion coefficient µx

a f in the medium. All other
optical properties as well as the background fluorescence are
assumed known. Given measurements j+x/m

meas , we define the cost
function as

ζ(p) =
1
2
||R(p)||2 =

1
2
||[R1, R2, · · · RNs ]

T ||2 (56)

where the residual vector for the ith source is Ri =
[ri,1, ri,2, · · · ri,Nd

]T , with

ri,j ≡ ri,j(p, rj) = j+x/m
meas (rj)− j+x/m(p, rj) (57)

We solve this problem using the second degree scheme of Het-
tlich and Rundell [9], implemented within the framework of the
regularising Levenberg-Marquardt method [16, 23, 24].

The update vector sk, at the kth iterate, is evaluated using
a predictor-corrector approach wherein, first a predictor s̃k is
generated by solving the set of equations(

(Jk)T Jk + λk LT L
)

s̃k = −(Jk)T Rk (58)

where Jk, Rk denote the Ne×M Jacobian matrix and M× 1 resid-
ual vector, Ne being the total number of elements and M the total
number of measurements. λk is the Levenberg-Marquardt pa-
rameter. The matrix ‘L’ is the graph Laplacian of the spatial
discretisation scheme as in [2].

We then define a matrix Tk ≡
[

Tk
1 , Tk

2 ...Tk
M

]T
, where the Tk

i s
are evaluated as

Tk
i = Jk,i + (s̃k)T Hk,i (59)

Jk,i, Hk,i denote the respective components of the Jacobian and
the Hessian corresponding to the ith measurement. The cor-
rected update vector sk is then computed by solving(

(Tk)TTk + λk LT L
)

sk = −(Tk)T Rk (60)

Though it is possible to use different values of λk in the predictor
(eq. 58) and corrector (eq. 60), we choose to use the same λk in
our implementation. For the test-cases considered in our work,
we froze the SO sensitivity, H, at the first iterate as also done in
earlier works [8, 9].

The implementation of the FO regularising Levenberg-
Marquardt scheme involves only the predictor step given by
eq. 58 i.e. the update vector sk

FO = s̃k.
For the phantoms considered, reasonable reconstructions

were obtained till SNR’s of about 25dB, and we present results
for noiseless data, and noisy data with SNR 25dB. We threshold
the reconstructed values at 0.2maxµx,rec

a f .
To qualify the reconstructions, we use two metrics (i) the

correlation coefficient ρc and (ii) the deviation factor defined as
[4]

ρc =
∑Ne

i=1(µ
x,rec
a f ,i − µ̄x,rec

a f )(µx,act
a f ,i − µ̄x,act

a f )

(Ne − 1)∆µx,rec
a f ∆µx,act

a f

(61)

ρd =

√
(1/Ne)∑Ne

i=1(µ
x,rec
a f ,i − µx,act

a f ,i )
2

∆µx,act
a f

(62)

Here µ̄x,rec
a f , µ̄x,act

a f are the mean values and ∆µx,rec
a f , ∆µx,act

a f are the
standard deviations of the reconstructed and original spatial
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Table 1. Description of the optical properties of the medium and fluorophore for both phantoms. The subscripts i/ f denote quantities
related to the background/fluorophore and the superscripts x/m indicate quantities at excitation/emission wavelength respectively.

µx
ai µx

a f µm
ai µm

a f µx
s µm

s η f τf (ns)

Phantom 1 0.031 0.006 0.7987µx
ai 0.0846µx

a f 54.75 0.732µx
s 0.016 0.56

Phantom 2 0.45 0.087 0.45 0.043µx
a f 10.0 10.0 0.019 0.4

Table 2. Error measures for the First order (FO) and Second
order (SO) reconstruction schemes. For respective sets A, S, the
letters I, D distinguish ideal and differential uptake cases with
noiseless (N0) and noisy data with SNR 25dB(N1).

ρc ρd µx,rec
a f

FO SO FO SO FO SO

Dataset High scattering setting, µx,act
a f = (0.004, 0.006)cm−1

SI-N0 0.81 0.85 0.59 0.51 (.0045,.0056) (.0056,.0065)

SI-N1 0.81 0.84 0.59 0.54 (.0042,.0054) (.0048,.0063)

µx,act
a f = (0.18, 0.3)cm−1

SD-N0 0.78 0.90 0.67 0.49 (.0899,.1524) (.1364,.2259)

SD-N1 0.67 0.86 0.79 0.55 (.0638,.1132) (.1260,.2266)

Dataset Low scattering setting µx,act
a f = (0.058, 0.087)cm−1

AI-N0 0.81 0.90 0.62 0.49 (.0333,.0507) (.0426,.0624)

AI-N1 0.76 0.83 0.67 0.60 (.0306,.0489) (.0353,.0531)

µx,act
a f = (0.0522, 0.087)cm−1

AD-N0 0.64 0.79 0.83 0.66 (.0158,.0270) (.0271,.0449)

AD-N1 0.62 0.77 0.82 0.66 (.0142,.0312) (.0226,.0517)

parameter distributions in the region of interest, which we de-
fine as a rectangle of 2× 1cm centered at the origin. A higher
correlation coefficient and a lower deviation factor indicate a
good match between the actual and reconstructed parameter
values.

High scattering phantoms

In these phantoms, we use a homogenous initialisation of
0.001cm−1 for the ideal uptake case, and of 0.006cm−1 (which is
the value of µx

a f of the background) for the differential uptake
case for both the schemes. The optical parameter maps after
thresholding are plotted for the FO and SO scheme in the left
and right columns of Figure 2 respectively. The cross sections
along y = 0 are plotted in Figures 4 (a,b). As is evident from
the error metrics and the figures 2 (a-d), both the schemes per-

form at par for the ideal uptake case. In the differential uptake
setting, the SO scheme performs distinctly better than the FO
scheme in terms of both, the reconstructed parameter value and
localisation (refer Table 2 and figure 2 (e-h)) . The difference is
particularly stark with the noisy data set SD-N1.

Low scattering phantoms

For this case we use a homogeneous initialisation of µx,init
a f =

0.01cm−1 for the ideal uptake case, and µx,init
a f = 0.0017cm−1

(which is the µx
a f value of the background) for the differential

uptake case. In Figure 3 the reconstructed parameter maps are
plotted for the FO scheme (left column) and the SO scheme (right
column). In the low scattering setting, the SO scheme works
better than the FO scheme for both ideal as well as differential
uptake cases. For the differential uptake case the SO scheme
clearly distinguishes better between the two objects. The cross
sections along y = 0 for this set are plotted in Figure 4 (c,d).

Our numerical studies suggest that the SO scheme has a
wider applicability than the FO scheme. It performs better than
the FO scheme for the more realistic setting of differential uptake
of fluorophore as well as for low-scattering test cases in addition
to demonstrating better noise tolerance. A closer examination of
the residuals, Rk, also revealed that the drop in the first few iter-
ates is substantially larger with the SO than the FO scheme. The
evaluation of the SO sensitivity was frozen at the initial guess in
our work; however, using the updated SO sensitivities beyond
the first iterate did not substantially improve the reconstructions
for this problem.

6. CONCLUSIONS

We have presented an adjoint based scheme for the evaluation
of SO sensitivities with respect to exiting partial current mea-
surements at excitation and emission wavelength under the SP3
approximation for the coupled equations modeling fluorescence
radiation transfer. We also describe a vectorized implementa-
tion for the SO adjoint sensitivity computations. By appropri-
ately redefining the coefficient matrices, this can be extended
to arbitrary order N of the SPN approximation. Validation of
the derived SO sensitivities with respect to a finite difference
scheme demonstrates the accuracy of the scheme as well as
highlights the speed-up achieved using the same. This massive
speed-up makes it feasible to explore exact SO derivative based
reconstruction and analysis schemes for the inverse problem in
fluorescence optical tomography.

We have demonstrated the use of the SO sensitivity, through
a SO regularising Levenberg Marquardt scheme to reconstruct
the fluorophore absorption coefficient in various types of phan-
toms and contrasted it with a FO scheme. The evaluation of
the SO sensitivities is frozen at the initial guess enabling pre-
computation of the SO sensitivities to allow faster reconstruc-
tions. It is observed that the SO scheme has wider applicabil-
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Fig. 2. Reconstructions in high scattering setting for 1. Ideal
uptake (a,b) data-set SI-N0 , (c,d) data-set SI-N1, 2. Differential
uptake (e,f) data set SD-N0, (g,h) data-set SD-N1. Recon-
structions obtained using the first order (FO) scheme, and
second order (SO) scheme are placed in the left and right
columns respectively. The dashed red circles indicate the actual
inhomogeneities.
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Fig. 3. Reconstructions in low scattering setting for 1. Ideal
uptake (a,b) data-set AI-N0 , (c,d) data-set AI-N1, 2. Differential
uptake (e,f) data set AD-N0, (g,h) data-set AD-N1. The
reconstructions on the left are obtained using the first order (FO)
scheme, while those on the right are obtained using the second
order (SO) scheme. The dashed red circles indicate the actual
inhomogeneity.



Research Article Journal of the Optical Society of America A 11

-1 -0.5 0 0.5 1

x coordinate (cms)

0

1

2

3

4

5

6

µ
axf

 (
cm

-1
)

×10 -3

actual
FO-N0
SO-N0
FO-N1
SO-N1

-1 -0.5 0 0.5 1

x coordinate (cms)

0.05

0.1

0.15

0.2

0.25

0.3

µ
axf

 (
cm

-1
)

actual
FO-N0
SO-N0
FO-N1
SO-N1

-1 -0.5 0 0.5 1

x coordinate (cms)

0

0.02

0.04

0.06

0.08

µ
axf

 (
cm

-1
)

actual
FO-N0
SO-N0
FO-N1
SO-N1

-1 -0.5 0 0.5 1

x coordinate (cms)

0.02

0.04

0.06

0.08

µ
axf

 (
cm

-1
)

actual
FO-N0
SO-N0
FO-N1
SO-N1

Fig. 4. Cross sectional plots along y = 0 for 1. High scattering
setting (a,b) and 2. Low scattering setting (c,d). The left column
plots the cross-sections for the ideal uptake cases (*I-N0/N1),
while the right column plots the cross-sections for the differential
uptake cases (*D-N0/N1)

ity and consistently provides better estimates of the parameter
value. It distinctly outperforms the FO scheme for noisy data
sets. These observations are consistent with other works in the
literature and underscore the importance of making use of the
SO sensitivities.

The objective of this study has been primarily to motivate
an exploration of the efficacy and usability of SO schemes in
the inverse problem of FOT, which is promoted by the speedup
in evaluation of SO sensitivity obtained through the adjoint
based scheme. While this scheme involves nearly as many num-
ber of computations, (O(Np(Nd + Ns))), as the finite difference
scheme over the adjoint FO sensitvities, as pointed in the text,
it is more amenable to parallelisation owing to the structure of
the sub-problems involved. The evaluated SO sensitivities also
find potential use in numerical schemes for post-reconstruction
analysis of the iterates.

The substantial speedup demonstrated however comes at
the cost of memory, and the present implementation is memory
intensive. The storage of the SO sensitivities also makes consid-
erable demands on the memory. In the present work, we have
not investigated optimising the performance of the scheme to
make it memory efficient and work in this direction is ongoing.

Acknowledgement: The authors thank and acknowledge
support of the Board of Research in Nuclear Sciences (BRNS),
India in a part of this research.

7. APPENDIX

Applying the GFEM to 19, we can evaluate the components of

the adjoint source Sx/m
Θ =

∂(Jx/m
i )

T

∂φ δ(r− ru) as

[Sx/m
Θ ]u ≡

∫
V
[N]TSx/m

Θ dV = [N(ru)]
T

∂
(

Jx/m
i

)T

∂φ
(63)

Using the definition of
∂(Jx/m

i )
T

∂φ from eq. 21, we can write

[Sx/m
Θ ]u =

∫
Vu
[N]T∇ ·

(
∂C∇

∂pi

)T

∇[N][Ψx/m]dV

−
∫

Vu
[N]T

∂CT

∂pi
[N][Ψx/m]dV

−
∫

∂Vu∩∂V
[N]T

(
∂C∇

∂pi

)T

[n · ∇Ψx/m]dσ

+
∫

∂Vu∩∂V
[N]T

(
C∇bp

i − ∂C∇

∂pi
(C∇b)−1Cb

)T

[N][Ψx/m]dσ (64)

Using integration by parts, this simplifies to,

[Sx/m
Θ ]u = −

∫
Vu
[∇N]T

(
∂C∇

∂pi

)T

[∇N][Ψx/m]dV

−
∫

Vu
[N]T

(
∂CT

∂pi
[N][Ψx/m]

)
dV

+
∫

∂Vu∩∂V
[N]T

(
C∇bp

i − ∂C∇

∂pi
(C∇b)−1Cb

)T

[N][Ψx/m]dσ (65)

= [δA]Tu [Ψ]u (66)

Similarly, applying GFEM to 28, we can evaluate Sx/m
Λ δ(r− ru)

as

[Sx/m
Λ ]u ≡

∫
V
[N]TSx/m

Λ dV = [N(ru)]
T ∂Jx/m

i

∂
(
Ψx/m

)T (67)

Using definition of ∂Jx/m
i

∂(Ψx/m)
T from 30, as with the expression

above, we can derive,

[Sx
Λ]u = −

∫
Vu
[∇N]T

∂C∇x

∂pi
[∇N][φx ]dV

−
∫

Vu
[N]T

∂Cx

∂pi
[N][φx ]dV

+
∫

∂Vu∩∂V
[N]T

(
C∇bpx

i − ∂C∇x

∂pi
(C∇bx)−1Cbx

)
[N][φx ]udσ (68)

= [δAx ]u [φ
x ] (69)

[Sm
Λ ]u = −

∫
Vu
[∇N]T

∂C∇m

∂pi
[∇N][φm]dV

−
∫

Vu
[N]T

∂Cm

∂pi
[N][φm]dV +

∫
Vu
[N]T

∂Cβ

∂pi
[N][φx ]dV

+
∫

∂Vu∩∂V
[N]TC∇bpm

i [N][φm]dσ

−
∫

∂Vu∩∂V
[N]T

∂C∇m

∂pi
(C∇bm)−1Cbm[N][φm]dσ (70)

= [δAm]u [φ
m]u −

[
δAβ

]
u [φ

x ]u (71)

where [·]u indicates the corresponding quantity relevant to the
uth element. We can thus write the sources [SΘ], [SΛ] in block
form as in eq.46 and eq. 47.
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